Tolga Ã**‡**n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5044235/publications.pdf

Version: 2024-02-01

		623734	501196
52	938	14	28
papers	citations	h-index	g-index
52	52	52	1252
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	A Câ€term truncated <scp>EIF2Bγ</scp> protein encoded by an intronically polyadenylated isoform introduces unfavorable <scp>EIF2Bγ–EIF2γ</scp> interactions. Proteins: Structure, Function and Bioinformatics, 2022, 90, 889-897.	2.6	1
2	Targeting HIF1-alpha/miR-326/ITGA5 axis potentiates chemotherapy response in triple-negative breast cancer. Breast Cancer Research and Treatment, 2022, 193, 331-348.	2.5	18
3	MotifGenie: a Python application for searching transcription factor binding sequences using ChIP-Seq datasets. Bioinformatics, 2021, 37, 4238-4239.	4.1	3
4	A CpG island promoter drives the CXXC5 gene expression. Scientific Reports, 2021, 11, 15655.	3.3	2
5	A prelude to the proximity interaction mapping of CXXC5. Scientific Reports, 2021, 11, 17587.	3.3	4
6	Identification of an mRNA isoform switch for HNRNPA1 in breast cancers. Scientific Reports, 2021, 11, 24444.	3.3	5
7	JOA: Joint Overlap Analysis of multiple genomic interval sets. BMC Bioinformatics, 2019, 20, 121.	2.6	2
8	Abstract 2360: Deregulated APA and cancer specific APA isoforms. , 2018, , .		0
9	Alternative Polyadenylation Patterns for Novel Gene Discovery and Classification in Cancer. Neoplasia, 2017, 19, 574-582.	5.3	13
10	Comparison of tissue/disease specific integrated networks using directed graphlet signatures. BMC Bioinformatics, 2017, 18, 135.	2.6	9
11	A multiplex primer design algorithm for target amplification of continuous genomic regions. BMC Bioinformatics, 2017, 18, 306.	2.6	2
12	Abstract 3374: APA isoform diversity in triple negative breast cancers. , 2017, , .		0
13	Comparison of tissue/disease specific integrated networks using directed graphlet signatures. , 2016, , .		1
14	Alternative Polyadenylation: Another Foe in Cancer. Molecular Cancer Research, 2016, 14, 507-517.	3.4	51
15	SUMONA: A supervised method for optimizing network alignment. Computational Biology and Chemistry, 2016, 63, 41-51.	2.3	7
16	The CHEMDNER corpus of chemicals and drugs and its annotation principles. Journal of Cheminformatics, 2015, 7, S2.	6.1	166
17	Unsupervised identification of redundant domain entries in InterPro database using clustering techniques., 2015,,.		0
18	Reconstruction of the temporal signaling network in Salmonella-infected human cells. Frontiers in Microbiology, 2015, 6, 730.	3.5	21

#	Article	IF	CITATIONS
19	3′UTR shortening and EGF signaling: implications for breast cancer. Human Molecular Genetics, 2015, 24, ddv391.	2.9	42
20	Informatics Olympiads in Turkey: Team Selection and Training. Olympiads in Informatics, 2015, 9, 225-232.	0.1	0
21	Div-BLAST: Diversification of Sequence Search Results. PLoS ONE, 2014, 9, e115445.	2.5	1
22	GPCRsortâ€"Responding to the Next Generation Sequencing Data Challenge: Prediction of G Protein-Coupled Receptor Classes Using Only Structural Region Lengths. OMICS A Journal of Integrative Biology, 2014, 18, 636-644.	2.0	3
23	Introduction to Bioinformatics. Methods in Molecular Biology, 2014, 1107, 51-71.	0.9	50
24	Identification of Novel Reference Genes Based on MeSH Categories. PLoS ONE, 2014, 9, e93341.	2.5	12
25	A Divide and Conquer Approach for Construction of Large-Scale Signaling Networks from PPI and RNAi Data Using Linear Programming. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2013, 10, 869-883.	3.0	7
26	Estrogen-induced upregulation and 3′-UTR shortening of CDC6. Nucleic Acids Research, 2012, 40, 10679-10688.	14.5	76
27	M4B: A novel method for designing and ordering of the genetic devices. , 2012, , .		1
28	Large-Scale Signaling Network Reconstruction. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2012, 9, 1696-1708.	3.0	15
29	The effect of representative training dataset selection on the classification performance of the promoter sequences. , $2011,\ldots$		0
30	Constructing signaling pathways from RNAI data using genetic algorithms., 2011,,.		0
31	Parallelization of the functional flow algorithm for prediction of protein function using protein-protein interaction networks. , $2011, , .$		O
32	ProSVM and ProK-means: Novel methods for promoter prediction. , 2011, , .		0
33	Parallel SPICi., 2011,,.		0
34	A design goal and design pattern based approach for development of game engines for mobile platforms. , $2011, , .$		4
35	Metadata Management and Semantics in Microarray Repositories. Balkan Journal of Medical Genetics, 2011, 14, 49-64.	0.5	0
36	Using network context as a filter for miRNA target prediction. BioSystems, 2011, 105, 201-209.	2.0	14

#	Article	IF	Citations
37	Bi-k-bi clustering: mining large scale gene expression data using two-level biclustering. International Journal of Data Mining and Bioinformatics, 2010, 4, 701.	0.1	5
38	Coevolution based prediction of protein-protein interactions with reduced training data., 2010,,.		1
39	Accurate and Scalable Techniques for the Complex/Pathway Membership Problem in Protein Networks. Advances in Bioinformatics, 2009, 2009, 1-9.	5 . 7	1
40	RRW: repeated random walks on genome-scale protein networks for local cluster discovery. BMC Bioinformatics, 2009, 10, 283.	2.6	158
41	Integration of topological measures for eliminating non-specific interactions in protein interaction networks. Discrete Applied Mathematics, 2009, 157, 2416-2424.	0.9	4
42	Text classification in the Turkish marketing domain for context sensitive ad distribution. , 2009, , .		1
43	Discovering functional interaction patterns in protein-protein interaction networks. BMC Bioinformatics, 2008, 9, 276.	2.6	13
44	Efficient molecular surface generation using level-set methods. Journal of Molecular Graphics and Modelling, 2006, 25, 442-454.	2.4	62
45	Integrating multi-attribute similarity networks for robust representation of the protein space. Bioinformatics, 2006, 22, 1585-1592.	4.1	19
46	Analysis of protein-protein interaction networks using random walks. , 2005, , .		47
47	DECISION TREE BASED INFORMATION INTEGRATION FOR AUTOMATED PROTEIN CLASSIFICATION. Journal of Bioinformatics and Computational Biology, 2005, 03, 717-742.	0.8	20
48	Automated protein classification using consensus decision., 2004,, 224-35.		4
49	PROTEIN STRUCTURE ALIGNMENT AND FAST SIMILARITY SEARCH USING LOCAL SHAPE SIGNATURES. Journal of Bioinformatics and Computational Biology, 2004, 02, 215-239.	0.8	6
50	FPV: fast protein visualization using Java 3DTM. Bioinformatics, 2003, 19, 913-922.	4.1	24
51	CTSS: a robust and efficient method for protein structure alignment based on local geometrical and biological features. Proceedings, 2003, 2, 169-79.	0.1	5
52	CTSS: a robust and efficient method for protein structure alignment based on local geometrical and biological features. , 0 , , .		38