Abram L Falk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5043882/publications.pdf Version: 2024-02-01

ARDANAL FALK

#	Article	IF	CITATIONS
1	Ultrafast infrared plasmon switching in aligned carbon-nanotube optical resonators. Journal of Optics (United Kingdom), 2022, 24, 044009.	2.2	0
2	Multiple Tunable Hyperbolic Resonances in Broadband Infrared Carbon-Nanotube Metamaterials. Physical Review Applied, 2020, 14, .	3.8	17
3	Emergent Properties of Macroscale Assemblies of Carbon Nanotubes. Advanced Functional Materials, 2020, 30, 1909448.	14.9	5
4	Mid-IR and UV-Vis-NIR Mueller matrix ellipsometry characterization of tunable hyperbolic metamaterials based on self-assembled carbon nanotubes. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2020, 38, 014015.	1.2	14
5	Highly confined plasmons in individual single-walled carbon nanotube nanoantennas. , 2020, , .		0
6	Broadband Mid-Infrared Resonances in Aligned Carbon Nanotube Films. , 2020, , .		0
7	Tunable Hyperbolic Metamaterials Based on Self-Assembled Carbon Nanotubes. Nano Letters, 2019, 19, 3131-3137.	9.1	56
8	Stabilization of point-defect spin qubits by quantum wells. Nature Communications, 2019, 10, 5607.	12.8	42
9	Mid-infrared Hyperbolic Plasmons in Aligned Carbon Nanotube Metamaterials. , 2019, , .		0
10	Tunable Hyperbolic Plasmons in Self-Assembled Carbon Nanotube Metamaterials. , 2019, , .		0
11	Intrinsically ultrastrong plasmon–exciton interactions in crystallized films of carbon nanotubes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12662-12667.	7.1	36
12	Spatially Selective, High-Density Placement of Polyfluorene-Sorted Semiconducting Carbon Nanotubes in Organic Solvents. ACS Nano, 2017, 11, 7697-7701.	14.6	17
13	Strong and Broadly Tunable Plasmon Resonances in Thick Films of Aligned Carbon Nanotubes. Nano Letters, 2017, 17, 5641-5645.	9.1	42
14	Addressing spin states with infrared light. Science, 2017, 357, 649-649.	12.6	2
15	Coherent Plasmon and Phonon-Plasmon Resonances in Carbon Nanotubes. Physical Review Letters, 2017, 118, 257401.	7.8	41
16	High-speed logic integrated circuits with solution-processed self-assembled carbon nanotubes. Nature Nanotechnology, 2017, 12, 861-865.	31.5	125
17	Quantum decoherence dynamics of divacancy spins in silicon carbide. Nature Communications, 2016, 7, 12935.	12.8	128
18	High-Fidelity Bidirectional Nuclear Qubit Initialization in SiC. Physical Review Letters, 2016, 117, 220503.	7.8	16

Abram L Falk

#	Article	IF	CITATIONS
19	Optical Nuclear Spin Polarization of Divacancies in SiC. Materials Science Forum, 2016, 858, 287-290.	0.3	Ο
20	First Principles Identification of Divacancy Related Photoluminescence Lines in 4H and 6H-SiC. Materials Science Forum, 2016, 858, 322-325.	0.3	4
21	Theoretical model of dynamic spin polarization of nuclei coupled to paramagnetic point defects in diamond and silicon carbide. Physical Review B, 2015, 92, .	3.2	59
22	Optical Polarization of Nuclear Spins in Silicon Carbide. Physical Review Letters, 2015, 114, 247603.	7.8	109
23	Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensemble. Science Advances, 2015, 1, e1501015.	10.3	79
24	lsolated electron spins in silicon carbide with millisecond coherence times. Nature Materials, 2015, 14, 160-163.	27.5	362
25	Electrically and Mechanically Tunable Electron Spins in Silicon Carbide Color Centers. Physical Review Letters, 2014, 112, 187601.	7.8	152
26	Polytype control of spin qubits in silicon carbide. Nature Communications, 2013, 4, 1819.	12.8	292
27	Spins charge ahead. Nature Photonics, 2013, 7, 510-511.	31.4	2
28	Gate-Activated Photoresponse in a Graphene p–n Junction. Nano Letters, 2011, 11, 4134-4137.	9.1	379
29	Near-field electrical detection of optical plasmons and single-plasmon sources. Nature Physics, 2009, 5, 475-479.	16.7	290
30	Minimum Voltage for Threshold Switching in Nanoscale Phase-Change Memory. Nano Letters, 2008, 8, 3429-3433.	9.1	76
31	Magnetic switching of phase-slip dissipation inNbSe2nanoribbons. Physical Review B, 2007, 75, .	3.2	20
32	Current-Driven Phase Oscillation and Domain-Wall Propagation in WxV1-xO2Nanobeams. Nano Letters, 2007, 7, 363-366.	9.1	133