Jongsook Kim Kemper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5045195/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	SIRT1 Deacetylates and Inhibits SREBP-1C Activity in Regulation of Hepatic Lipid Metabolism*. Journal of Biological Chemistry, 2010, 285, 33959-33970.	1.6	442
3	Transcriptional regulation of autophagy by an FXR–CREB axis. Nature, 2014, 516, 108-111.	13.7	342
4	FXR Acetylation Is Normally Dynamically Regulated by p300 and SIRT1 but Constitutively Elevated in Metabolic Disease States. Cell Metabolism, 2009, 10, 392-404.	7.2	278
5	A Pathway Involving Farnesoid X Receptor and Small Heterodimer Partner Positively Regulates Hepatic Sirtuin 1 Levels via MicroRNA-34a Inhibition. Journal of Biological Chemistry, 2010, 285, 12604-12611.	1.6	224
6	Elevated micro <scp>RNA</scp> â€34a in obesity reduces <scp>NAD</scp> ⁺ levels and <scp>SIRT</scp> 1 activity by directly targeting <scp>NAMPT</scp> . Aging Cell, 2013, 12, 1062-1072.	3.0	210
7	MicroRNA 34a Inhibits Beige and Brown Fat Formation in Obesity in Part by Suppressing Adipocyte Fibroblast Growth Factor 21 Signaling and SIRT1 Function. Molecular and Cellular Biology, 2014, 34, 4130-4142.	1.1	153
8	Aberrantly elevated microRNA-34a in obesity attenuates hepatic responses to FGF19 by targeting a membrane coreceptor β-Klotho. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16137-16142.	3.3	134
9	Fasting-induced FGF21 signaling activates hepatic autophagy and lipid degradation via JMJD3 histone demethylase. Nature Communications, 2020, 11, 807.	5.8	127
10	Bile acid signaling pathways increase stability of Small Heterodimer Partner (SHP) by inhibiting ubiquitin–proteasomal degradation. Genes and Development, 2009, 23, 986-996.	2.7	109
11	A dysregulated acetyl/ <scp>SUMO</scp> switch of <scp>FXR</scp> promotes hepatic inflammation in obesity. EMBO Journal, 2015, 34, 184-199.	3.5	106
12	Role of an mSin3A-Swi/Snf Chromatin Remodeling Complex in the Feedback Repression of Bile Acid Biosynthesis by SHP. Molecular and Cellular Biology, 2004, 24, 7707-7719.	1.1	99
13	Controlling SIRT1 expression by microRNAs in health and metabolic disease. Aging, 2010, 2, 527-534.	1.4	94
14	Coordinated Recruitment of Histone Methyltransferase G9a and Other Chromatin-Modifying Enzymes in SHP-Mediated Regulation of Hepatic Bile Acid Metabolism. Molecular and Cellular Biology, 2007, 27, 1407-1424.	1.1	90
15	Regulation of FXR transcriptional activity in health and disease: Emerging roles of FXR cofactors and post-translational modifications. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 842-850.	1.8	81
16	Hepatic Deletion of SIRT1 Decreases Hepatocyte Nuclear Factor 1 <i>α</i> /Farnesoid X Receptor Signaling and Induces Formation of Cholesterol Gallstones in Mice. Molecular and Cellular Biology, 2012, 32, 1226-1236.	1.1	75
17	Obesity and aging diminish sirtuin 1 (SIRT1)-mediated deacetylation of SIRT3, leading to hyperacetylation and decreased activity and stability of SIRT3. Journal of Biological Chemistry, 2017, 292, 17312-17323.	1.6	75
18	Regulation of SIRT1 by MicroRNAs. Molecules and Cells, 2013, 36, 385-392.	1.0	67

2

#	Article	IF	CITATIONS
19	The p300 Acetylase Is Critical for Ligand-activated Farnesoid X Receptor (FXR) Induction of SHP. Journal of Biological Chemistry, 2008, 283, 35086-35095.	1.6	61
20	Genomic analysis of hepatic farnesoid X receptor binding sites reveals altered binding in obesity and direct gene repression by farnesoid X receptor in mice. Hepatology, 2012, 56, 108-117.	3.6	60
21	Postprandial FGF19-induced phosphorylation by Src is critical for FXR function in bile acid homeostasis. Nature Communications, 2018, 9, 2590.	5.8	55
22	A postprandial <scp>FGF</scp> 19― <scp>SHP</scp> ― <scp>LSD</scp> 1 regulatory axisÂmediates epigenetic repression of hepaticÂautophagy. EMBO Journal, 2017, 36, 1755-1769.	3.5	54
23	Fasting-induced JMJD3 histone demethylase epigenetically activates mitochondrial fatty acid β-oxidation. Journal of Clinical Investigation, 2018, 128, 3144-3159.	3.9	52
24	Sirtuin 1 Deacetylase. Vitamins and Hormones, 2013, 91, 385-404.	0.7	45
25	FXR Primes the Liver for Intestinal FGF15 Signaling by Transient Induction of β-Klotho. Molecular Endocrinology, 2016, 30, 92-103.	3.7	42
26	AhR and SHP regulate phosphatidylcholine and S-adenosylmethionine levels in the one-carbon cycle. Nature Communications, 2018, 9, 540.	5.8	41
27	Small Heterodimer Partner and Fibroblast Growth Factor 19ÂInhibit Expression of NPC1L1 in Mouse Intestine and Cholesterol Absorption. Gastroenterology, 2019, 156, 1052-1065.	0.6	41
28	Functional Specificities of Brm and Brg-1 Swi/Snf ATPases in the Feedback Regulation of Hepatic Bile Acid Biosynthesis. Molecular and Cellular Biology, 2009, 29, 6170-6181.	1.1	38
29	Obesity-Linked Phosphorylation of SIRT1 by Casein Kinase 2 Inhibits Its Nuclear Localization and Promotes Fatty Liver. Molecular and Cellular Biology, 2017, 37, .	1.1	37
30	Bile Acid Signal-induced Phosphorylation of Small Heterodimer Partner by Protein Kinase Cζ Is Critical for Epigenomic Regulation of Liver Metabolic Genes. Journal of Biological Chemistry, 2013, 288, 23252-23263.	1.6	35
31	Intestinal FGF15/19 physiologically repress hepatic lipogenesisÂin the late fed-state by activating SHP and DNMT3A. Nature Communications, 2020, 11, 5969.	5.8	35
32	Liver ChIP-seq analysis in FGF19-treated mice reveals SHP as a global transcriptional partner of SREBP-2. Genome Biology, 2015, 16, 268.	3.8	33
33	Farnesoid X receptor–induced lysineâ€specific histone demethylase reduces hepatic bile acid levels and protects the liver against bile acid toxicity. Hepatology, 2015, 62, 220-231.	3.6	33
34	Critical role of RanBP2-mediated SUMOylation of Small Heterodimer Partner in maintaining bile acid homeostasis. Nature Communications, 2016, 7, 12179.	5.8	32
35	Phosphorylation of hepatic farnesoid X receptor by FGF19 signaling–activated Src maintains cholesterol levels and protects from atherosclerosis. Journal of Biological Chemistry, 2019, 294, 8732-8744.	1.6	31
36	Arginine Methylation by PRMT5 at a Naturally Occurring Mutation Site Is Critical for Liver Metabolic Regulation by Small Heterodimer Partner. Molecular and Cellular Biology, 2011, 31, 1540-1550.	1.1	29

JONGSOOK KIM KEMPER

#	Article	IF	CITATIONS
37	Epigenomic regulation of bile acid metabolism: Emerging role of transcriptional cofactors. Molecular and Cellular Endocrinology, 2013, 368, 59-70.	1.6	24
38	MicroRNAâ€210 Promotes Bile Acid–Induced Cholestatic Liver Injury by Targeting Mixedâ€Lineage Leukemiaâ€4 Methyltransferase in Mice. Hepatology, 2020, 71, 2118-2134.	⁴ 3.6	21
39	Brd4 modulates diet-induced obesity via PPARÎ ³ -dependent Gdf3 expression in adipose tissue macrophages. JCl Insight, 2021, 6, .	2.3	16
40	BRD4 inhibition and FXR activation, individually beneficial in cholestasis, are antagonistic in combination. JCI Insight, 2021, 6, .	2.3	15
41	Defective FXR-SHP Regulation in Obesity Aberrantly Increases <i>miR-802</i> Expression, Promoting Insulin Resistance and Fatty Liver. Diabetes, 2021, 70, 733-744.	0.3	15
42	Feeding activates FGF15â€SHPâ€TFEBâ€mediated lipophagy in the gut. EMBO Journal, 2022, 41, .	3.5	9
43	Mitochondrial protease ClpP supplementation ameliorates diet-induced NASH in mice. Journal of Hepatology, 2022, 77, 735-747.	1.8	8