Takuya Nakayama

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5044067/publications.pdf

Version: 2024-02-01

41 papers 4,738 citations

24 h-index

257101

276539
41
g-index

41 all docs

41 docs citations

41 times ranked

5258 citing authors

#	Article	IF	CITATIONS
1	Simple embryo injection of long singleâ€stranded donor templates with the <scp>CRISPR</scp> /Cas9 system leads to homologyâ€directed repair in <scp><i>Xenopus tropicalis</i></scp> and <scp><i>Xenopus laevis</i></scp> . Genesis, 2020, 58, e23366.	0.8	19
2	High variability of expression profiles of homeologous genes for Wnt, Hh, Notch, and Hippo signaling pathways in Xenopus laevis. Developmental Biology, 2017, 426, 270-290.	0.9	16
3	no privacy, a Xenopus tropicalis mutant, is a model of human Hermansky-Pudlak Syndrome and allows visualization of internal organogenesis during tadpole development. Developmental Biology, 2017, 426, 472-486.	0.9	28
4	Genome evolution in the allotetraploid frog Xenopus laevis. Nature, 2016, 538, 336-343.	13.7	849
5	Xenopus pax6 mutants affect eye development and other organ systems, and have phenotypic similarities to human aniridia patients. Developmental Biology, 2015, 408, 328-344.	0.9	58
6	Cas9-Based Genome Editing in Xenopus tropicalis. Methods in Enzymology, 2014, 546, 355-375.	0.4	96
7	Xenopus mutant reveals necessity of rax for specifying the eye field which otherwise forms tissue with telencephalic and diencephalic character. Developmental Biology, 2014, 395, 317-330.	0.9	28
8	Organic small hairpin RNAs (OshR): A do-it-yourself platform for transgene-based gene silencing. Methods, 2013, 63, 101-109.	1.9	1
9	Simple and efficient CRISPR/Cas9â€mediated targeted mutagenesis in <i>Xenopus tropicalis</i> . Genesis, 2013, 51, 835-843.	0.8	251
10	Roles of ADAM13-regulated Wnt activity in early Xenopus eye development. Developmental Biology, 2012, 363, 147-154.	0.9	12
11	Simple, fast, tissueâ€specific bacterial artificial chromosome transgenesis in <i>Xenopus</i> . Genesis, 2012, 50, 307-315.	0.8	19
12	Mutation of an upstream cleavage site in the BMP4 prodomain leads to tissue-specific loss of activity. Development (Cambridge), 2006, 133, 1933-1942.	1.2	58
13	Generation and Characterization of Developmental Mutations in Xenopus tropicalis. Current Genomics, 2003, 4, 673-685.	0.7	4
14	Dissection of inhibitory Smad proteins: both N- and C-terminal domains are necessary for full activities of Xenopus Smad6 and Smad7. Mechanisms of Development, 2001, 100, 251-262.	1.7	30
15	The activity and signaling range of mature BMP-4 is regulated by sequential cleavage at two sites within the prodomain of the precursor. Genes and Development, 2001, 15, 2797-2802.	2.7	115
16	Regulation of BMP/Dpp signaling during embryonic development. Cellular and Molecular Life Sciences, 2000, 57, 943-956.	2.4	37
17	Identification of three kinds of mutually related composite elements conferring S phase-specific transcriptional activation. Plant Journal, 1999, 18, 611-623.	2.8	21
18	Can't get no SMADisfaction: Smad proteins as positive and negative regulators of TGF-Î ² family signals. BioEssays, 1999, 21, 382-390.	1.2	47

#	Article	IF	CITATIONS
19	Smad6 functions as an intracellular antagonist of some TGF- \hat{l}^2 family members during Xenopusembryogenesis. Genes To Cells, 1998, 3, 387-394.	0.5	73
20	Physical and Functional Interaction of Murine and Xenopus Smad7 with Bone Morphogenetic Protein Receptors and Transforming Growth Factor- \hat{l}^2 Receptors. Journal of Biological Chemistry, 1998, 273, 25364-25370.	1.6	143
21	Daughters against dpp modulates dpp organizing activity in Drosophila wing development. Nature, 1997, 389, 627-631.	13.7	402
22	Identification of Smad7, a TGFβ-inducible antagonist of TGF-β signalling. Nature, 1997, 389, 631-635.	13.7	1,684
23	Structural characteristics of two wheat histone H2A genes encoding distinct types of variants and functional differences in their promoter activity. Plant Molecular Biology, 1997, 33, 791-802.	2.0	17
24	Dissection of the wheat transcription factor HBP-1a(17) reveals a modular structure for the activation domain. Molecular Genetics and Genomics, 1997, 253, 553-561.	2.4	13
25	Cooperation of two distinct cis-acting elements is necessary for the S phase-specific activation of the wheat histone H3 promoter. Plant Journal, 1997, 11, 1219-1225.	2.8	17
26	A Zinc-Finger-Type Transcription Factor WZF-1 That Binds to a Novel cis-Acting Element Element of Histone Gene Promoters Represses Its Own Promoter. Plant and Cell Physiology, 1996, 37, 557-562.	1.5	15
27	A type I element composed of the hexamer (ACGTCA) and octamer (CGCGGATC) motifs plays a role(s) in meristematic expression of a wheat histone H3 gene in transgenic rice plants. Plant Molecular Biology, 1995, 27, 17-26.	2.0	29
28	Structural and functional characterization of two wheat histone H2B promoters. Plant Molecular Biology, 1995, 28, 155-172.	2.0	24
29	Trans-activation of the wheat histone H3 promoter by Ga14 DNA-binding domain ($1\hat{a}$ e"94) in plant cells. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1995, 1263, 281-284.	2.4	8
30	A wheat histone H3 promoter confers cell division-dependent and -independent expression of thegus Agene in transgenic rice plants. Plant Journal, 1993, 3, 241-252.	2.8	117
31	Proximal promoter region of the wheat histone H3 gene confers S phase-specific gene expression in transformed rice cells. Plant Molecular Biology, 1993, 23, 553-565.	2.0	25
32	Chromosomal locations of the genes for histones and a histone gene-binding protein family HBP-1 in common wheat. Plant Molecular Biology, 1993, 22, 603-614.	2.0	10
33	Regulation of wheat histone gene expression. Critical Reviews in Plant Sciences, 1993, 12, 97-110.	2.7	19
34	Highly conserved hexamer, octamer and nonamer motifs are positive cis -regulatory elements of the wheat histone H3 gene. FEBS Letters, 1992, 300, 167-170.	1.3	40
35	Molecular cloning and nucleotide sequences of cDNAs for histone H1 and H2B variants from wheat. Nucleic Acids Research, 1991, 19, 5077-5077.	6.5	31
36	Cell cycle-regulated gene expression in transgenic plant cells. Genesis, 1990, 11, 205-213.	3.1	9

3

#	Article	IF	CITATIONS
37	A protein that binds to a cis-acting element of wheat histone genes has a leucine zipper motif. Science, 1989, 245, 965-967.	6.0	199
38	Specific Interaction of Nuclear Protein HBP-1 with the Conserved Hexameric Sequence ACGTCA in the Regulatory Region of Wheat Histone Genes. Plant and Cell Physiology, 1989, 30, 107-119.	1.5	25
39	Cisacting Sequences that Modulate Transcription of Wheat Histone H3 and 3′ Processing of H3 Premature mRNA. Plant and Cell Physiology, 1989, 30, 825-832.	1.5	34
40	DNA-binding protein(s) interacts with a conserved nonameric sequence in the upstream regions of wheat histone genes. FEBS Letters, 1988, 239, 319-323.	1.3	29
41	Nuclear protein(s) binding to the conserved DNA hexameric sequence postulated to regulate transcription of wheat histone genes. FEBS Letters, 1987, 223, 273-278.	1.3	86