Trevor W Stone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5044226/publications.pdf

Version: 2024-02-01

303 papers

13,161 citations

26630 56 h-index 30087 103 g-index

306 all docs

306 docs citations

306 times ranked 10580 citing authors

#	Article	IF	CITATIONS
1	An iontophoretic investigation of the actions of convulsant kynurenines and their interaction with the endogenous excitant quinolinic acid. Brain Research, 1982, 247, 184-187.	2.2	787
2	Endogenous kynurenines as targets for drug discovery and development. Nature Reviews Drug Discovery, 2002, 1, 609-620.	46.4	646
3	Physiological roles for adenosine and adenosine 5′-triphosphate in the nervous system. Neuroscience, 1981, 6, 523-555.	2.3	489
4	Activation of brown adipose tissue thermogenesis by the ventromedial hypothalamus. Nature, 1981, 289, 401-402.	27.8	309
5	Quinolinic acid and other kynurenines in the central nervous system. Neuroscience, 1985, 15, 597-617.	2.3	303
6	The kynurenine pathway and the brain: Challenges, controversies and promises. Neuropharmacology, 2017, 112, 237-247.	4.1	290
7	Kynurenines in the CNS: from endogenous obscurity to therapeutic importance. Progress in Neurobiology, 2001, 64, 185-218.	5.7	282
8	Tryptophan metabolism and oxidative stress in patients with Huntington's disease. Journal of Neurochemistry, 2005, 93, 611-623.	3.9	271
9	An expanding range of targets for kynurenine metabolites of tryptophan. Trends in Pharmacological Sciences, 2013, 34, 136-143.	8.7	269
10	Antioxidants and fatty acids in the amelioration of rheumatoid arthritis and related disorders. British Journal of Nutrition, 2001, 85, 251-269.	2.3	202
11	The kynurenine pathway as a therapeutic target in cognitive and neurodegenerative disorders. British Journal of Pharmacology, 2013, 169, 1211-1227.	5.4	197
12	Obesity and Cancer: Existing and New Hypotheses for a Causal Connection. EBioMedicine, 2018, 30, 14-28.	6.1	179
13	Adenosine Receptors and Neurological Disease: Neuroprotection and Neurodegeneration. Handbook of Experimental Pharmacology, 2009, , 535-587.	1.8	178
14	Development and therapeutic potential of kynurenic acid and kynurenine derivatives for neuroprotection. Trends in Pharmacological Sciences, 2000, 21, 149-154.	8.7	177
15	The Gut-Brain Axis, BDNF, NMDA and CNS Disorders. Neurochemical Research, 2016, 41, 2819-2835.	3.3	172
16	ADENOSINE INHIBITION OF γâ€AMINOBUTYRIC ACID RELEASE FROM SLICES OF RAT CEREBRAL CORTEX. British Journal of Pharmacology, 1980, 69, 107-112.	5.4	156
17	Quinolinic acid: regional variations in neuronal sensitivity. Brain Research, 1983, 259, 172-176.	2.2	147
18	Tryptophan Metabolites and Brain Disorders. Clinical Chemistry and Laboratory Medicine, 2003, 41, 852-9.	2.3	139

#	Article	IF	Citations
19	Altered kynurenine metabolism correlates with infarct volume in stroke. European Journal of Neuroscience, 2007, 26, 2211-2221.	2.6	135
20	Phosphonate analogues of carboxylic acids as aminoacid antagonists on rat cortical neurones. Neuroscience Letters, 1981, 23, 333-336.	2.1	131
21	Endogenous neurotoxins from tryptophan. Toxicon, 2001, 39, 61-73.	1.6	127
22	Hydrogen peroxide-induced oxidative stress in MC3T3-E1 cells: The effects of glutamate and protection by purines. Bone, 2006, 39, 542-551.	2.9	125
23	Improvement in Parkinsonian symptoms after repetitive transcranial magnetic stimulation. Journal of the Neurological Sciences, 1999, 162, 179-184.	0.6	124
24	Protection against hippocampal kainate excitotoxicity by intracerebral administration of an adenosine A2A receptor antagonist. Brain Research, 1998, 800, 328-335.	2.2	118
25	Ascorbate attenuates the systemic kainate-induced neurotoxicity in the rat hippocampus. Brain Research, 1996, 727, 133-144.	2.2	115
26	On the Biological Importance of the 3-hydroxyanthranilic Acid: Anthranilic Acid Ratio. International Journal of Tryptophan Research, 2010, 3, IJTR.S4282.	2.3	115
27	Protection against kainate-induced excitotoxicity by adenosine A2A receptor agonists and antagonists. Neuroscience, 1998, 85, 229-237.	2.3	114
28	Anxiolytic activity of adenosine receptor activation in mice. British Journal of Pharmacology, 1995, 116, 2127-2133.	5.4	112
29	Tryptophan metabolism and oxidative stress in patients with chronic brain injury. European Journal of Neurology, 2006, 13, 30-42.	3.3	107
30	Kynurenine pathway inhibition as a therapeutic strategy for neuroprotection. FEBS Journal, 2012, 279, 1386-1397.	4.7	105
31	Oxidative stress in neurodegeneration and available means of protection. Frontiers in Bioscience - Landmark, 2008, Volume, 3288.	3.0	103
32	IDO and Kynurenine Metabolites in Peripheral and CNS Disorders. Frontiers in Immunology, 2020, 11, 388.	4.8	97
33	GLUTAMATE AS THE NEUROTRANSMITTER OF CEREBELLAR GRANULE CELLS IN THE RAT: ELECTROPHYSIOLOGICAL EVIDENCE. British Journal of Pharmacology, 1979, 66, 291-296.	5.4	96
34	A comparison of the anticonvulsant potency of $(\hat{A}\pm)$ 2-amino-5-phosphono-pentanoic acid and $(\hat{A}\pm)$ 2-amino-7-phosphonoheptanoic acid. Neuroscience, 1983, 9, 925-930.	2.3	93
35	The pharmacological manipulation of glutamate receptors and neuroprotection. European Journal of Pharmacology, 2002, 447, 285-296.	3.5	92
36	Kynurenic acid blocks nicotinic synaptic transmission to hippocampal interneurons in young rats. European Journal of Neuroscience, 2007, 25, 2656-2665.	2.6	90

#	Article	IF	CITATIONS
37	Prolonged Survival of a Murine Model of Cerebral Malaria by Kynurenine Pathway Inhibition. Infection and Immunity, 2005, 73, 5249-5251.	2.2	87
38	Inflammatory status and kynurenine metabolism in rheumatoid arthritis treated with melatonin. British Journal of Clinical Pharmacology, 2007, 64, 517-526.	2.4	86
39	Responses of differentiated MC3T3-E1 osteoblast-like cells to reactive oxygen species. European Journal of Pharmacology, 2008, 587, 35-41.	3.5	86
40	Electrochemical and in vitro evaluation of the redox-properties of kynurenine species. Biochemical and Biophysical Research Communications, 2003, 300, 719-724.	2.1	80
41	KYNURENINE PATHWAY METABOLISM IN PATIENTS WITH OSTEOPOROSIS AFTER 2 YEARS OF DRUG TREATMENT. Clinical and Experimental Pharmacology and Physiology, 2006, 33, 1078-1087.	1.9	75
42	Tryptophan Loading Induces Oxidative Stress. Free Radical Research, 2004, 38, 1167-1171.	3.3	73
43	Purines and Neuroprotection. Advances in Experimental Medicine and Biology, 2003, 513, 249-280.	1.6	73
44	Blood levels of kynurenines, interleukinâ€23 and soluble human leucocyte antigenâ€G at different stages of Huntington's disease. Journal of Neurochemistry, 2010, 112, 112-122.	3.9	72
45	Pharmacology of pyramidal tract cells in the cerebral cortex. Naunyn-Schmiedeberg's Archives of Pharmacology, 1973, 278, 333-346.	3.0	71
46	Interaction between adenosine A1 and A2 receptor-mediated responses in the rat hippocampus in vitro. European Journal of Pharmacology, 1998, 362, 17-25.	3.5	71
47	Increased expression of dendritic mRNA following the induction of long-term potentiation. Molecular Brain Research, 1998, 56, 38-44.	2.3	69
48	Changes in the concentration of amino acids in serum and cerebrospinal fluid of patients with Parkinson's disease. Journal of the Neurological Sciences, 1997, 151, 159-162.	0.6	68
49	Receptors for adenosine and adenine nucleotides. General Pharmacology, 1991, 22, 25-31.	0.7	67
50	Prenatal activation of Toll-like receptors-3 by administration of the viral mimetic poly(I:C) changes synaptic proteins, N-methyl-D-aspartate receptors and neurogenesis markers in offspring. Molecular Brain, 2012, 5, 22.	2.6	67
51	Does kynurenic acid act on nicotinic receptors? An assessment of the evidence. Journal of Neurochemistry, 2020, 152, 627-649.	3.9	67
52	Purine, kynurenine, neopterin and lipid peroxidation levels in inflammatory bowel disease. Journal of Biomedical Science, 2002, 9, 436-442.	7.0	65
53	Levels of Purine, Kynurenine and Lipid Peroxidation Products in Patients with Inflammatory Bowel Disease. Advances in Experimental Medicine and Biology, 2003, 527, 395-400.	1.6	65
54	AMINO ACIDS AS NEUROTRANSMITTERS OF CORTICOFUGAL NEURONES IN THE RAT: A COMPARISON OF GLUTAMATE AND ASPARTATE. British Journal of Pharmacology, 1979, 67, 545-551.	5.4	64

#	Article	IF	CITATIONS
55	Interleukin- $1\hat{l}^2$ but not tumor necrosis factor- $\hat{l}\pm$ potentiates neuronal damage by quinolinic acid: Protection by an adenosine A2A receptor antagonist. Journal of Neuroscience Research, 2007, 85, 1077-1085.	2.9	64
56	Isomers of 2-amino-7-phosphonoheptanoic acid as antagonists of neuronal excitants. Neuroscience Letters, 1982, 32, 65-68.	2.1	58
57	Effects of purine analogues on spontaneous alternation in mice. Psychopharmacology, 1996, 123, 250-257.	3.1	56
58	Kynurenic acid antagonists and kynurenine pathway inhibitors. Expert Opinion on Investigational Drugs, 2001, 10, 633-645.	4.1	56
59	Adenosine, neurodegeneration and neuroprotection. Neurological Research, 2005, 27, 161-168.	1.3	56
60	A Role for RhoB in Synaptic Plasticity and the Regulation of Neuronal Morphology. Journal of Neuroscience, 2010, 30, 3508-3517.	3.6	55
61	Prenatal inhibition of the tryptophan–kynurenine pathway alters synaptic plasticity and protein expression in the rat hippocampus. Brain Research, 2013, 1504, 1-15.	2.2	55
62	Actions of adenine dinucleotides on the vas deferens, guinea-pig taenia caeci and bladder. European Journal of Pharmacology, 1981, 75, 93-102.	3.5	53
63	Nicotinylalanine increases cerebral kynurenic acid content and has anticonvulsant activity. General Pharmacology, 1992, 23, 235-239.	0.7	53
64	Restored plasticity in a mouse model of neurofibromatosis type $\hat{s} \in f1$ via inhibition of hyperactive ERK and CREB. European Journal of Neuroscience, 2007, 25, 99-105.	2.6	53
65	Direct excitatory effects of neuropeptide Y (NPY) on rat hippocampal neurones in vitro. Brain Research, 1987, 408, 295-298.	2.2	52
66	Tryptophan, adenosine, neurodegeneration and neuroprotection. Metabolic Brain Disease, 2007, 22, 337-352.	2.9	52
67	Kynurenine pathway inhibition reduces central nervous system inflammation in a model of human African trypanosomiasis. Brain, 2009, 132, 1259-1267.	7.6	52
68	KYNURENINE METABOLITES AND INFLAMMATION MARKERS IN DEPRESSED PATIENTS TREATED WITH FLUOXETINE OR COUNSELLING. Clinical and Experimental Pharmacology and Physiology, 2009, 36, 425-435.	1.9	52
69	A comparison of excitotoxic lesions of the basal forebrain by kainate, quinolinate, ibotenate, Nâ∈methylâ∈∢scp>d∢/scp>â∈aspartate or quisqualate, and the effects on toxicity of 2â∈aminoâ∈5â∈phosphonovaleric acid and kynurenic acid in the rat. British Journal of Pharmacology, 1991, 102, 904-908.	5.4	51
70	Involvement of kynurenines in Huntington's disease and stroke-induced brain damage. Journal of Neural Transmission, 2012, 119, 261-274.	2.8	51
71	Is adenosine the mediator of opiate action on neuronal firing rate?. Nature, 1979, 281, 227-228.	27.8	50
72	Kynurenine and Neopterin Levels in Patients with Rheumatoid Arthritis and Osteoporosis During Drug Treatment. Advances in Experimental Medicine and Biology, 2003, 527, 287-295.	1.6	50

#	Article	IF	Citations
73	Actions of excitatory amino acids and kynurenic acid in the primate hippocampus: A preliminary study. Neuroscience Letters, 1984, 52, 335-340.	2.1	49
74	Interactions between ifenprodil and dizocilpine on mouse behaviour in models of anxiety and working memory. European Neuropsychopharmacology, 1996, 6, 311-316.	0.7	49
75	Changes in hippocampal gene expression associated with the induction of long-term potentiation. Molecular Brain Research, 1996, 42, 123-127.	2.3	49
76	5-Hydroxyanthranilic Acid, a Tryptophan Metabolite, Generates Oxidative Stress and Neuronal Death via p38 Activation in Cultured Cerebellar Granule Neurones. Neurotoxicity Research, 2009, 15, 303-310.	2.7	49
77	Adenine dinucleotide effects on rat cortical neurones. Brain Research, 1981, 229, 241-245.	2.2	47
78	Nitric oxide synthase inhibitors l-NAME and 7-nitroindazole protect rat hippocampus against kainate-induced excitotoxicity. Neuroscience Letters, 1998, 249, 75-78.	2.1	47
79	Changes in synaptic transmission and protein expression in the brains of adult offspring after prenatal inhibition of the kynurenine pathway. Neuroscience, 2013, 254, 241-259.	2.3	47
80	Gut microbiota-derived vitamins – underrated powers of a multipotent ally in psychiatric health and disease. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 107, 110240.	4.8	47
81	Inhibitors of the kynurenine pathway. European Journal of Medicinal Chemistry, 2000, 35, 179-186.	5.5	46
82	Selective subunit antagonists suggest an inhibitory relationship between NR2B and NR2A-subunit containing N-methyl-d-aspartate receptors in hippocampal slices. Experimental Brain Research, 2005, 162, 374-383.	1.5	46
83	ANTAGONISM BY CLONIDINE OF NEURONAL DEPRESSANT RESPONSES TO ADENOSINE, ADENOSINEâ€5â€2â€MONOPHOSPHATE AND ADENOSINE TRIPHOSPHATE. British Journal of Pharmacology, 1964, 369-374.	978,5.4	45
84	BLOCKADE OF STRIATAL NEURONE RESPONSES TO MORPHINE BY AMINOPHYLLINE: EVIDENCE FOR ADENOSINE MEDIATION OF OPIATE ACTION. British Journal of Pharmacology, 1980, 69, 131-137.	5.4	45
85	Activity of the enantiomers of 2-amino-5-phosphono-valeric acid as stereospecific antagonists of excitatory aminoacids. Neuroscience, 1981, 6, 2249-2252.	2.3	45
86	Activation of Rho GTPases by synaptic transmission in the hippocampus. Journal of Neurochemistry, 2003, 87, 1309-1312.	3.9	45
87	Kynurenine metabolism predicts cognitive function in patients following cardiac bypass and thoracic surgery. Journal of Neurochemistry, 2011, 119, 136-152.	3.9	45
88	Prenatal inhibition of the kynurenine pathway leads to structural changes in the hippocampus of adult rat offspring. European Journal of Neuroscience, 2014, 39, 1558-1571.	2.6	45
89	Altered hippocampal plasticity by prenatal kynurenine administration, kynurenine-3-monoxygenase (KMO) deletion or galantamine. Neuroscience, 2015, 310, 91-105.	2.3	45
90	The action of adenosine on noradrenergic neuronal inhibition induced by stimulation of locus coeruleus. Brain Research, 1980, 183, 367-376.	2.2	44

#	Article	IF	CITATIONS
91	Efficacy of an adenosine antagonist, theophylline, in essential tremor: comparison with placebo and propranolol. Journal of the Neurological Sciences, 1995, 132, 129-132.	0.6	44
92	Cell death in rat cerebellar granule neurons induced by hydrogen peroxide in vitro: Mechanisms and protection by adenosine receptor ligands. Brain Research, 2007, 1132, 193-202.	2.2	44
93	Quinolinic acid neurotoxicity: Protection by intracerebral phenylisopropyladenosine (PIA) and potentiation by hypotension. Neuroscience Letters, 1989, 101, 191-196.	2.1	42
94	Distribution of Rho family GTPases in the adult rat hippocampus and cerebellum. Molecular Brain Research, 2003, 114, 1-8.	2.3	42
95	Are Noradrenaline Excitations Artefacts ?. Nature, 1971, 234, 145-146.	27.8	41
96	Neuronal responses to ethylenediamine: Preferential blockade by bicuculline. Neuroscience Letters, 1981, 23, 325-327.	2.1	40
97	Purine receptors involved in the depression of neuronal firing in cerebral cortex. Brain Research, 1982, 248, 367-370.	2.2	40
98	Activation of NMDA receptor-coupled channels suppresses the inhibitory action of adenosine on hippocampal slices. Brain Research, 1990, 530, 330-334.	2.2	40
99	Modified neocortical and cerebellar protein expression and morphology in adult rats following prenatal inhibition of the kynurenine pathway. Brain Research, 2014, 1576, 1-17.	2.2	40
100	Increased long-term potentiation in the CA1 region of rat hippocampus via modulation of GTPase signalling or inhibition of Rho kinase. Neuropharmacology, 2004, 46, 879-887.	4.1	39
101	Blood 5-hydroxytryptamine, 5-hydroxyindoleacetic acid and melatonin levels in patients with either Huntington's disease or chronic brain injury. Journal of Neurochemistry, 2006, 97, 1078-1088.	3.9	39
102	An electrophysiological demonstration of a synergistic interaction between norepinephrine and adenosine in the cerebral cortex. Brain Research, 1978, 147, 396-400.	2.2	38
103	Hydrogen peroxide mediates damage by xanthine and xanthine oxidase in cerebellar granule neuronal cultures. Neuroscience Letters, 2007, 416, 34-38.	2.1	38
104	Modulation by adenine nucleotides of epileptiform activity in the CA3 region of rat hippocampal slices. British Journal of Pharmacology, 1998, 123, 71-80.	5.4	37
105	Activation of thermogenesis of brown fat in rats by Baclofen. Neuropharmacology, 1986, 25, 627-631.	4.1	36
106	Potential role of adenosine antagonist therapy in pathological tremor disorders., 1996, 72, 243-250.		36
107	Neurotoxicity of tryptophan metabolites. Biochemical Society Transactions, 2007, 35, 1287-1289.	3.4	36
108	Subtypes of NMDA receptors. General Pharmacology, 1993, 24, 825-832.	0.7	35

#	Article	IF	CITATIONS
109	Suppression of presynaptic responses to adenosine by activation of NMDA receptors. European Journal of Pharmacology, 2001, 427, 13-25.	3.5	34
110	NMDA-induced preconditioning attenuates synaptic plasticity in the rat hippocampus. Brain Research, 2006, 1073-1074, 183-189.	2.2	33
111	IDO activation, inflammation and musculoskeletal disease. Experimental Gerontology, 2020, 131, 110820.	2.8	33
112	Differential blockade of ATP, noradrenaline and electrically evoked contractions of the rat vas deferens by nifedipine. European Journal of Pharmacology, 1981, 74, 373-376.	3.5	32
113	The effect of kainic, quinolinic and \hat{l}^2 -kainic acids on the release of endogenous amino acids from rat brain slices. Biochemical Pharmacology, 1986, 35, 3631-3635.	4.4	32
114	Long-term follow-up study with repetitive transcranial magnetic stimulation (rTMS) in Parkinson's disease. Brain Research Bulletin, 2004, 64, 259-263.	3.0	32
115	New advances in the rehabilitation of CNS diseases applying rTMS. Expert Review of Neurotherapeutics, 2007, 7, 165-177.	2.8	31
116	The effect of theophylline on essential tremor: The possible role of GABA. Pharmacology Biochemistry and Behavior, 1991, 39, 345-349.	2.9	30
117	Chronic benzodiazepine treatment and cortical responses to adenosine and GABA. Brain Research, 1990, 530, 353-357.	2.2	29
118	Excitant activity of methyl derivatives of quinolinic acid on rat cortical neurones. British Journal of Pharmacology, 1984, 81, 175-181.	5.4	28
119	The role of kynurenines in diabetes mellitus. Medical Hypotheses, 1985, 18, 371-376.	1.5	28
120	Comparison of kynurenic acid and 2-APV suppression of epileptiform activity in rat hippocampal slices. Neuroscience Letters, 1988, 84, 234-238.	2.1	28
121	Interaction between adenosine and GABAA receptors on hippocampal neurones. Brain Research, 1994, 665, 229-236.	2.2	28
122	Possible mediation of quinolinic acid-induced hippocampal damage by reactive oxygen species. Amino Acids, 2000, 19, 275-281.	2.7	28
123	Inhibition of adenosine accumulation by a CNS benzodiazepine antagonist (Ro 15–1788) and a peripheral benzodiazepine receptor ligand (Ro 05–4864). Neuroscience Letters, 1983, 41, 183-188.	2.1	27
124	Purine receptors classification: a point for discussion. Trends in Pharmacological Sciences, 1984, 5, 492-493.	8.7	27
125	Purine modulation of dizocilpine effects on spontaneous alternation. Psychopharmacology, 1997, 130, 334-342.	3.1	27
126	Purine Receptors and their Pharmacological Roles. Advances in Drug Research, 1989, 18, 291-429.	0.8	27

#	Article	IF	Citations
127	Benzodiazepine inhibition of adenosine uptake is not prevented by benzodiazepine antagonists. European Journal of Pharmacology, 1983, 87, 121-126.	3.5	26
128	Delayed development of symptomatic improvement by (\hat{a}^{-})-deprenyl in Parkinson's disease. Journal of the Neurological Sciences, 1995, 134, 143-145.	0.6	26
129	Methylxanthines modulate adenosine release from slices of cerebral cortex. Brain Research, 1981, 207, 421-431.	2.2	25
130	Long-term potentiation protects rat hippocampal slices from the effects of acute hypoxia. Brain Research, 2001, 907, 144-150.	2.2	25
131	Further evidence for a dopamine receptor stimulating action of an ergot alkaloid. Brain Research, 1974, 72, 177-180.	2.2	24
132	Effects of topically applied excitatory amino acids on evoked potentials and single cell activity in rat cerebral cortex. European Journal of Pharmacology, 1986, 121, 337-343.	3.5	24
133	Relationships and Interactions between Ionotropic Glutamate Receptors and Nicotinic Receptors in the CNS. Neuroscience, 2021, 468, 321-365.	2.3	24
134	Responses of central neurones to amantadine: comparison with dopamine and amphetamine. Brain Research, 1975, 85, 126-129.	2.2	23
135	Biochemical and electropharmaceutical studies with tricyclic antidepressants in rat and guinea-pig cerebral cortex. Life Sciences, 1978, 23, 2621-2626.	4.3	23
136	Antidepressant drugs potentiate suppression by adenosine of neuronal firing in rat cerebral cortex. Neuroscience Letters, 1979, 11, 93-97.	2.1	23
137	Potential of Adenosine A2A Receptor Antagonists in the Treatment of Movement Disorders. CNS Drugs, 1998, 10, 311-320.	5.9	23
138	Adenosine receptor ligands protect against a combination of apoptotic and necrotic cell death in cerebellar granule neurons. Experimental Brain Research, 2008, 186, 151-160.	1.5	23
139	Neuronal responses to extracellularly applied cyclic AMP: Role of the adenosine receptor. Experientia, 1978, 34, 481-482.	1.2	22
140	The relative potencies of (â^')-2-amino-5-phosphonovalerate and (â^')-2-amino-7-phosphonoheptanoate as antagonists of N-methylaspartate and quinolinic acids and repetitive spikes in rat hippocampal slices. Brain Research, 1986, 381, 195-198.	2.2	22
141	Interactions of adenosine and magnesium on rat hippocampal slices. Brain Research, 1988, 463, 374-379.	2.2	22
142	Characterisation of ATP-induced facilitation of transmission in rat hippocampus. European Journal of Pharmacology, 2000, 409, 159-166.	3.5	22
143	Actions of TRH and cyclo-(His-Pro) on spontaneous and evoked activity of cortical neurones. European Journal of Pharmacology, 1983, 92, 113-118.	3.5	21
144	Resistance to kynurenic acid of the NMDA receptor-dependent toxicity of 3-nitropropionic acid and cyanide in cerebellar granule neurons. Brain Research, 2008, 1215, 200-207.	2.2	20

#	Article	IF	CITATIONS
145	Selective antagonism of amino acids by α-aminoadipate on pyramidal tract neurones but not Purkinje cells. Brain Research, 1979, 166, 217-220.	2.2	19
146	The suppression of hippocampal potentials by the benzodiazepine antagonist Ro 15-1788 may be mediated by purines. Brain Research, 1986, 380, 379-382.	2.2	19
147	Effects of anticonvulsants on responses to excitatory amino acids applied topically to rat cerebral cortex. General Pharmacology, 1988, 19, 455-462.	0.7	19
148	Alkylxanthine adenosine antagonists and epileptiform activity in rat hippocampal slices in vitro. Experimental Brain Research, 1997, 113, 303-310.	1.5	19
149	Clonidine as an adenosine antagonist. Journal of Pharmacy and Pharmacology, 2011, 30, 792-793.	2.4	19
150	TLR expression profiles are a function of disease status in rheumatoid arthritis and experimental arthritis. Journal of Autoimmunity, 2021, 118, 102597.	6.5	19
151	Chronic methylxanthine treatment in rats: A comparison of Wistar and Fischer 344 strains. Pharmacology Biochemistry and Behavior, 1981, 14, 827-830.	2.9	18
152	Differences of neuronal sensitivity to amino acids and related compounds in the rat hippocampal slice. Neuroscience Letters, 1985, 59, 313-317.	2.1	18
153	Possible subtypes of ATP receptor producing contraction of rat vas deferens, revealed by cross-desensitisation. General Pharmacology, 1989, 20, 61-64.	0.7	18
154	Protection by the flavonoids quercetin and luteolin against peroxide- or menadione-induced oxidative stress in MC3T3-E1 osteoblast cells. Natural Product Research, 2015, 29, 1127-1132.	1.8	18
155	Possible Roles for Purine Compounds in Neuronal Adaptation. Biochemical Society Transactions, 1978, 6, 858-862.	3.4	17
156	Presynaptic actions of adenosine are magnesium-dependent. Neuropharmacology, 1988, 27, 761-763.	4.1	17
157	Adenosine monophosphate as a mediator of ATP effects at P1 purinoceptors. British Journal of Pharmacology, 1998, 124, 818-824.	5.4	17
158	Purine modulation of cholinomimetic responses in the rat hippocampal slice. Brain Research, 1988, 458, 106-114.	2.2	16
159	Inhibition by benzodiazepines and \hat{l}^2 -carbolines of brief (5 seconds) synaptosomal accumulation of [3H]-adenosine. Biochemical Pharmacology, 1986, 35, 1760-1762.	4.4	15
160	Injection of baclofen into the ventromedial hypothalamus stimulates gastric motility in the rat. Neuropharmacology, 1987, 26, 1191-1194.	4.1	15
161	Adenosine Release. , 1990, , 173-223.		15
162	Prolonged exposures of cerebellar granule neurons to S-nitroso-N-acetylpenicillamine (SNAP) induce neuronal damage independently of peroxynitrite. Brain Research, 2008, 1230, 265-272.	2.2	15

#	Article	IF	Citations
163	Altered apoptotic responses in neurons lacking RhoB GTPase. European Journal of Neuroscience, 2011, 34, 1737-1746.	2.6	15
164	Selective depletion of tumour suppressors Deleted in Colorectal Cancer (DCC) and neogenin by environmental and endogenous serine proteases: linking diet and cancer. BMC Cancer, 2016, 16, 772.	2.6	15
165	Quinolinic acid induces neuritogenesis in <scp>SH</scp> â€ <scp>SY</scp> 5Y neuroblastoma cells independently of <scp>NMDA</scp> receptor activation. European Journal of Neuroscience, 2017, 45, 700-711.	2.6	15
166	Postsynaptic action of kynurenic acid in the rat dentate gyrus. Neuroscience Letters, 1986, 66, 96-100.	2.1	14
167	NMDA-induced changes in a cortical network in vivo are prevented by AMPA. Brain Research, 2000, 869, 211-215.	2.2	14
168	Interactions between adenosine and metabotropic glutamate receptors in the rat hippocampal slice. British Journal of Pharmacology, 2003, 138, 1059-1068.	5.4	14
169	Neuroprotective role of learning in dementia: a biological explanation. Journal of Alzheimer's Disease, 2003, 5, 91-104.	2.6	14
170	Long term follow-up study of non-invasive brain stimulation (NBS) (rTMS and tDCS) in Parkinson's disease (PD). Strong age-dependency in the effect of NBS. Brain Research Bulletin, 2018, 142, 78-87.	3.0	14
171	Adenosine and related compounds do not affect nerve terminal excitability in rat CNS. Brain Research, 1980, 182, 198-200.	2.2	13
172	Preconditioning with NMDA protects against toxicity of 3-nitropropionic acid or glutamate in cultured cerebellar granule neurons. Neuroscience Letters, 2008, 440, 294-298.	2.1	13
173	Preconditioning with 4-aminopyridine protects cerebellar granule neurons against excitotoxicity. Brain Research, 2009, 1294, 165-175.	2.2	13
174	Glutamateâ€induced depression of EPSP–spike coupling in rat hippocampal CA1 neurons and modulation by adenosine receptors. European Journal of Neuroscience, 2010, 31, 1208-1218.	2.6	13
175	Tryptophan and kynurenines: continuing to court controversy. Clinical Science, 2016, 130, 1335-1337.	4.3	13
176	Microbial carcinogenic toxins and dietary anti-cancer protectants. Cellular and Molecular Life Sciences, 2017, 74, 2627-2643.	5.4	13
177	Pharmacological modulation of T cell immunity results in long-term remission of autoimmune arthritis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	13
178	Effects of adenosine and related compounds on an inhibitory process in rat cerebral cortex. Experimental Neurology, 1980, 70, 556-566.	4.1	12
179	Theophylline down-regulates adenosine receptor function. Brain Research, 1990, 509, 141-144.	2.2	12
180	Kynurenine and glycine enhance neuronal sensitivity to N-methyl-D-aspartate. Life Sciences, 1991, 48, 765-772.	4.3	12

#	Article	IF	CITATIONS
181	The Ïf ligand 1,3-di-o-tolylguanidine depresses amino acid-induced excitation non-selectively in rat brain. European Journal of Pharmacology, 1992, 214, 169-173.	3.5	12
182	Neuroprotection by A _{2A} receptor antagonists. Drug Development Research, 2001, 52, 323-330.	2.9	12
183	Neuronal (Na+,K+)-ATPase and the release of purines from mouse and rat cerebral cortex. Neuroscience Letters, 1980, 20, 217-221.	2.1	11
184	Cyclohexyladenosine binding in rat striatum. Brain Research, 1985, 334, 385-388.	2.2	11
185	Interactions of carbamazepine, chlormethiazole and pentobarbitone with adenosine on hippocampal slices. General Pharmacology, 1988, 19, 67-72.	0.7	11
186	Pre-conditioning protection in the brain. British Journal of Pharmacology, 2003, 140, 229-230.	5.4	11
187	AMPA receptor activation reduces epileptiform activity in the rat neocortex. Brain Research, 2007, 1158, 151-157.	2.2	11
188	Adenosine preconditions against ouabain but not against glutamate on CA1â€evoked potentials in rat hippocampal slices. European Journal of Neuroscience, 2008, 28, 2084-2098.	2.6	11
189	Xanthine oxidase-induced neuronal death via the oxidation of NADH: Prevention by micromolar EDTA. Brain Research, 2009, 1280, 33-42.	2.2	11
190	Quisqualic acid excitation of cortical neurones is selectively antagonized by streptomycin. Brain Research, 1983, 260, 347-349.	2.2	10
191	On the interaction of 2-amino-7-phosphono-heptanoic acid and quinolinic acid in mice. European Journal of Pharmacology, 1983, 89, 297-300.	3.5	10
192	Ethylenediamine as a GABA-mimetic. Trends in Pharmacological Sciences, 1984, 5, 241-243.	8.7	10
193	Depression of purine induced inhibition during NMDA receptor mediated activation of hippocampal pyramidal cells — an iontophoretic study. Brain Research, 1991, 564, 323-327.	2.2	10
194	The contribution of adenosine to paired-pulse inhibition in the normal and disinhibited hippocampal slice. European Journal of Pharmacology, 1996, 317, 215-223.	3.5	10
195	Protection by an Adenosine Analogue against Kainate-Induced Extrahippocampal Neuropathology. General Pharmacology, 1998, 31, 233-238.	0.7	10
196	Tolbutamide blocks postsynaptic but not presynaptic effects of adenosine on hippocampal CA1 neurones. Journal of Neural Transmission, 1998, 105, 161-172.	2.8	10
197	Blockade of presynaptic adenosine A1 receptor responses by nitric oxide and superoxide in rat hippocampus. European Journal of Neuroscience, 2004, 20, 719-728.	2.6	10
198	Galantamine-Memantine Combination and Kynurenine Pathway Enzyme Inhibitors in the Treatment of Neuropsychiatric Disorders. Complex Psychiatry, 2021, 7, 19-33.	0.9	10

#	Article	IF	Citations
199	ELECTROPHARMACOLOGY OF ADENOSINE. , 1991, , 197-216.		10
200	Factors affecting the release of purines from mouse cerebral cortex: Potassium removal and metabolic inhibitors. Biochemical Pharmacology, 1981, 30, 1239-1243.	4.4	9
201	Purine receptors and kynurenic acid modulate the somatosensory evoked potential in rat cerebral cortex. Electroencephalography and Clinical Neurophysiology, 1988, 69, 186-189.	0.3	9
202	NMDA-receptor-independent effects of low magnesium: involvement of adenosine. Brain Research, 1990, 508, 333-336.	2.2	9
203	Blockade by 1,3-dipropyl-8-cyclopentylxanthine (CPX) of purine protection against kainate neurotoxicity. Brain Research, 1994, 644, 339-342.	2.2	9
204	The involvement of adenosine receptors in the effect of dizocilpine on mice in the elevated plus-maze. European Neuropsychopharmacology, 1997, 7, 267-273.	0.7	9
205	Comparison of an adenosine A1 receptor agonist and antagonist on the rat EEG. Neuroscience Letters, 1998, 244, 55-59.	2.1	9
206	Extracellular levels of dopamine and its metabolite 3,4-dihydroxy-phenylacetic acid measured by microdialysis in the corpus striatum of conscious AS/AGU mutant rats. Neuroscience, 1998, 85, 323-325.	2.3	9
207	POTENTIATION OF MUSCIMOL-INDUCED LONG-TERM DEPRESSION BY BENZODIAZEPINES AND PREVENTION OR REVERSAL BY PREGNENOLONE SULFATE. Pharmacological Research, 1998, 38, 441-448.	7.1	9
208	Adenosine and cytokine levels following treatment of rheumatoid arthritis with dipyridamole. Rheumatology International, 2006, 27, 11-17.	3.0	9
209	Group S8A serine proteases, including a novel enzyme cadeprin, induce longâ€lasting, metabotropic glutamate receptorâ€dependent synaptic depression in rat hippocampal slices. European Journal of Neuroscience, 2007, 26, 1870-1880.	2.6	9
210	Prenatal activation of maternal TLR3 receptors by viral-mimetic poly(I:C) modifies GluN2B expression in embryos and sonic hedgehog in offspring in the absence of kynurenine pathway activation. Immunopharmacology and Immunotoxicology, 2013, 35, 581-593.	2.4	9
211	Evidence for a non-dopaminergic action of amantadine. Neuroscience Letters, 1977, 4, 343-346.	2.1	8
212	Purinergic transmission in the CNS?. Trends in Pharmacological Sciences, 1980, 1, 273-275.	8.7	8
213	The effects of adenosine on receptor sensitivity in the rat vas deferens. European Journal of Pharmacology, 1986, 132, 11-19.	3.5	8
214	Involvement of receptors in the augmenting response in rat neocortex. Neuroscience Letters, 1987, 78, 323-327.	2.1	8
215	Glutamate-independent long-term depression in rat hippocampus by activation of GABAA receptors. Life Sciences, 1996, 58, 1023-1030.	4.3	8
216	Epileptiform activity in supragranular and infragranular blocks of mouse neocortex. Epilepsy Research, 1998, 31, 29-38.	1.6	8

#	Article	IF	CITATIONS
217	The effects of adenine dinucleotides on epileptiform activity in the CA3 region of rat hippocampal slices. Neuroscience, 1998, 85, 217-228.	2.3	8
218	Occlusive responses to adenosine A1 receptor and muscarinic M2 receptor activation on hippocampal presynaptic terminals. Brain Research, 1999, 829, 193-196.	2.2	8
219	Effects of AMPA and clomethiazole on spreading depression cycles in the rat neocortex in vivo. European Journal of Pharmacology, 2011, 653, 41-46.	3.5	8
220	A novel dihydro-pyrazolo $(3,4d)(1,2,4)$ triazolo $(1,5a)$ pyrimidin-4-one (AJ23) is an antagonist at adenosine A1 receptors and enhances consolidation of step-down avoidance. Behavioural Brain Research, 2012, 234, 184-191.	2.2	8
221	Involvement of the proteasome and caspase activation in hippocampal long-term depression induced by the serine protease subtilisin. Neuroscience, 2013, 231, 233-246.	2.3	8
222	The kynurenine pathway: Towards metabolic equilibrium. Neuropharmacology, 2017, 112, 235-236.	4.1	8
223	Interactions of Adenosine with other Agents. , 1983, , 467-477.		8
224	Editorial: Multiple Implications of the Kynurenine Pathway in Inflammatory Diseases: Diagnostic and Therapeutic Applications. Frontiers in Immunology, 2022, 13, 860867.	4.8	8
225	Complex hippocampal responses to ATP: fade due to nucleotidase inhibition and P2-receptor-mediated adenosine release. Brain Research, 2000, 860, 161-165.	2.2	7
226	Kynurenine pathway metabolism following prenatal KMO inhibition and in Mecp $2+/\hat{a}^2$ mice, using liquid chromatography-tandem mass spectrometry. Neurochemistry International, 2016, 100, 110-119.	3.8	7
227	Dependence and Guidance Receptors—DCC and Neogenin—In Partial EMT and the Actions of Serine Proteases. Frontiers in Oncology, 2020, 10, 94.	2.8	7
228	Disease status in human and experimental arthritis, and response to TNF blockade, is associated with MHC class II invariant chain (CD74) isoform expression. Journal of Autoimmunity, 2022, 128, 102810.	6.5	7
229	Interactions between guanine derivatives and norepinephrine on neurones of the mammalian cerebral cortex. Brain Research, 1978, 155, 187-191.	2.2	6
230	Nanomolar concentrations of propranolol inhibit GABA-stimulated benzodiazepine binding to rat cerebral cortex. Neuroscience Letters, 1982, 29, 159-162.	2.1	6
231	Quinolinic acid and kynurenic acid. Trends in Pharmacological Sciences, 1984, 5, 215.	8.7	6
232	Muscimol-induced long-term depression in the hippocampus: Lack of dependence on extracellular calcium. Neuroscience, 1996, 71, 581-588.	2.3	6
233	Adenosine receptor-mediated inhibition of neurite outgrowth from cultured sensory neurons is via an A1 receptor and is reduced by nerve growth factor. Developmental Brain Research, 1998, 105, 167-173.	1.7	6
234	Induction of IDO1 and Kynurenine by Serine Proteases Subtilisin, Prostate Specific Antigen, CD26 and HtrA: A New Form of Immunosuppression?. Frontiers in Immunology, 2022, 13, 832989.	4.8	6

#	Article	IF	CITATIONS
235	Blockade of central \hat{l}^2 -adrenergic receptors by tazolol (1-isopropylamino-3-(2-thiazoloxy)-2-propanol). Life Sciences, 1977, 21, 1655-1663.	4.3	5
236	The action of gamma-aminobutyric acid (GABA) and ethylenediamine (EDA) on Limulus and Helix central neurones and rat cerebellar and sympathetic ganglion neurones. General Pharmacology, 1984, 15, 497-504.	0.7	5
237	Activity of \hat{l}^2 -kainic acid on neocortical neurons in vivo and hippocampal neurons in vitro. Neuroscience, 1986, 17, 629-633.	2.3	5
238	Adenosine selectively depresses muscarinic compared with non-muscarinic receptor mediated depolarisation of the rat superior cervical ganglion. General Pharmacology, 1995, 26, 865-873.	0.7	5
239	Potentiation by neurosteroids of muscimol/adenosine interactions in rat hippocampus. Brain Research, 1995, 677, 311-318.	2.2	5
240	Editorial. Journal of the Neurological Sciences, 1999, 163, 199-200.	0.6	5
241	Effects of clomethiazole on spreading depression in the rat hippocampal slice. European Journal of Pharmacology, 2000, 399, 29-34.	3.5	5
242	Suramin-sensitive suppression of paired-pulse inhibition by adenine nucleotides in rat hippocampal slices. Neuroscience Letters, 2000, 278, 45-48.	2.1	5
243	Pharmacological analysis of extracellular dopamine and metabolites in the striatum of conscious as/agu rats, mutants with locomotor disorder. Neuroscience, 2000, 100, 45-52.	2.3	5
244	Purine Modulation of Cytokine Release During Diuretic Therapy of Rheumatoid Arthritis. Nucleosides, Nucleotides and Nucleic Acids, 2004, 23, 1107-1110.	1.1	5
245	Purine Metabolism and Clinical Status of Patients with Rheumatoid Arthritis Treated with Dipyridamole. Nucleosides, Nucleotides and Nucleic Acids, 2006, 25, 1287-1290.	1.1	5
246	Molecular changes associated with hippocampal long-lasting depression induced by the serine protease subtilisin-A. European Journal of Neuroscience, 2011, 34, 1241-1253.	2.6	5
247	Kynurenine Pathway Activation in Human African Trypanosomiasis. Journal of Infectious Diseases, 2017, 215, jiw623.	4.0	5
248	Serine protease modulation of Dependence Receptors and EMT protein expression. Cancer Biology and Therapy, 2019, 20, 349-367.	3.4	5
249	Postural instability years after stroke. Journal of Stroke and Cerebrovascular Diseases, 2020, 29, 105038.	1.6	5
250	A bipolar electrode for localized directional stimulation. Experientia, 1973, 29, 666-667.	1.2	4
251	O-Phosphohomoserine, a naturally occurring analogue of phosphonate amino acid antagonists, is an N-methyl-d-aspartate (NMDA) antagonist in rat hippocampus. Neuroscience Letters, 1986, 68, 249-251.	2.1	4
252	Amino acid receptor nomenclature. Trends in Neurosciences, 1987, 10, 74-75.	8.6	4

#	Article	IF	CITATIONS
253	Inhibition of adenosine responses of rat hippocampal neurones by nifedipine and BAYK 8644. Brain Research, 1990, 525, 315-318.	2.2	4
254	Systemic ascorbate protects against kainate neurotoxicity. Biochemical Society Transactions, 1994, 22, 17S-17S.	3.4	4
255	Differential effects of remacemide and desglycinyl-remacemide on epileptiform burst firing in the rat hippocampal slice. Neuroscience Letters, 2002, 321, 33-36.	2.1	4
256	Long-term potentiation and adenosine sensitivity are unchanged in the AS/AGU protein kinase \hat{Cl}^3 -deficient rat. Neuroscience Letters, 2002, 327, 165-168.	2.1	4
257	\hat{I}^2 -Kainic acid is not an amino acid antagonist. Journal of Pharmacy and Pharmacology, 2011, 37, 668-669.	2.4	4
258	Dependence receptor involvement in subtilisin-induced long-term depression and in long-term potentiation. Neuroscience, 2016, 336, 49-62.	2.3	4
259	Depression of neurones in the rat cerebral cortex by leptazol. Experientia, 1976, 32, 92-93.	1.2	3
260	The neuromuscular and vascular hypotheses of muscular dystrophy: A possible link via adenine nucleotides and phosphate. Medical Hypotheses, 1979, 5, 1105-1111.	1.5	3
261	Time course of purine protection against kainate-induced increase in hippocampal [3H]-PK11195 binding. Brain Research Bulletin, 1994, 34, 133-136.	3.0	3
262	Maintenance of muscimol-induced long-term depression by neurosteroids. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1996, 20, 277-289.	4.8	3
263	Prevention of muscimol-induced long-term depression by brain-derived neurotrophic factor. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1999, 23, 1215-1226.	4.8	3
264	Presynaptic P2 receptors?. Journal of the Autonomic Nervous System, 2000, 81, 244-248.	1.9	3
265	Barium, Glibenclamide and CGS21680 Prevent Adenosine A ₁ Receptor Changes of ES Coupling and Spike Threshold. NeuroSignals, 2004, 13, 318-324.	0.9	3
266	Differences in the neurochemical characteristics of the cortex and striatum of mice with cerebral malaria. Parasitology, 2005, 130, 23-29.	1.5	3
267	Pharmacology of the kynurenine pathway. International Congress Series, 2007, 1304, 298-304.	0.2	3
268	Strychnine, morphine and monoamine depression. Life Sciences, 1973, 13, 125-133.	4.3	2
269	Coenzyme A or adenosine inhibiting acetylcholine release?. Nature, 1978, 274, 721-721.	27.8	2
270	Effect of copper on the binding and electrophysiological actions of cyclohexyladenosine. Brain Research, 1985, 336, 187-189.	2.2	2

#	Article	IF	CITATIONS
271	Effect of adenosine on bicuculline-resistant paired-pulse inhibition in the rat hippocampal slice. Hippocampus, 1995, 5, 209-216.	1.9	2
272	Modulation by adenosine of a neuronal inhibitory interaction in the rat hippocampus. Neuroscience Letters, 1995, 190, 167-170.	2.1	2
273	Chapter 20 Nucleotide and dinucleotide effects on rates of paroxysmal depolarising bursts in rat hippocampus. Progress in Brain Research, 1999, 120, 251-262.	1.4	2
274	LTP-induced depression of response to hypoxia in hippocampus: effects of adenosine receptor activation. NeuroReport, 2003, 14, 1809-1814.	1.2	2
275	Memory impairment in rats by hippocampal administration of the serine protease subtilisin. Behavioural Brain Research, 2011, 219, 63-67.	2.2	2
276	Effects of ethylenediamine in rodent models of seizure, motor coordination and anxiety. Brain Research, 2012, 1473, 155-160.	2.2	2
277	Adenosine symposium. Trends in Pharmacological Sciences, 1982, 3, 423-425.	8.7	1
278	Purine effects on (3H)-clonidine binding to rat brain. Biochemical Pharmacology, 1986, 35, 1757-1760.	4.4	1
279	Kynurenic acid antagonism of kainate following mossy fibre lesions of rat hippocampus. NeuroReport, 1990, 1, 218-220.	1.2	1
280	Introduction to neuropharmacology. Trends in Pharmacological Sciences, 1990, 11, 260-261.	8.7	1
281	Mechanism of the hippocampal loss of adenosine sensitivity in calcium-free media. Brain Research, 1994, 659, 221-225.	2.2	1
282	A paradoxical inhibitory effect of xanthines on hippocampal excitability in calcium-free media. Brain Research, 1994, 657, 300-306.	2.2	1
283	Comparative sensitivity to adenosine of paired-pulse inhibition and single field potentials in the rat hippocampus. Neuroscience Letters, 1996, 209, 69-72.	2.1	1
284	The mechanism of inhibition by xanthine of adenosine A1-receptor responses in rat hippocampus. Neuroscience Letters, 2004, 365, 162-166.	2.1	1
285	Effects of ethylenediamine $\hat{a}\in$ " a putative GABA-releasing agent $\hat{a}\in$ " on rat hippocampal slices and neocortical activity in vivo. European Journal of Pharmacology, 2011, 650, 568-578.	3.5	1
286	Quinolinic Acid and Related Excitotoxins: Mechanisms of Neurotoxicity and Disease Relevance. , 2021, , 1-22.		1
287	Kynurenines and Brain Development. , 2015, , 45-61.		1
288	Purine, Kynurenine, Neopterin and Lipid Peroxidation Levels in Inflammatory Bowel Disease. Journal of Biomedical Science, 2002, 9, 436-442.	7.0	1

#	Article	IF	CITATIONS
289	Kynurenine, Neopterin and Lipid Peroxidation Levels in Ulcerative Colitis. Journal of Medical Sciences (Faisalabad, Pakistan), 2004, 4, 246-251.	0.0	1
290	Cardiovascular modulation of central neuronal activity. Brain Research, 1976, 105, 333-336.	2.2	0
291	Drugs and central synaptic transmission. Trends in Biochemical Sciences, 1977, 2, 72.	7.5	0
292	Textbook of clinical neuropharmacology. Trends in Pharmacological Sciences, 1982, 3, 342.	8.7	0
293	Actions of 6-aminonicotinamide of benzodiazepine receptors in rat CNS. Neuroscience Letters, 1983, 40, 51-54.	2.1	0
294	The psychopharmacology of epilepsy. Trends in Pharmacological Sciences, 1986, 7, 36.	8.7	0
295	A purine analogue reduces kainate neurotoxicity <i>in vivo</i> . Biochemical Society Transactions, 1993, 21, 12S-12S.	3.4	0
296	Further thoughts on "selectivity―and "specificity― General Pharmacology, 1994, 25, 217.	0.7	0
297	Purines and receptors. Trends in Neurosciences, 1998, 21, 51-52.	8.6	0
298	The Elements of Murder: A History of Poison. By John Emsley. Oxford and New York: Oxford University Press. \$30.00. xiii + 421 p; ill.; index. ISBN: 0â€19â€280599â€1. 2005 Quarterly Review of Biology, 2007, 82, 142-143.	0.1	0
299	Interpretation of kynurenine pathway metabolism in osteoporosis. International Congress Series, 2007, 1304, 367-371.	0.2	0
300	Oxidative and nitrosative stress-induced neurotoxicity in primary cultured rat cerebellar granule neurons. Toxicology Letters, 2009, 189, S23.	0.8	0
301	The serine protease subtilisin suppresses epileptiform activity in rat hippocampal slices and neocortex in vivo. Neuroscience, 2011, 199, 64-73.	2.3	0
302	Quinolinate and Related Excitotoxins: Mechanisms of Neurotoxicity and Disease Relevance. , 2014, , 1543-1565.		0
303	CYCLIC NUCLEOTIDES AND ADENYLATE CYCLASE IN BRAIN: ELECTROPHYSIOLOGICAL STUDIES. , 1984, , 171-18	9.	0