Semen Sologubov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5043440/publications.pdf

Version: 2024-02-01

SEMEN SOLOCUBOV

#	Article	IF	CITATIONS
1	Specific features of thermal properties of polymer composites containing conductive nanoparticles in non-conductive polymer matrices. Thermochimica Acta, 2021, 705, 179036.	1.2	3
2	Thermodynamic Properties of a Hyperbranched Pyridine-Containing Polyphenylene in the Range of T → 0 to 650 K. Russian Journal of Physical Chemistry A, 2020, 94, 261-269.	0.1	1
3	Heat capacity and thermodynamic functions of the NZP-structured phosphates M0.5Ti2(PO4)3 (M – Ni,) Tj E	TQq1_1 0.7	784314 rgBT /
4	Thermodynamic Properties of a First-Generation Siloxane Dendrimer with Terminal Trimethylsilyl Groups. Russian Journal of Physical Chemistry A, 2020, 94, 240-248.	0.1	5
5	Calorimetric study of siloxane dendrimer of the third generation with trimethylsilyl terminal groups. Journal of Thermal Analysis and Calorimetry, 2019, 138, 3301-3310.	2.0	6
6	Thermodynamic properties of polymethylsilsesquioxane nanogels with blocking trimethylsilyl groups. Journal of Chemical Thermodynamics, 2019, 131, 572-582.	1.0	1
7	Calorimetric and structural studies of organic compound of tris(pentafluorophenyl)-4-pyridylethylgermane. Journal of Thermal Analysis and Calorimetry, 2019, 136, 1227-1236.	2.0	1
8	Thermodynamic Properties of a First-Generation Carbosilane Dendrimer with Terminal Phenylethyl Groups. Russian Journal of Physical Chemistry A, 2018, 92, 235-243.	0.1	6
9	Thermodynamic properties of block copolymers of chitosan with poly(D,L-lactide). Thermochimica Acta, 2018, 659, 19-26.	1.2	3
10	Calorimetric study of chitosan-graft-poly(2-ethylhexyl acrylate) copolymer. Thermochimica Acta, 2018, 670, 136-141.	1.2	1
11	Thermodynamic properties of first- and third-generation carbosilane dendrimers with terminal phenyldioxolane groups. Russian Journal of Physical Chemistry A, 2017, 91, 2317-2325.	0.1	6
12	Silver nanoparticle–chitosan complexes and properties of their composites. Nanotechnologies in Russia, 2016, 11, 766-775.	0.7	5
13	Calorimetric study of carbosilane dendrimers of the third and sixth generations with phenylethyl terminal groups. Journal of Thermal Analysis and Calorimetry, 2016, 125, 595-606.	2.0	9
14	Properties of Cadmium-(bis)dodecylthiolate and Polymeric Composites Based on It. Materials, 2015, 8, 8691-8700.	1.3	11
15	Low-Temperature Polymorphic Phase Transition in a Crystalline Tripeptide l-Ala-l-Pro-Gly·H2O Revealed by Adiabatic Calorimetry. Journal of Physical Chemistry B, 2015, 119, 1787-1792.	1.2	2
16	Calorimetric and infrared studies of carbosilane dendrimers of the third generation with ethyleneoxide terminal groups. Thermochimica Acta, 2015, 617, 144-151.	1.2	11
17	Thermodynamic Properties of Carbosilane Dendrimers of the Sixth Generation with Ethylene Oxide Terminal Groups. Journal of Physical Chemistry B, 2015, 119, 14527-14535.	1.2	14
18	Standard Thermodynamic Functions of TripeptidesN-Formyl-I-methionyl-I-leucyl-I-phenylalaninol andN-Formyl-I-methionyl-I-leucyl-I-phenylalanine Methyl Ester. Journal of Chemical & Engineering Data, 2014, 59, 1240-1246.	1.0	2

#	Article	IF	CITATIONS
19	Thermodynamic properties of carbosilane dendrimers of the third and sixth generations with ethyleneoxide terminal groups. Russian Journal of Physical Chemistry A, 2014, 88, 735-741.	0.1	8
20	Heat Capacity and Standard Thermodynamic Functions of Triphenylantimony Bis(1-adamantanecarboxylate) over the Range from (0 to 520) K. Journal of Chemical & Engineering Data, 2013, 58, 3087-3095.	1.0	9