
Lelun Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5043445/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An integrative review on the applications of 3D printing in the field of in vitro diagnostics. Chinese Chemical Letters, 2022, 33, 2231-2242.	9.0	18
2	Recent Progress in Microneedlesâ€Mediated Diagnosis, Therapy, and Theranostic Systems. Advanced Healthcare Materials, 2022, 11, e2102547.	7.6	34
3	An intelligent nanomesh-reinforced graphene pressure sensor with an ultra large linear range. Journal of Materials Chemistry A, 2022, 10, 4858-4869.	10.3	14
4	A touch-actuated glucose sensor fully integrated with microneedle array and reverse iontophoresis for diabetes monitoring. Biosensors and Bioelectronics, 2022, 203, 114026.	10.1	71
5	3D Bioprinting of Living Materials for Structure-Dependent Production of Hyaluronic Acid. ACS Macro Letters, 2022, 11, 452-459.	4.8	14
6	Slug-inspired Magnetic Soft Millirobot Fully Integrated with Triboelectric Nanogenerator for Onâ€board Sensing and Selfâ€powered Charging. Nano Energy, 2022, 99, 107367.	16.0	34
7	Intelligent wireless theranostic contact lens for electrical sensing and regulation of intraocular pressure. Nature Communications, 2022, 13, 2556.	12.8	36
8	Solid–Liquid State Transformable Magnetorheological Millirobot. ACS Applied Materials & Interfaces, 2022, 14, 30007-30020.	8.0	29
9	Iontophoresis-driven porous microneedle array patch for active transdermal drug delivery. Acta Biomaterialia, 2021, 121, 349-358.	8.3	51
10	Towards Improving the Quality of Electrophysiological Signal Recordings by Using Microneedle Electrode Arrays. IEEE Transactions on Biomedical Engineering, 2021, 68, 3327-3335.	4.2	12
11	4D Printing of Magnetoactive Soft Materials for On-Demand Magnetic Actuation Transformation. ACS Applied Materials & Interfaces, 2021, 13, 4174-4184.	8.0	108
12	Enhanced Embolization Efficacy with the Embolic Microspheres Guided by the Aggregate Gradation Theory Through In Vitro and Simulation Evaluation. Cardiovascular Engineering and Technology, 2021, 12, 398-406.	1.6	3
13	A Fully Integrated Closed‣oop System Based on Mesoporous Microneedlesâ€ŀontophoresis for Diabetes Treatment. Advanced Science, 2021, 8, e2100827.	11.2	91
14	Atomic-engineering Au-Ag nanoalloys for screening antimicrobial agents with low toxicity towards mammalian cells. Colloids and Surfaces B: Biointerfaces, 2021, 204, 111831.	5.0	13
15	Recent advances of microneedles used towards stimuli-responsive drug delivery, disease theranostics, and bioinspired applications. Chemical Engineering Journal, 2021, 426, 130561.	12.7	58
16	Magnetoâ€Responsive Shutter for Onâ€Demand Droplet Manipulation. Advanced Science, 2021, 8, e2103182.	11.2	22
17	A Mini Review of Microneedle Array Electrode for Bio-Signal Recording: A Review. IEEE Sensors Journal, 2020, 20, 577-590.	4.7	39
18	Programmable Transformation and Controllable Locomotion of Magnetoactive Soft Materials with 3D-Patterned Magnetization. ACS Applied Materials & Interfaces, 2020, 12, 58179-58190.	8.0	37

Lelun Jiang

#	Article	IF	CITATIONS
19	Fabrication of Bendable Microneedle-Array Electrode by Magnetorheological Drawing Lithography for Electroencephalogram Recording. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 8328-8334.	4.7	16
20	Fabrication of Tip-Hollow and Tip-Dissolvable Microneedle Arrays for Transdermal Drug Delivery. ACS Biomaterials Science and Engineering, 2020, 6, 2487-2494.	5.2	33
21	A Smartphone-Based Sensing System for On-Site Quantitation of Multiple Heavy Metal Ions Using Fluorescent Carbon Nanodots-Based Microarrays. ACS Sensors, 2020, 5, 870-878.	7.8	127
22	Laser Direct Structuring of Bioinspired Spine with Backward Microbarbs and Hierarchical Microchannels for Ultrafast Water Transport and Efficient Fog Harvesting. ACS Applied Materials & Interfaces, 2020, 12, 21080-21087.	8.0	77
23	Smartphone-powered iontophoresis-microneedle array patch for controlled transdermal delivery. Microsystems and Nanoengineering, 2020, 6, 112.	7.0	52
24	Magnetic field assisted laser fabrication and electrical characterizations of metal dry Biolectrode with surface microstructures. Biomedical Microdevices, 2019, 21, 74.	2.8	1
25	Cactusâ€Inspired Conical Spines with Oriented Microbarbs for Efficient Fog Harvesting. Advanced Materials Technologies, 2019, 4, 1900727.	5.8	53
26	Rapidly Fabricated Microneedle Arrays Using Magnetorheological Drawing Lithography for Transdermal Drug Delivery. ACS Biomaterials Science and Engineering, 2019, 5, 5506-5513.	5.2	38
27	Magnetizationâ€Induced Selfâ€Assembling of Bendable Microneedle Arrays for Triboelectric Nanogenerators. Advanced Electronic Materials, 2019, 5, 1800785.	5.1	15
28	Point-of-need detection of microcystin-LR using a smartphone-controlled electrochemical analyzer. Sensors and Actuators B: Chemical, 2019, 294, 132-140.	7.8	40
29	A smartphone-based quantitative detection device integrated with latex microsphere immunochromatography for on-site detection of zearalenone in cereals and feed. Sensors and Actuators B: Chemical, 2019, 290, 170-179.	7.8	63
30	Simultaneous detection of glucose, uric acid and cholesterol using flexible microneedle electrode array-based biosensor and multi-channel portable electrochemical analyzer. Sensors and Actuators B: Chemical, 2019, 287, 102-110.	7.8	136
31	Fog Harvesting System: Cactusâ€Inspired Conical Spines with Oriented Microbarbs for Efficient Fog Harvesting (Adv. Mater. Technol. 12/2019). Advanced Materials Technologies, 2019, 4, 1970068.	5.8	2
32	Fabrication of gradient porous microneedle array by modified hot embossing for transdermal drug delivery. Materials Science and Engineering C, 2019, 96, 576-582.	7.3	76
33	Needleless electrospray of magnetic film from magnetization-induced cone array. Materials and Manufacturing Processes, 2018, 33, 1115-1120.	4.7	3
34	Rapid fabrication of microneedles using magnetorheological drawing lithography. Acta Biomaterialia, 2018, 65, 283-291.	8.3	89
35	Touch-actuated microneedle array patch for closed-loop transdermal drug delivery. Drug Delivery, 2018, 25, 1728-1739.	5.7	39
36	Fabrication of Composite Microneedle Array Electrode for Temperature and Bio-Signal Monitoring. Sensors, 2018, 18, 1193.	3.8	17

Lelun Jiang

#	Article	IF	CITATIONS
37	Additive Manufacturing of Honeybee-Inspired Microneedle for Easy Skin Insertion and Difficult Removal. ACS Applied Materials & Interfaces, 2018, 10, 29338-29346.	8.0	80
38	Effect of honeybee stinger and its microstructured barbs on insertion and pull force. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 68, 173-179.	3.1	45
39	A 3D printed smartphone optosensing platform for point-of-need food safety inspection. Analytica Chimica Acta, 2017, 966, 81-89.	5.4	64
40	Flexible microneedle array electrode using magnetorheological drawing lithography for bio-signal monitoring. Sensors and Actuators A: Physical, 2017, 268, 38-45.	4.1	62
41	Fabrication of Magnetic Nanofibers by Needleless Electrospinning from a Self-Assembling Polymer Ferrofluid Cone Array. Nanomaterials, 2017, 7, 277.	4.1	7
42	Fabrication of a Ti porous microneedle array by metal injection molding for transdermal drug delivery. PLoS ONE, 2017, 12, e0172043.	2.5	80
43	Fabrication of a Micro-Needle Array Electrode by Thermal Drawing for Bio-Signals Monitoring. Sensors, 2016, 16, 908.	3.8	47
44	Fabrication of Micro-Needle Electrodes for Bio-Signal Recording by a Magnetization-Induced Self-Assembly Method. Sensors, 2016, 16, 1533.	3.8	54
45	Insertion and pull behavior of worker honeybee stinger. Journal of Bionic Engineering, 2016, 13, 303-311.	5.0	21
46	Aluminum nanopyramid array with tunable ultraviolet–visible–infrared wavelength plasmon resonances for rapid detection of carbohydrate antigen 199. Biosensors and Bioelectronics, 2016, 79, 500-507.	10.1	42
47	Magnetization-induced self-assembly method: Micro-needle array fabrication. Journal of Materials Processing Technology, 2016, 227, 251-258.	6.3	23
48	Effect of Magnetic Field on Stability of Jet Motion in Electrospinning. Materials and Manufacturing Processes, 2016, 31, 1603-1607.	4.7	11