
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5043436/publications.pdf Version: 2024-02-01

KAZUAKI SAKODA

#	Article	IF	CITATIONS
1	Improved power and far-field pattern of surface-emitting quantum cascade lasers with strain compensation to operate at 4.3 μm. Japanese Journal of Applied Physics, 2022, 61, 052001.	0.8	2
2	Evaluation and analysis of operating characteristics for mid-infrared surface-emitting quantum cascade lasers. , 2022, , .		0
3	High-speed infrared photonic band microscope using hyperspectral Fourier image spectroscopy. Optics Letters, 2022, 47, 2430.	1.7	5
4	Observation of Two-dimensional Isotropic Double Dirac Cones in the Electromagnetic Dispersion Relation. Journal of the Physical Society of Japan, 2022, 91, .	0.7	3
5	Apparatus for High-Precision Angle-Resolved Reflection Spectroscopy in the Mid-Infrared Region. Applied Spectroscopy, 2021, 75, 259-264.	1.2	9
6	Polarization Anisotropies in Strain-Free, Asymmetric, and Symmetric Quantum Dots Grown by Droplet Epitaxy. Nanomaterials, 2021, 11, 443.	1.9	5
7	Annealing-Induced Structural Evolution of InAs Quantum Dots on InP (111)A Formed by Droplet Epitaxy. Crystal Growth and Design, 2021, 21, 3947-3953.	1.4	3
8	Midinfrared Dispersion Relations in <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" overflow="scroll"><mml:mrow><mml:mi>In</mml:mi><mml:mi mathvariant="normal">P</mml:mi </mml:mrow></mml:math> -Based Photonic Crystal Slabs Revealed by Fourier-Transform Angle-Resolved Reflection Spectroscopy. Physical Review Applied, 2021, 15, .	1.5	6
9	Eigenmode symmetry assignment of triangular-lattice photonic crystal slabs and their Dirac cones materialized by effective degeneracy in the mid-infrared region. Optics Express, 2021, 29, 19486.	1.7	6
10	Design and fabrication of photonic crystal resonators for single-mode and vertical surface emission from strain-compensated quantum cascade lasers operating at 4.32 μm. Applied Physics Express, 2021, 14, 102003.	1.1	7
11	Mid-IR surface-emitting Quantum Cascade Laser with Photonic Crystal. , 2021, , .		Ο
12	Exciton Dynamics in Droplet Epitaxial Quantum Dots Grown on (311)A-Oriented Substrates. Nanomaterials, 2020, 10, 1833.	1.9	4
13	Enhanced Spontaneous Emission Rates for Single Isoelectronic Luminescence Centers in Photonic Crystal Cavities. ACS Photonics, 2020, 7, 321-326.	3.2	3
14	Single photon emission from droplet epitaxial quantum dots in the standard telecom window around a wavelength of 1.55Âμm. Applied Physics Express, 2020, 13, 025002.	1.1	20
15	Mid-IR Dirac-cone dispersion relation materialized in SOI photonic crystal slabs. Optics Express, 2020, 28, 4194.	1.7	9
16	Quasi-triply-degenerate states and zero refractive index in two-dimensional all-dielectric photonic crystals. Optics Express, 2020, 28, 5548.	1.7	6
17	Angle-resolved reflection spectra of Dirac cones in triangular-lattice photonic crystal slabs. Optics Express, 2020, 28, 21601.	1.7	7
18	Surface-emitting Quantum Cascade Laser with Photonic Crystal at 4 \hat{l} 4m. , 2020, , .		0

2

#	Article	IF	CITATIONS
19	Current-injection quantum-entangled-pair emitter using droplet epitaxial quantum dots on GaAs(111)A. Applied Physics Letters, 2019, 115, .	1.5	11
20	Photonic Dirac Cones and Relevant Physics. Springer Series in Materials Science, 2019, , 257-280.	0.4	0
21	Modern Insights into Macroscopic Electromagnetic Fields. Springer Series in Materials Science, 2019, , 1-4.	0.4	2
22	Spontaneous Folding of CdTe Nanosheets Induced by Ligand Exchange. Chemistry of Materials, 2018, 30, 1710-1717.	3.2	41
23	Electrically tunable dynamic nuclear spin polarization in GaAs quantum dots at zero magnetic field. Applied Physics Letters, 2018, 112, 142103.	1.5	1
24	Self-assembly of vertically aligned quantum ring-dot structure by Multiple Droplet Epitaxy. Journal of Crystal Growth, 2017, 477, 239-242.	0.7	19
25	Scroll-like Alloyed CdS _{<i>x</i>} Se _{1–<i>x</i>} Nanoplatelets: Facile Synthesis and Detailed Analysis of Tunable Optical Properties. Chemistry of Materials, 2017, 29, 579-586.	3.2	49
26	High-energy exciton transitions in quasi-two-dimensional cadmium chalcogenide nanoplatelets. Physical Review B, 2017, 95, .	1.1	25
27	Rigorous analysis of the dispersion relation of polaritonic channel waveguides. Optics Express, 2017, 25, 9986.	1.7	Ο
28	Excitonic Aharonov–Bohm effect in QD-on-ring nanostructures. Journal of Physics Condensed Matter, 2017, 29, 385301.	0.7	4
29	Type-II recombination dynamics of tensile-strained GaP quantum dots in GaAs grown by droplet epitaxy. Applied Physics Letters, 2016, 109, 171902.	1.5	4
30	Stable and efficient collection of single photons emitted from a semiconductor quantum dot into a single-mode optical fiber. Applied Physics Express, 2016, 9, 032801.	1.1	19
31	Growth of Metamorphic InGaAs on GaAs (111)A: Counteracting Lattice Mismatch by Inserting a Thin InAs Interlayer. Crystal Growth and Design, 2016, 16, 5412-5417.	1.4	15
32	Dirac Cones in Periodically Modulated Quantum Wells. Journal of the Physical Society of Japan, 2016, 85, 065002.	0.7	3
33	Selective Plasmonic Enhancement of Electric- and Magnetic-Dipole Radiations of Er Ions. Nano Letters, 2016, 16, 5191-5196.	4.5	50
34	Wavelength extension beyond 1.5 µm in symmetric InAs quantum dots grown on InP(111)A using droplet epitaxy. Applied Physics Express, 2016, 9, 101201.	1.1	10
35	Preface to the Special Issue of the Recent Development of Metamaterial Research. The Review of Laser Engineering, 2016, 44, 4.	0.0	0
36	Principle and Application of Photonic Dirac Cones. The Review of Laser Engineering, 2016, 44, 21.	0.0	0

#	Article	IF	CITATIONS
37	Size-dependent line broadening in the emission spectra of single GaAs quantum dots: Impact of surface charge on spectral diffusion. Physical Review B, 2015, 92, .	1.1	33
38	Broadband resonances in indium-tin-oxide nanorod arrays. Applied Physics Letters, 2015, 107, 031104.	1.5	11
39	Large-Area Resonance-Tuned Metasurfaces for On-Demand Enhanced Spectroscopy. Journal of Nanomaterials, 2015, 2015, 1-7.	1.5	14
40	Overcoming metal-induced fluorescence quenching on plasmo-photonic metasurfaces coated by a self-assembled monolayer. Chemical Communications, 2015, 51, 11470-11473.	2.2	35
41	Ultraviolet-nanoimprinted packaged metasurface thermal emitters for infrared CO ₂ sensing. Science and Technology of Advanced Materials, 2015, 16, 035005.	2.8	27
42	Droplet epitaxy growth of telecom InAs quantum dots on metamorphic InAlAs/GaAs(111)A. Japanese Journal of Applied Physics, 2015, 54, 04DH07.	0.8	13
43	Voltage dependence of two-step photocurrent generation in quantum dot intermediate band solar cells. Solar Energy Materials and Solar Cells, 2015, 134, 108-113.	3.0	23
44	PHOTONIC DIRAC CONES REALIZED BY ACCIDENTAL DEGENERACY ON THE BRILLOUIN-ZONE BOUNDARY. International Journal of Modern Physics B, 2014, 28, 1441008.	1.0	8
45	Recent developments in droplet epitaxy. , 2014, , .		Ο
46	Nitrogen-concentration control in GaNAs/AlGaAs quantum wells using nitrogen δ-doping technique. , 2014, , .		0
47	Subnanomolar fluorescent-molecule sensing by guided resonances on nanoimprinted silicon-on-insulator substrates. Applied Physics Letters, 2014, 105, 201106.	1.5	14
48	Polarization-dependent continuous change in the propagation direction of Dirac-cone modes in photonic-crystal slabs. Physical Review A, 2014, 90, .	1.0	11
49	Vanishing fine-structure splittings in telecommunication-wavelength quantum dots grown on (111)A surfaces by droplet epitaxy. Physical Review B, 2014, 90, .	1.1	41
50	Ultra-sharp plasmonic resonances from monopole optical nanoantenna phased arrays. Applied Physics Letters, 2014, 104, .	1.5	37
51	Highly tunable ultra-narrow-resonances with optical nano-antenna phased arrays in the infrared. , 2014, , .		Ο
52	Emission-enhanced plasmonic substrates fabricated by nano-imprint lithography. , 2014, , .		1
53	Photoluminescence-enhanced plasmonic substrates fabricated by nanoimprint lithography. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2014, 13, 023007.	1.0	22
54	Droplet epitaxial growth of highly symmetric quantum dots emitting at telecommunication wavelengths on InP(111)A. Applied Physics Letters, 2014, 104, .	1.5	24

#	Article	lF	CITATIONS
55	Plasmonic–Photonic Mode Coupling in Indium-Tin-Oxide Nanorod Arrays. ACS Photonics, 2014, 1, 163-172.	3.2	37
56	Origin of Extremely Small Bending Loss in Polaritonic Nano Fibers of Thiacyanine Molecules. , 2014, , .		0
57	Symmetric quantum dots as efficient sources of highly entangled photons: Violation of Bell's inequality without spectral and temporal filtering. Physical Review B, 2013, 88, .	1.1	116
58	Fabrication of transparent conducting polymer/GaN Schottky junction for deep level defect evaluation under light irradiation. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 470-473.	0.8	8
59	Size-dependent contact angle of Ga droplets on GaAs. Journal of Crystal Growth, 2013, 378, 5-7.	0.7	6
60	Self-assembly of Ga droplets attached to GaAs quantum dots. Journal of Crystal Growth, 2013, 378, 53-56.	0.7	3
61	Exciton states of Il–VI tetrapod-shaped nanocrystals. Optical Materials Express, 2013, 3, 977.	1.6	5
62	Bending losses of optically anisotropic exciton polaritons in organic molecular-crystal nanofibers. Optics Express, 2013, 21, 31420.	1.7	5
63	Determination of the surface band bending in In _{<i>x</i>} Ga _{1â^'<i>x</i>} N films by hard x-ray photoemission spectroscopy. Science and Technology of Advanced Materials, 2013, 14, 015007.	2.8	11
64	Single Photon Generation from an Impurity Center with Well-Defined Emission Energy in GaAs. Japanese Journal of Applied Physics, 2013, 52, 04CG11.	0.8	6
65	Universality of mode symmetries in creating photonic Dirac cones. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 2770.	0.9	34
66	Bunched photon statistics of the spectrally diffusive photoluminescence of single self-assembled GaAs quantum dots. Physical Review B, 2012, 86, .	1.1	19
67	Exciton-polariton mediated light propagation in anisotropic waveguides. Physical Review B, 2012, 86, .	1.1	14
68	Single-photon generation from a nitrogen impurity center in GaAs. Applied Physics Letters, 2012, 100, .	1.5	20
69	Geometrical impact on the optical polarization of droplet epitaxial quantum dots. Physical Review B, 2012, 86, .	1.1	23
70	Double Dirac cones in triangular-lattice metamaterials. Optics Express, 2012, 20, 9925.	1.7	71
71	Proof of the universality of mode symmetries in creating photonic Dirac cones. Optics Express, 2012, 20, 25181.	1.7	82
72	Dirac cone in two- and three-dimensional metamaterials. Optics Express, 2012, 20, 3898.	1.7	96

#	Article	IF	CITATIONS
73	Study of Defect Levels in the Band Gap for a Thick InGaN Film. Japanese Journal of Applied Physics, 2012, 51, 121001.	0.8	6
74	Self-Limiting Growth of Hexagonal and Triangular Quantum Dots on (111)A. Crystal Growth and Design, 2012, 12, 1411-1415.	1.4	44
75	Electrical Lasing in GaAs Quantum Dots Grown by Droplet Epitaxy. , 2012, , .		1
76	Two-Color Photoexcitation in a GaNAs/AlGaAs Quantum Well Solar Cell. Japanese Journal of Applied Physics, 2012, 51, 06FF15.	0.8	9
77	Extension of Absorption Wavelength in GaAs/AlGaAs Quantum Dots with Underlying Quantum Well for Solar Cell Application. Japanese Journal of Applied Physics, 2012, 51, 10ND14.	0.8	2
78	Study of Defect Levels in the Band Gap for a Thick InGaN Film. Japanese Journal of Applied Physics, 2012, 51, 121001.	0.8	12
79	Nitrogen Concentration Dependence on Two-Step Photocurrent Generation in GaNAs/AlGaAs Solar Cells. , 2012, , .		Ο
80	Two-Step Formation of Gallium Droplets with High Controllability of Size and Density. Crystal Growth and Design, 2011, 11, 4647-4651.	1.4	13
81	Analytical study of two-dimensional degenerate metamaterial antennas. Optics Express, 2011, 19, 13899.	1.7	19
82	Exciton states of CdTe tetrapod-shaped nanocrystals. Optical Materials Express, 2011, 1, 379.	1.6	9
83	Dark-Bright Mixing of Interband Transitions in Symmetric Semiconductor Quantum Dots. Physical Review Letters, 2011, 107, 166604.	2.9	41
84	Full wave analysis of structural resonances in composite right/left-handed leaky wave antenna. Proceedings of SPIE, 2011, , .	0.8	0
85	Fluorescence resonance energy transfer and arrangements of fluorophores in integrated coumarin/cyanine systems within solid-state two-dimensional nanospace. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 225, 125-134.	2.0	21
86	Effects of low-temperature capping on the optical properties of GaAs/AlGaAs quantum wells. Nanoscale Research Letters, 2011, 6, 76.	3.1	8
87	Selfâ€assembled GaAs quantum dots coupled with GaAs wetting layer grown on GaAs (311)A by droplet epitaxy. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 257-259.	0.8	8
88	Photocurrent characteristics in p-i-n diodes with built-in coupled or uncoupled multi-quantum wells. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 349-351.	0.8	7
89	Photocapacitance spectroscopy study of deep-level defects in freestanding n-GaN substrates using transparent conductive polymer Schottky contacts. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, .	0.6	6
90	Scanning Fabry-Pérot interferometer with largely tuneable free spectral range for high resolution spectroscopy of single quantum dots. Review of Scientific Instruments, 2011, 82, 073103.	0.6	7

#	Article	IF	CITATIONS
91	Fabrication of GaNAs/AlGaAs Heterostructures with Large Band Offset Using Periodic Growth Interruption. Applied Physics Express, 2011, 4, 125001.	1.1	12
92	Self-Assembly of GaAs Quantum Wires Grown on (311)A Substrates by Droplet Epitaxy. Applied Physics Express, 2011, 4, 055501.	1.1	6
93	Exciton states of quantum tetrapods. Proceedings of SPIE, 2011, , .	0.8	0
94	Self-Assembly of Symmetric GaAs Quantum Dots on (111)A Substrates: Suppression of Fine-Structure Splitting. Applied Physics Express, 2010, 3, 065203.	1.1	77
95	Distribution of exciton emission linewidth observed for GaAs quantum dots grown by droplet epitaxy. Journal of Luminescence, 2010, 130, 2390-2393.	1.5	9
96	Poissonian excitonic population of single QDs. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 884-886.	1.3	1
97	Fine structure splitting of quantum dot excitons: Role of geometry and environment. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 881-883.	1.3	10
98	Unstrained GaAs Quantum Dashes Grown on GaAs(001) Substrates by Droplet Epitaxy. Applied Physics Express, 2010, 3, 045502.	1.1	28
99	Morphological control of GaAs quantum dots grown by droplet epitaxy using a thin AlGaAs capping layer. Journal of Applied Physics, 2010, 108, 083505.	1.1	14
100	Science and Engineering of Photonic Crystals. Progress in Optics, 2010, , 271-317.	0.4	7
101	Energy renormalization of exciton complexes in GaAs quantum dots. Physical Review B, 2010, 82, .	1.1	34
102	Ultrafast Energy Transfer in a Multichromophoric Layered Silicate. Journal of Physical Chemistry C, 2010, 114, 983-989.	1.5	21
103	Role of structural electromagnetic resonances in a steerable left-handed antenna. Optics Express, 2010, 18, 27371.	1.7	26
104	Enhanced spontaneous emission observed at one-dimensional photonic band edges. Journal of the Optical Society of America B: Optical Physics, 2010, 27, 45.	0.9	19
105	Ordering of GaAs quantum dots by droplet epitaxy. Physica Status Solidi (B): Basic Research, 2009, 246, 729-732.	0.7	9
106	Magneto photoluminescence in droplet epitaxial GaAs quantum rings. Physica Status Solidi (B): Basic Research, 2009, 246, 861-863.	0.7	7
107	Decoherence of single photons from an InAs/InP quantum dot emitting at a 1.3 μm wavelength. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 944-947.	0.8	4
108	Enhanced Raman scattering in a colloidal crystal observed by a tunable laser light source. Thin Solid Films, 2009, 517, 1727-1730.	0.8	4

#	Article	IF	CITATIONS
109	Doubly enhanced spontaneous emission due to increased photon density of states at photonic band edge frequencies. Optics Express, 2009, 17, 13168.	1.7	20
110	Coherent anti-Stokes Raman scattering of two-phonon complexes in diamond. Optics Express, 2009, 17, 20794.	1.7	4
111	Ultra-narrow emission from single GaAs self-assembled quantum dots grown by droplet epitaxy. Nanotechnology, 2009, 20, 395601.	1.3	65
112	Optically monitored nuclear spin dynamics in individual GaAs quantum dots grown by droplet epitaxy. Physical Review B, 2008, 78, .	1.1	38
113	Evaluation of effective electric permittivity and magnetic permeability in metamaterial slabs by terahertz time-domain spectroscopy. Optics Express, 2008, 16, 4785.	1.7	24
114	Spectral diffusion and line broadening in single self-assembled GaAsâ^•AlGaAs quantum dot photoluminescence. Applied Physics Letters, 2008, 93, .	1.5	62
115	Enhanced Raman scattering in colloidal photonic crystals: A theoretical analysis. Physical Review B, 2008, 77, .	1.1	10
116	Spontaneous emission properties of a quantum dot in an ultrahigh-Qcavity: Crossover from weak- to strong-coupling states and robust quantum interference. Physical Review A, 2008, 77, .	1.0	6
117	Acceleration and suppression of photoemission of GaAs quantum dots embedded in photonic crystal microcavities. Applied Physics Letters, 2008, 93, 111103.	1.5	18
118	GaAsâ^•AlGaAs quantum dot laser fabricated on GaAs (311)A substrate by droplet epitaxy. Applied Physics Letters, 2008, 93, 203110.	1.5	35
119	Emission studies on photonic crystals fabricated using dyed polystyrene colloids. Journal of Applied Physics, 2007, 102, 123106.	1.1	25
120	Single-photon interferography in InAsâ^•InP quantum dots emitting at 1300nm wavelength. Applied Physics Letters, 2007, 91, 223113.	1.5	10
121	Formation of InGaAs Quantum Disks Using Droplet Lithography. Japanese Journal of Applied Physics, 2007, 46, L736-L738.	0.8	2
122	Stage number and refractive index dependence of the quality factor of the localized electromagnetic eigenmodes in the Menger sponge fractal. Optics Express, 2007, 15, 1783.	1.7	2
123	Spontaneous emission from a quantum dot embedded in a bi-sphere microcavity. Superlattices and Microstructures, 2007, 41, 333-336.	1.4	0
124	Interferometric measurement in GaAs single quantum dots: Temperature dependence of exciton decoherence. Journal of Luminescence, 2007, 122-123, 789-791.	1.5	4
125	Self-assembly of laterally aligned GaAs quantum dot pairs. Applied Physics Letters, 2006, 89, 113115.	1.5	110
126	LCAO approximation for scaling properties of the Menger sponge fractal. Optics Express, 2006, 14, 11372.	1.7	4

#	Article	IF	CITATIONS
127	Emission Spectra from a High Q Weak Coupling System. Journal of the Physical Society of Japan, 2006, 75, 094720.	0.7	4
128	Single quantum dot emission after resonant excitation. , 2006, , .		1
129	Strong localization of microwave in photonic fractals with Menger-sponge structure. Journal of the European Ceramic Society, 2006, 26, 1861-1864.	2.8	18
130	Development of Photonic Fractals as New Functionally Structured Materials for Electromagnetic Wave Control. Materials Science Forum, 2006, 512, 153-158.	0.3	0
131	Strong Localization of Electromagnetic Wave in Ceramic/Epoxy Photonic Fractals with Menger-Sponge Structure. Materials Science Forum, 2006, 512, 227-232.	0.3	1
132	Excitonic and biexcitonic decoherence in self-assembled GaAs quantum dots as observed by phase-locked interferography. Applied Physics Letters, 2006, 88, 124101.	1.5	25
133	Lasing in GaAsâ^•AlGaAs self-assembled quantum dots. Applied Physics Letters, 2006, 89, 183102.	1.5	50
134	Spontaneous emission from a two-level atom in a bisphere microcavity. Physical Review A, 2006, 74, .	1.0	12
135	Fabrication of Photonic Crystal with a Diamond Structure Having an Air Cavity Defect and its Microwave Properties. Journal of the American Ceramic Society, 2005, 88, 2480-2484.	1.9	8
136	SMART PROCESSING DEVELOPMENT OF NOVEL MATERIALS FOR ELECTROMAGNETIC WAVE CONTROL. , 2005, , 3-9.		0
137	Strong Localization of Electromagnetic Wave in Epoxy/Ceramic Photonic Fractals with Mengersponge Structure Fabricated by Stereolithography. Materials Science Forum, 2005, 492-493, 719-724.	0.3	0
138	Acceleration and deceleration of moving photonic crystals under irradiation. Physical Review B, 2005, 72, .	1.1	1
139	Electromagnetic eigenmodes of a three-dimensional photonic fractal. Physical Review B, 2005, 72, .	1.1	20
140	A New Functional Material; Photonic Fractal. Materials Science Forum, 2005, 492-493, 77-84.	0.3	3
141	Scaling law of enhanced second harmonic generation in finite Bragg stacks. Optics Express, 2005, 13, 9094.	1.7	14
142	90-degree light scattering by the Menger sponge fractal. Optics Express, 2005, 13, 9585.	1.7	8
143	Self-Assembly of Concentric Quantum Double Rings. Nano Letters, 2005, 5, 425-428.	4.5	357
144	Electromagnetic wave control of ceramic/resin photonic crystals with diamond structure. Science and Technology of Advanced Materials, 2004, 5, 225-230.	2.8	19

#	Article	IF	CITATIONS
145	Localization of Electromagnetic Waves in Three-Dimensional Fractal Cavities. Physical Review Letters, 2004, 92, 093902.	2.9	97
146	Smart Processing Development of Photonic Crystals and Fractals. International Journal of Applied Ceramic Technology, 2004, 1, 40-48.	1.1	24
147	Microwave Properties of Photonic Crystals Composed of Ceramics/Polymer with Lattice Defects. Zairyo/Journal of the Society of Materials Science, Japan, 2004, 53, 975-980.	0.1	1
148	Band Gap Modification of Diamond Photonic Crystals by Changing the Volume Fraction of the Dielectric Lattice. Journal of the American Ceramic Society, 2003, 86, 1691-1694.	1.9	22
149	Microassembly of semiconductor three-dimensional photonic crystals. Nature Materials, 2003, 2, 117-121.	13.3	273
150	Electromagnetic properties of photonic crystals with diamond structure containing defects. Journal of Materials Research, 2003, 18, 2214-2220.	1.2	5
151	Emission Control of Electromagnetic Wave by Using Diamond Photonic Crystals with Graded Lattice Spacing. Materials Science Forum, 2003, 423-425, 785-790.	0.3	1
152	Superfluorescence in photonic crystals with pencil-like excitation. Physical Review A, 2003, 68, .	1.0	4
153	Electromagnetic Wave Diffractions in Ceramic/Polymer Photonic Crystals with Three-Dimensional Diamond Structure. Journal of the Ceramic Society of Japan, 2003, 111, 471-478.	1.3	8
154	Multi-dimensional PBGs: Nonlinear and quantum optics. , 2003, , .		0
155	Localized Defect Modes with High-Quality Factors in a Photonic Crystal Slab on a Low-Index Dielectric Substrate. Japanese Journal of Applied Physics, 2002, 41, L694-L696.	0.8	0
156	Electromagnetic Properties of Photonic Crystals Composed of Normal and Inverse Diamond Structure with Graded Lattice Spacings Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2002, 49, 1139-1144.	0.1	3
157	Enhancement of quadrature-phase squeezing in photonic crystals. Journal of the Optical Society of America B: Optical Physics, 2002, 19, 2060.	0.9	15
158	Persistent spectral hole-burning: ideal memory for quantum computers?. Superlattices and Microstructures, 2002, 32, 337-342.	1.4	0
159	Control of microwave emission from electromagnetic crystals by lattice modifications. Solid State Communications, 2002, 124, 135-139.	0.9	57
160	Quality factor for localized defect modes in a photonic crystal slab upon a low-index dielectric substrate. Optics Letters, 2001, 26, 740.	1.7	20
161	Photonic bands of metallic systems. I. Principle of calculation and accuracy. Physical Review B, 2001, 64, .	1.1	90
162	Terahertz wave dispersion in two-dimensional photonic crystals. Physical Review B, 2001, 64, .	1.1	31

#	Article	IF	CITATIONS
163	Photonic bands of metallic systems. II. Features of surface plasmon polaritons. Physical Review B, 2001, 64, .	1.1	96
164	Optical Properties of Photonic Crystals. Springer Series in Optical Sciences, 2001, , .	0.5	852
165	Temperature dependence of the optical homogeneous width of mesoporphyrin and its aggregate in polyvinylalcohol at 1.8–50 K. Journal of Luminescence, 2000, 86, 249-255.	1.5	2
166	Heterodyne-Detected Accumulated Photon-Echo Spectroscopy of CuCl Quantum Dots. Japanese Journal of Applied Physics, 1999, 38, 577-580.	0.8	4
167	A Two-Dimensional Photonic Crystal Laser. Japanese Journal of Applied Physics, 1999, 38, L157-L159.	0.8	68
168	Optics of Photonic Crystals. Optical Review, 1999, 6, 381-392.	1.2	11
169	Detailed analysis of transmission spectra and Bragg-reflection spectra of a two-dimensional photonic crystal with a lattice constant of 115 Âμm. Journal of the Optical Society of America B: Optical Physics, 1999, 16, 361.	0.9	25
170	Enhanced light amplification due to group-velocity anomaly peculiar to two- and three-dimensional photonic crystals. Optics Express, 1999, 4, 167.	1.7	181
171	Low-threshold laser oscillation due to group-velocity anomaly peculiar to two- and three-dimensional photonic crystals. Optics Express, 1999, 4, 481.	1.7	94
172	Numerical study on localized defect modes in two-dimensional triangular photonic crystals. Journal of Applied Physics, 1998, 84, 1210-1214.	1.1	36
173	Novel approach to photonic bands with frequency-dependent dielectric constants. Optics Express, 1998, 3, 12.	1.7	12
174	Eigenmode symmetry for simple cubic lattices and the transmission spectra. Optics Express, 1998, 3, 19.	1.7	16
175	Limits on quality factors of localized defect modes in photonic crystals due to dielectric loss. Journal of Applied Physics, 1998, 84, 6299-6304.	1.1	32
176	Numerical Analysis of Localized Defect Modes in a Photonic Crystal: Two-Dimensional Triangular Lattice with Square Rods. Japanese Journal of Applied Physics, 1998, 37, 4644-4647.	0.8	9
177	Enhanced stimulated emission in a two-dimensional photonic crystal. , 1998, 3491, 248.		3
178	Numerical analysis of eigenmodes localized at line defects in photonic lattices. Physical Review B, 1997, 56, 14905-14908.	1.1	26
179	Numerical method for localized defect modes in photonic lattices. Physical Review B, 1997, 56, 4830-4835.	1.1	88
180	Group-theoretical classification of eigenmodes in three-dimensional photonic lattices. Physical Review B, 1997, 55, 15345-15348.	1.1	35

#	Article	IF	CITATIONS
181	Numerical analysis of the interference patterns in the optical transmission spectra of a square photonic lattice. Journal of the Optical Society of America B: Optical Physics, 1997, 14, 1961.	0.9	38
182	Sum-frequency generation in a two-dimensional photonic lattice. Physical Review B, 1996, 54, 5742-5749.	1.1	91
183	Optical response of three-dimensional photonic lattices: Solutions of inhomogeneous Maxwell's equations and their applications. Physical Review B, 1996, 54, 5732-5741.	1.1	53
184	Suppression of spectral diffusion in porphin-cross-linked polyvinylalcohol observed by photochemical hole burning. Journal of Luminescence, 1995, 64, 149-153.	1.5	1
185	Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices. Physical Review B, 1995, 52, 7982-7986.	1.1	162
186	Far-infrared spectroscopy study of an uncoupled mode in a two-dimensional photonic lattice. Physical Review B, 1995, 52, 16297-16300.	1.1	19
187	Optical transmittance of a two-dimensional triangular photonic lattice. Physical Review B, 1995, 51, 4672-4675.	1.1	85
188	Transmittance and Bragg reflectivity of two-dimensional photonic lattices. Physical Review B, 1995, 52, 8992-9002.	1.1	109
189	Fabrication of Two-Dimensional Photonic Band Structure with Near-Infrared Band Gap. Japanese Journal of Applied Physics, 1994, 33, L1463-L1465.	0.8	67
190	Photochemical hole burning of ionic porphins and the deuterated analogues. Chemical Physics Letters, 1994, 217, 152-156.	1.2	5
191	Photochemical hole burning and Debye-Waller factor in polyvinylalcohol doped with mesoporphyrin. Chemical Physics Letters, 1994, 231, 171-176.	1.2	1
192	Photochemical hole burning of porphin-cross-linked polymethylmethacrylate. Chemical Physics Letters, 1993, 215, 488-492.	1.2	4
193	Photochemical hole burning of cationic porphin/saponite intercalation compounds. Chemical Physics Letters, 1993, 216, 270-274.	1.2	15
194	High-Temperature Photochemical Hole Burning. Japanese Journal of Applied Physics, 1989, 28, 229.	0.8	16
195	High Temperature Photochemical Hole Burning of Tetrasodium 5,10,15,20-tetra(4-sulfonatophenyl)porphin in Polyvinylalcohol. Japanese Journal of Applied Physics, 1988, 27, L1304-L1306.	0.8	40
196	Structure and Electric Conductivity of Vapor Deposition Products of Cyano Acetylene. Molecular Crystals and Liquid Crystals, 1985, 121, 329-332.	0.9	3
197	Photon Correlation in GaAs Self-Assembled Quantum Dots. Applied Physics Express, 0, 1, 042001.	1.1	23
198	Mid-infrared angle-resolved spectral characteristics of photonic crystal slabs for application in surface-emitting quantum cascade lasers. Journal of Nonlinear Optical Physics and Materials, 0, , .	1.1	1