
Linge Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5045427/publications.pdf Version: 2024-02-01

LINCE WANC

#	Article	IF	CITATIONS
1	Synthetic Bioâ€nanoreactor: Mechanical and Chemical Control of Polymersome Membrane Permeability. Angewandte Chemie - International Edition, 2012, 51, 4448-4451.	7.2	246
2	Electrospinning of ethyl-cyanoethyl cellulose/tetrahydrofuran solutions. Journal of Applied Polymer Science, 2004, 91, 242-246.	1.3	157
3	Electrospun phase change fibers based on polyethylene glycol/cellulose acetate blends. Applied Energy, 2011, 88, 3133-3139.	5.1	151
4	Electrospinning of thermo-regulating ultrafine fibers based on polyethylene glycol/cellulose acetate composite. Polymer, 2007, 48, 5202-5207.	1.8	147
5	Morphology and thermal properties of electrospun fatty acids/polyethylene terephthalate composite fibers as novel form-stable phase change materials. Solar Energy Materials and Solar Cells, 2008, 92, 1382-1387.	3.0	134
6	Review on electrospun ultrafine phase change fibers (PCFs) for thermal energy storage. Applied Energy, 2018, 210, 167-181.	5.1	123
7	A novel shape-stabilized PCM: Electrospun ultrafine fibers based on lauric acid/polyethylene terephthalate composite. Materials Letters, 2008, 62, 3515-3517.	1.3	108
8	Crosslinking of the electrospun polyethylene glycol/cellulose acetate composite fibers as shape-stabilized phase change materials. Materials Letters, 2009, 63, 569-571.	1.3	104
9	Encapsulation of Biomacromolecules within Polymersomes by Electroporation. Angewandte Chemie - International Edition, 2012, 51, 11122-11125.	7.2	101
10	Ultrafine electrospun fibers based on stearyl stearate/polyethylene terephthalate composite as form stable phase change materials. Chemical Engineering Journal, 2009, 150, 269-274.	6.6	84
11	Effect of solvent on morphology of electrospinning ethyl cellulose fibers. Journal of Applied Polymer Science, 2005, 97, 1292-1297.	1.3	76
12	Synthesis and Peptide-Induced Degradation of Biocompatible Fibers Based on Highly Branched Poly(2-hydroxyethyl methacrylate). Advanced Materials, 2006, 18, 1566-1570.	11.1	68
13	Electrospinning pHâ€Responsive Block Copolymer Nanofibers. Advanced Materials, 2007, 19, 3544-3548.	11.1	65
14	Superhydrophobic hierarchical fiber/bead composite membranes for efficient treatment of burns. Acta Biomaterialia, 2019, 92, 60-70.	4.1	64
15	A comprehensive review of electrospinning block copolymers. Soft Matter, 2019, 15, 2490-2510.	1.2	52
16	Fabrication of magnetic drug-loaded polymeric composite nanofibres and their drug release characteristics. RSC Advances, 2012, 2, 2433.	1.7	44
17	Role of <i>M</i> _n of PEG in the morphology and properties of electrospun PEG/CA composite fibers for thermal energy storage. AICHE Journal, 2009, 55, 820-827.	1.8	41
18	Electrospun hydroxypropyl methyl cellulose phthalate (HPMCP)/erythromycin fibers for targeted release in intestine. Journal of Applied Polymer Science, 2007, 106, 2177-2184.	1.3	40

LINGE WANG

#	Article	IF	CITATIONS
19	Selfâ€Assemblyâ€Driven Electrospinning: The Transition from Fibers to Intact Beaded Morphologies. Macromolecular Rapid Communications, 2015, 36, 1437-1443.	2.0	40
20	Rinse-resistant superhydrophobic block copolymer fabrics by electrospinning, electrospraying and thermally-induced self-assembly. Applied Surface Science, 2017, 422, 769-777.	3.1	40
21	Frank-Kasper and related quasicrystal spherical phases in macromolecules. Science China Chemistry, 2018, 61, 33-45.	4.2	39
22	Visible-blind ultraviolet narrowband photomultiplication-type organic photodetector with an ultrahigh external quantum efficiency of over 1 000 000%. Materials Horizons, 2021, 8, 2293-2302.	6.4	34
23	A review on electrospun magnetic nanomaterials: methods, properties and applications. Journal of Materials Chemistry C, 2021, 9, 9042-9082.	2.7	31
24	Electrostatically generated fibers of ethyl-cyanoethyl cellulose. Cellulose, 2003, 10, 405-409.	2.4	30
25	Bottom-Up Evolution of Vesicles from Disks to High-Genus Polymersomes. IScience, 2018, 7, 132-144.	1.9	29
26	Structural Characteristics and Defects in Ethylâ^'Cyanoethyl Cellulose/Acrylic Acid Cholesteric Liquid Crystalline System. Macromolecules, 2004, 37, 303-309.	2.2	26
27	Crystallization of Polymer Chains Chemically Attached on a Surface: Lamellar Orientation from Flat-on to Edge-on. Journal of Physical Chemistry B, 2016, 120, 4715-4722.	1.2	24
28	Binary shape-stabilized phase change materials based on poly(ethylene glycol)/polyurethane composite with dual-phase transition. Journal of Materials Science, 2018, 53, 16539-16556.	1.7	24
29	Photothermal-responsive fiber dressing with enhanced antibacterial activity and cell manipulation towards promoting woundâ€healing. Journal of Colloid and Interface Science, 2022, 623, 21-33.	5.0	22
30	Micro-and-nanometer topological gradient of block copolymer fibrous scaffolds towards region-specific cell regulation. Journal of Colloid and Interface Science, 2022, 606, 248-260.	5.0	17
31	Postproduction Processing of Electrospun Fibres for Tissue Engineering. Journal of Visualized Experiments, 2012, , .	0.2	16
32	Microparticle templating as a route to nanoscale polymer vesicles with controlled size distribution for anticancer drug delivery. Journal of Colloid and Interface Science, 2017, 508, 145-153.	5.0	16
33	Can Photothermal Post-Operative Cancer Treatment Be Induced by a Thermal Trigger?. ACS Applied Materials & Interfaces, 2021, 13, 60837-60851.	4.0	15
34	Effects of Magnetic Field on Ethylâ^'Cyanoethyl Cellulose Cholesteric Order. Macromolecules, 2000, 33, 7062-7065.	2.2	13
35	Disklike Texture of Ethylâ^'Cyanoethyl Cellulose Cholesteric Phase. Macromolecules, 2002, 35, 3111-3116.	2.2	12
36	Photoinduced graft copolymerization of polymer surfactants based on hydroxyethyl cellulose. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 190, 9-14.	2.0	12

LINGE WANG

#	Article	IF	CITATIONS
37	Fabrication superhydrophobic composite membranes with hierarchical geometries and low-surface-energy modifications. Polymer, 2020, 211, 123097.	1.8	12
38	Relaxation Processes in sheared films of ethyl-cyanoethyl cellulose cholesteric liquid crystalline solutions. Liquid Crystals, 2003, 30, 1129-1137.	0.9	9
39	Optical properties of ethyl-cyanoethyl cellulose/poly(acrylic acid) cholesteric liquid crystalline composite films. Journal of Applied Polymer Science, 2004, 92, 213-217.	1.3	8
40	A comparative study of linear polyurea and crosslinked polyurea as supports to stabilize polyethylene glycol for thermal energy storage. Renewable Energy, 2022, 183, 535-547.	4.3	6
41	Soft matters from nano-atoms to giant molecules. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 183601.	0.2	5
42	Polymersomes as virus-surrogate particles for evaluating the performance of air filter materials. Giant, 2022, 10, 100104.	2.5	4
43	Effect of swelling on the cholesteric structure of ethyl-cyanoethyl cellulose/crosslinked poly(acrylic acid) composite films. Journal of Applied Polymer Science, 2004, 91, 3574-3578.	1.3	3
44	Porous three-dimensional polymer composites for tailored delivery of bioactives and drugs. , 2019, , 331-369.		3
45	Electrospinning of Phase-Change Materials for Thermal Energy Storage. Nanostructure Science and Technology, 2014, , 227-247.	0.1	3
46	APPLICATION OF ELECTROSPUN ETHYL CELLULOSE FIBERS IN DRUG RELEASE SYSTEMS. Acta Polymerica Sinica, 2006, 006, 264-268.	0.0	3
47	Effects of concentration and boundary conditions on (E-CE)-C cholesteric phase. Polymer Bulletin, 2000, 45, 89-96.	1.7	2
48	Concentration dependence of magnetic field effects on the ethyl-cyanoethyl cellulose/dichoroacetic acid cholesteric phase. Liquid Crystals, 2001, 28, 1673-1677.	0.9	2
49	Effects of external fields on macromolecular cholesteric phase. Macromolecular Symposia, 2003, 192, 207-216.	0.4	1
50	Influence of swelling solutions on the behavior of cholesteric networks. Journal of Applied Polymer Science, 2005, 95, 724-729.	1.3	1
51	Copolymerization Induced Emission of Poly[(methylenelactide)-co-(2-vinylpyridine)]. Journal of Materials Chemistry C, 0, , .	2.7	1
52	Macromol. Rapid Commun. 15/2015. Macromolecular Rapid Communications, 2015, 36, 1452-1452.	2.0	0