Christoph Ringli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5044805/publications.pdf

Version: 2024-02-01

201674 377865 2,743 35 27 34 citations h-index g-index papers 42 42 42 3201 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	RALF4/19 peptides interact with LRX proteins to control pollen tube growth in <i>Arabidopsis</i> Science, 2017, 358, 1600-1603.	12.6	239
2	The chimeric leucine-rich repeat/extensin cell wall protein LRX1 is required for root hair morphogenesis in Arabidopsis thaliana. Genes and Development, 2001, 15, 1128-1139.	5.9	236
3	Flavonols Accumulate Asymmetrically and Affect Auxin Transport in Arabidopsis Â. Plant Physiology, 2011, 156, 585-595.	4.8	167
4	Involvement of an ABC Transporter in a Developmental Pathway Regulating Hypocotyl Cell Elongation in the Light. Plant Cell, 1998, 10, 1623-1636.	6.6	160
5	ACTIN2 Is Essential for Bulge Site Selection and Tip Growth during Root Hair Development of Arabidopsis. Plant Physiology, 2002, 129, 1464-1472.	4.8	158
6	Extracellular matrix sensing by <scp>FERONIA</scp> and Leucineâ€Rich Repeat Extensins controls vacuolar expansion during cellular elongation in <i>Arabidopsis thaliana</i> . EMBO Journal, 2019, 38, .	7.8	158
7	Whole-Genome Comparison of Leucine-Rich Repeat Extensins in Arabidopsis and Rice. A Conserved Family of Cell Wall Proteins Form a Vegetative and a Reproductive Clade,. Plant Physiology, 2003, 131, 1313-1326.	4.8	128
8	The Arabidopsis Root Hair Cell Wall Formation Mutant Irx1 Is Suppressed by Mutations in the RHM1 Gene Encoding a UDP-L-Rhamnose Synthase. Plant Cell, 2006, 18, 1630-1641.	6.6	114
9	Arabidopsis leucine-rich repeat extensin (LRX) proteins modify cell wall composition and influence plant growth. BMC Plant Biology, 2015, 15, 155.	3.6	109
10	The pollen tube: a soft shell with a hard core. Plant Journal, 2013, 73, 617-627.	5.7	106
11	PECTIN METHYLESTERASE48 Is Involved in Arabidopsis Pollen Grain Germination Â. Plant Physiology, 2015, 167, 367-380.	4.8	97
12	The Modified Flavonol Glycosylation Profile in the <i>Arabidopsis rol1</i> Mutants Results in Alterations in Plant Growth and Cell Shape Formation. Plant Cell, 2008, 20, 1470-1481.	6.6	95
13	The TOR Pathway Modulates the Structure of Cell Walls in <i>Arabidopsis</i> Â. Plant Cell, 2010, 22, 1898-1908.	6.6	89
14	Monitoring the Outside: Cell Wall-Sensing Mechanisms Â. Plant Physiology, 2010, 153, 1445-1452.	4.8	87
15	LRX Proteins Play a Crucial Role in Pollen Grain and Pollen Tube Cell Wall Development. Plant Physiology, 2018, 176, 1981-1992.	4.8	79
16	Leucine-Rich Repeat Extensin Proteins and Their Role in Cell Wall Sensing. Current Biology, 2019, 29, R851-R858.	3.9	78
17	The hydroxyprolineâ€rich glycoprotein domain of the Arabidopsis LRX1 requires Tyr for function but not for insolubilization in the cell wall. Plant Journal, 2010, 63, 662-669.	5.7	71
18	Linker histones are fine-scale chromatin architects modulating developmental decisions in Arabidopsis. Genome Biology, 2019, 20, 157.	8.8	67

#	Article	IF	Citations
19	7-Rhamnosylated Flavonols Modulate Homeostasis of the Plant Hormone Auxin and Affect Plant Development. Journal of Biological Chemistry, 2016, 291, 5385-5395.	3.4	63
20	Differential expression of hydrophobins DGH1, DGH2 and DGH3 and immunolocalization of DGH1 in strata of the lichenized basidiocarp of Dictyonema glabratum. New Phytologist, 2002, 154, 185-195.	7.3	47
21	Regulation of immune receptor kinase plasma membrane nanoscale organization by a plant peptide hormone and its receptors. ELife, 2022, 11 , .	6.0	44
22	Mutations in the Arabidopsis ROL17/isopropylmalate synthase 1 locus alter amino acid content, modify the TOR network, and suppress the root hair cell development mutant lrx1. Journal of Experimental Botany, 2019, 70, 2313-2323.	4.8	43
23	Flavonol-induced changes in PIN2 polarity and auxin transport in the Arabidopsis thaliana rol1-2 mutant require phosphatase activity. Scientific Reports, 2017, 7, 41906.	3.3	41
24	Overlapping functions and protein-protein interactions of LRR-extensins in Arabidopsis. PLoS Genetics, 2020, 16, e1008847.	3.5	41
25	Plant TOR signaling components. Plant Signaling and Behavior, 2011, 6, 1700-1705.	2.4	36
26	Characterization of size-dependent mechanical properties of tip-growing cells using a lab-on-chip device. Lab on A Chip, 2017, 17, 82-90.	6.0	31
27	The Arabidopsis Root Hair Mutants der2–der9 are Affected at Different Stages of Root Hair Development. Plant and Cell Physiology, 2005, 46, 1046-1053.	3.1	29
28	Hydrophobic Interactions of the Structural Protein GRP1.8 in the Cell Wall of Protoxylem Elements. Plant Physiology, 2001, 125, 673-682.	4.8	28
29	The enl Mutants Enhance the lrx1 Root Hair Mutant Phenotype of Arabidopsis thaliana. Plant and Cell Physiology, 2004, 45, 734-741.	3.1	25
30	Efficient preparation of Arabidopsis pollen tubes for ultrastructural analysis using chemical and cryo-fixation. BMC Plant Biology, 2017, 17, 176.	3.6	18
31	The cytosolic thiouridylase CTU2 of Arabidopsis thalianais essential for posttranscriptional thiolation of tRNAs and influences root development. BMC Plant Biology, 2014, 14, 109.	3.6	17
32	Ubiquitin-Related Modifiers of Arabidopsis thaliana Influence Root Development. PLoS ONE, 2014, 9, e86862.	2.5	9
33	Transmission Electron Microscopy Imaging to Analyze Chromatin Density Distribution at the Nanoscale Level. Methods in Molecular Biology, 2018, 1675, 633-651.	0.9	6
34	Defects in Cell Wall Differentiation of the Arabidopsis Mutant rol1-2 Is Dependent on Cyclin-Dependent Kinase CDK8. Cells, 2021, 10, 685.	4.1	3
35	Cell Growth Processes in Arabidopsis thaliana are Modified by Flavonols. Chimia, 2012, 66, 714-714.	0.6	0