
Takeshi Kobayashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5044325/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An increasing trend of human sapovirus infection in Japan, 2009 to 2019: An emerging public health concern. Journal of Infection and Public Health, 2022, 15, 315-320.	1.9	10
2	SARS-CoV-2 infection triggers paracrine senescence and leads to a sustained senescence-associated inflammatory response. Nature Aging, 2022, 2, 115-124.	5.3	43
3	Whole genome sequencing and evolutionary analysis of G8P [8] rotaviruses emerging in Japan. VirusDisease, 2022, 33, 215-218.	1.0	6
4	Changing Predominance of Norovirus Recombinant Strains GII.2[P16] to GII.4[P16] and GII.4[P31] in Thailand, 2017 to 2018. Microbiology Spectrum, 2022, 10, e0044822.	1.2	8
5	The nonstructural p17 protein of a fusogenic bat-borne reovirus regulates viral replication in virus species- and host-specific manners. PLoS Pathogens, 2022, 18, e1010553.	2.1	2
6	Development of an oncolytic mammalian orthoreovirus expressing the near-infrared fluorescent protein iRFP720. Journal of Virological Methods, 2022, 308, 114574.	1.0	3
7	Generation of recombinant rotaviruses encoding a split NanoLuc peptide tag. Biochemical and Biophysical Research Communications, 2021, 534, 740-746.	1.0	7
8	Monoreassortant Rotaviruses of Multiple G Types Are Differentially Neutralized by Sera From Infants Vaccinated With ROTARIX and RotaTeq. Journal of Infectious Diseases, 2021, 224, 1720-1729.	1.9	5
9	Rotavirus reverse genetics systems: Development and application. Virus Research, 2021, 295, 198296.	1.1	11
10	Epidemiology and genetic diversity of group A rotavirus in pediatric patients with acute gastroenteritis in Thailand, 2018–2019. Infection, Genetics and Evolution, 2021, 95, 104898.	1.0	7
11	DsRNA Sequencing for RNA Virus Surveillance Using Human Clinical Samples. Viruses, 2021, 13, 1310.	1.5	6
12	Species A rotavirus reverse genetics: Achievements and prospects. Virus Research, 2021, 306, 198583.	1.1	1
13	FAST Proteins: Development and Use of Reverse Genetics Systems for <i>Reoviridae</i> Viruses. Annual Review of Virology, 2021, 8, 515-536.	3.0	8
14	Development of an entirely plasmid-based reverse genetics system for 12-segmented double-stranded RNA viruses. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	6
15	Reverse Genetics System for a Human Group A Rotavirus. Journal of Virology, 2020, 94, .	1.5	33
16	Reverse Genetics Approach for Developing Rotavirus Vaccine Candidates Carrying VP4 and VP7 Genes Cloned from Clinical Isolates of Human Rotavirus. Journal of Virology, 2020, 95, .	1.5	20
17	Generation of Genetically RGD σ1-Modified Oncolytic Reovirus That Enhances JAM-A-Independent Infection of Tumor Cells. Journal of Virology, 2020, 94, .	1.5	10
18	<i>In Vivo</i> Live Imaging of Oncolytic Mammalian Orthoreovirus Expressing NanoLuc Luciferase in Tumor Xenograft Mice. Journal of Virology, 2019, 93, .	1.5	20

Τακέςμι Κοβαγάςμι

#	Article	IF	CITATIONS
19	Cell–cell fusion induced by reovirus FAST proteins enhances replication and pathogenicity of non-enveloped dsRNA viruses. PLoS Pathogens, 2019, 15, e1007675.	2.1	37
20	Development of Stable Rotavirus Reporter Expression Systems. Journal of Virology, 2019, 93, .	1.5	36
21	Lethal murine infection model for human respiratory disease-associated Pteropine orthoreovirus. Virology, 2018, 514, 57-65.	1.1	14
22	Entirely plasmid-based reverse genetics system for rotaviruses. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2349-2354.	3.3	172
23	African Swine Fever Virus NP868R Capping Enzyme Promotes Reovirus Rescue during Reverse Genetics by Promoting Reovirus Protein Expression, Virion Assembly, and RNA Incorporation into Infectious Virions. Journal of Virology, 2017, 91, .	1.5	39
24	Reverse Genetics System Demonstrates that Rotavirus Nonstructural Protein NSP6 Is Not Essential for Viral Replication in Cell Culture. Journal of Virology, 2017, 91, .	1.5	41
25	Reverse Genetics for Fusogenic Bat-Borne Orthoreovirus Associated with Acute Respiratory Tract Infections in Humans: Role of Outer Capsid Protein ÏfC in Viral Replication and Pathogenesis. PLoS Pathogens, 2016, 12, e1005455.	2.1	26
26	Imported Case of Acute Respiratory Tract Infection Associated with a Member of Species Nelson Bay Orthoreovirus. PLoS ONE, 2014, 9, e92777.	1.1	44
27	A plasmid-based reverse genetics system for mammalian orthoreoviruses driven by a plasmid-encoded T7 RNA polymerase. Journal of Virological Methods, 2014, 196, 36-39.	1.0	17
28	An improved reverse genetics system for mammalian orthoreoviruses. Virology, 2010, 398, 194-200.	1.1	149
29	Identification of Functional Domains in Reovirus Replication Proteins μNS and μ2. Journal of Virology, 2009, 83, 2892-2906.	1.5	53
30	A Plasmid-Based Reverse Genetics System for Animal Double-Stranded RNA Viruses. Cell Host and Microbe, 2007, 1, 147-157.	5.1	240
31	Gene-Specific Inhibition of Reovirus Replication by RNA Interference. Journal of Virology, 2006, 80, 9053-9063.	1.5	57
32	Modulation of Borna Disease Virus Phosphoprotein Nuclear Localization by the Viral Protein X Encoded in the Overlapping Open Reading Frame. Journal of Virology, 2003, 77, 8099-8107.	1.5	26
33	Antibodies to Borna Disease Virus in Infected Adult Rats: An Early Appearance of Anti-p10 Antibody and Recognition of Novel Virus-Specific Proteins in Infected Animal Brain Cells Journal of Veterinary Medical Science, 2000, 62, 775-778.	0.3	5
34	Molecular Ratio between Borna Disease Viralâ€p40 and â€p24 Proteins in Infected Cells Determined by Quantitative Antigen Capture ELISA. Microbiology and Immunology, 2000, 44, 765-772.	0.7	37