Xiaojun Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5043364/publications.pdf Version: 2024-02-01

XIAOUUN LI

#	Article	IF	CITATIONS
1	Correlation between the Internal Flow Pattern and the Blade Load Distribution of the Centrifugal Impeller. Machines, 2022, 10, 40.	1.2	1
2	Time-Resolved Particle Image Velocimetry Measurements and Proper Orthogonal Decomposition Analysis of Unsteady Flow in a Centrifugal Impeller Passage. Frontiers in Energy Research, 2022, 9, .	1.2	11
3	Investigations of energy distribution and loss characterization in a centrifugal impeller through PIV experiment. Ocean Engineering, 2022, 247, 110773.	1.9	19
4	An energy consumption improvement method for centrifugal pump based on bionic optimization of blade trailing edge. Energy, 2022, 246, 123323.	4.5	34
5	Numerical simulation of cavitating flow around a twist hydrofoil focusing on the erosion behaviour. Journal of Physics: Conference Series, 2022, 2217, 012011.	0.3	0
6	Axial thrust instability analysis and estimation theory of high speed centrifugal pump. Physics of Fluids, 2022, 34, .	1.6	13
7	Application of enstrophy dissipation to analyze energy loss in a centrifugal pump as turbine. Renewable Energy, 2021, 163, 41-55.	4.3	43
8	Evaluation of vorticity forces in thermo-sensitive cavitating flow considering the local compressibility. International Communications in Heat and Mass Transfer, 2021, 120, 105008.	2.9	11
9	Theoretical, experimental, and numerical methods to predict the best efficiency point of centrifugal pump as turbine. Renewable Energy, 2021, 168, 31-44.	4.3	64
10	Numerical investigation of transient liquid nitrogen cavitating flows with special emphasis on force evolution and entropy features. Cryogenics, 2021, 113, 103225.	0.9	16
11	Numerical Simulation of Fine Particle Solid-Liquid Two-Phase Flow in a Centrifugal Pump. Shock and Vibration, 2021, 2021, 1-10.	0.3	6
12	Investigation of Flow Separation Characteristics in a Pump as Turbines Impeller Under the Best Efficiency Point Condition. Journal of Fluids Engineering, Transactions of the ASME, 2021, 143, .	0.8	11
13	Numerical simulation of rotating channel flow based on a modified DES model. Modern Physics Letters B, 2021, 35, 2150193.	1.0	1
14	Effect of Rotation Speed and Flow Rate on Slip Factor in a Centrifugal Pump. Shock and Vibration, 2021, 2021, 1-14.	0.3	0
15	Wear Characteristics of Dense Fine Particles Solid-Liquid Two-Phase Fluid Centrifugal Pump with Open Impellers. Shock and Vibration, 2021, 2021, 1-13.	0.3	1
16	Boundary Vorticity Analysis and Shedding Dynamics of Transient Cavitation Flow Around a Twisted Hydrofoil. Journal of Fluids Engineering, Transactions of the ASME, 2021, 143, .	0.8	8
17	Influence of Impeller Sinusoidal Tubercle Trailing-Edge on Pressure Pulsation in a Centrifugal Pump at Nominal Flow Rate. Journal of Fluids Engineering, Transactions of the ASME, 2021, 143, .	0.8	26
18	Multiscale modeling of tip-leakage cavitating flows by a combined volume of fluid and discrete bubble model. Physics of Fluids, 2021, 33, .	1.6	36

Xiaojun Li

#	Article	IF	CITATIONS
19	Numerical analysis of thermo-sensitive cavitating flows with special emphasises on flow separation and enstrophy conversion. International Communications in Heat and Mass Transfer, 2021, 125, 105336.	2.9	14
20	The Tip Clearance Cavitation Mechanism of a High-Speed Centrifugal Pump with a Splitter-Bladed Inducer. Processes, 2021, 9, 1576.	1.3	5
21	Large eddy simulation of tip-leakage cavitating flow using a multiscale cavitation model and investigation on model parameters. Physics of Fluids, 2021, 33, .	1.6	16
22	Instability analysis for a centrifugal pump with straight inlet pipe using partially averaged Navier–Stokes model. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2021, 235, 211-226.	0.8	4
23	Effects of flow pattern on hydraulic performance and energy conversion characterisation in a centrifugal pump. Renewable Energy, 2020, 151, 475-487.	4.3	88
24	Study on calculation method of condensation heat transfer for non-azeotropic hydrocarbon mixtures in helically coiled tubes. Journal of Thermal Analysis and Calorimetry, 2020, 141, 177-186.	2.0	1
25	Investigation of flow pattern and hydraulic performance of a centrifugal pump impeller through the PIV method. Renewable Energy, 2020, 162, 561-574.	4.3	25
26	Hydraulic Performance Optimization of Pump Impeller Based on a Joint of Particle Swarm Algorithm and Least-Squares Support Vector Regression. IEEE Access, 2020, 8, 203645-203654.	2.6	8
27	Numerical investigation on the evolution of forces and energy features in thermo-sensitive cavitating flow. European Journal of Mechanics, B/Fluids, 2020, 84, 233-249.	1.2	24
28	Numerical modeling of multiphase flow in gas stirred ladles: From a multiscale point of view. Powder Technology, 2020, 373, 14-25.	2.1	29
29	Extended compressible thermal cavitation model for the numerical simulation of cryogenic cavitating flow. International Journal of Hydrogen Energy, 2020, 45, 10104-10118.	3.8	51
30	Condensation flow patterns and heat transfer correction for zeotropic hydrocarbon mixtures in a helically coiled tube. International Journal of Heat and Mass Transfer, 2019, 143, 118500.	2.5	15
31	Quantification of wake unsteadiness for low-Re flow across two staggered cylinders. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233, 6892-6909.	1.1	20
32	Calculation of cavitation evolution and associated turbulent kinetic energy transport around a NACA66 hydrofoil. Journal of Mechanical Science and Technology, 2019, 33, 1231-1241.	0.7	49
33	Investigation of flow instability characteristics in a low specific speed centrifugal pump using a modified partially averaged Navier–Stokes model. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2019, 233, 834-848.	0.8	24
34	Investigation of flow separation in a centrifugal pump impeller based on improved delayed detached eddy simulation method. Advances in Mechanical Engineering, 2019, 11, 168781401989783.	0.8	6
35	The Role of Blade Sinusoidal Tubercle Trailing Edge in a Centrifugal Pump with Low Specific Speed. Processes, 2019, 7, 625.	1.3	15
36	Numerical investigation of attached cavitating flow in thermo-sensitive fluid with special emphasis on thermal effect and shedding dynamics. International Journal of Hydrogen Energy, 2019, 44, 3170-3184.	3.8	40

Xiaojun Li

#	Article	IF	CITATIONS
37	Instability analysis under part-load conditions in centrifugal pump. Journal of Mechanical Science and Technology, 2019, 33, 269-278.	0.7	24
38	Effect of the blade loading distribution on hydrodynamic performance of a centrifugal pump with cylindrical blades. Journal of Mechanical Science and Technology, 2018, 32, 1161-1170.	0.7	55
39	Entropy generation analysis for the cavitating head-drop characteristic of a centrifugal pump. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2018, 232, 4637-4646.	1.1	85
40	Numerical simulation of cryogenic cavitating flow by an extended transport-based cavitation model with thermal effects. Cryogenics, 2018, 92, 98-104.	0.9	44
41	An experimental study on the cavitation vibration characteristics of a centrifugal pump at normal flow rate. Journal of Mechanical Science and Technology, 2018, 32, 4711-4720.	0.7	40
42	Statistical characteristics of suction pressure signals for a centrifugal pump under cavitating conditions. Journal of Thermal Science, 2017, 26, 47-53.	0.9	28
43	Numerical and experimental studies on hydrodynamic characteristics of sleeve regulating valves. Flow Measurement and Instrumentation, 2017, 53, 279-285.	1.0	24
44	Thermal performance comparison of oscillating heat pipes with and without helical micro-grooves. Heat and Mass Transfer, 2017, 53, 3383-3390.	1.2	16
45	Prediction of particle distribution and particle impact erosion in inclined cavities. Powder Technology, 2017, 305, 562-571.	2.1	10
46	An improved turbulence model for separation flow in a centrifugal pump. Advances in Mechanical Engineering, 2016, 8, 168781401665331.	0.8	5
47	Experimental and numerical investigations of head-flow curve instability of a single-stage centrifugal pump with volute casing. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2016, 230, 633-647.	0.8	55
48	Investigation of unsteady flow in a centrifugal pump at low flow rate. Advances in Mechanical Engineering, 2016, 8, 168781401668215.	0.8	7
49	Numerical and Experimental Analysis of Flow Phenomena in a Centrifugal Pump Operating Under Low Flow Rates. Journal of Fluids Engineering, Transactions of the ASME, 2015, 137, .	0.8	84
50	Numerical simulation of leading edge cavitation within the whole flow passage of a centrifugal pump. Science China Technological Sciences, 2013, 56, 2156-2162.	2.0	41
51	Dynamic Characteristics of Rotating Stall in Mixed Flow Pump. Journal of Applied Mathematics, 2013, 2013, 1-12.	0.4	12
52	Numerical Investigation on Periodic Flow Unsteadiness in a Centrifugal Pump With Volute. , 2013, , .		0