Zhong Lin Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5043295/publications.pdf Version: 2024-02-01

2,197 papers	340,207 citations	¹ 274 h-index	13 474 g-index
2237	2237	2237	99905
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science, 2006, 312, 242-246.	6.0	6,691
2	Nanobelts of Semiconducting Oxides. Science, 2001, 291, 1947-1949.	6.0	5,624
3	Flexible triboelectric generator. Nano Energy, 2012, 1, 328-334.	8.2	4,578
4	Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature, 2010, 464, 392-395.	13.7	3,025
5	Zinc oxide nanostructures: growth, properties and applications. Journal of Physics Condensed Matter, 2004, 16, R829-R858.	0.7	2,924
6	Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity. Science, 2007, 316, 732-735.	6.0	2,838
7	Shape-Controlled Synthesis of Colloidal Platinum Nanoparticles. Science, 1996, 272, 1924-1925.	6.0	2,285
8	Triboelectric Nanogenerators as New Energy Technology for Self-Powered Systems and as Active Mechanical and Chemical Sensors. ACS Nano, 2013, 7, 9533-9557.	7.3	2,266
9	Direct-Current Nanogenerator Driven by Ultrasonic Waves. Science, 2007, 316, 102-105.	6.0	2,065
10	Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies. Journal of Physical Chemistry B, 2000, 104, 1153-1175.	1.2	1,971
11	Carbon Nanotube Quantum Resistors. Science, 1998, 280, 1744-1746.	6.0	1,904
12	Electrostatic Deflections and Electromechanical Resonances of Carbon Nanotubes. Science, 1999, 283, 1513-1516.	6.0	1,790
13	Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature, 2014, 514, 470-474.	13.7	1,762
14	Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy and Environmental Science, 2015, 8, 2250-2282.	15.6	1,723
15	Transparent Triboelectric Nanogenerators and Self-Powered Pressure Sensors Based on Micropatterned Plastic Films. Nano Letters, 2012, 12, 3109-3114.	4.5	1,676
16	Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature, 2002, 420, 395-398.	13.7	1,526
17	Microfibre–nanowire hybrid structure for energy scavenging. Nature, 2008, 451, 809-813.	13.7	1,480
18	Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays. Nano Letters, 2004, 4, 423-426.	4.5	1,477

#	Article	IF	CITATIONS
19	On Maxwell's displacement current for energy and sensors: the origin of nanogenerators. Materials Today, 2017, 20, 74-82.	8.3	1,473
20	Self-powered nanowire devices. Nature Nanotechnology, 2010, 5, 366-373.	15.6	1,462
21	Flexible Nanogenerators for Energy Harvesting and Selfâ€Powered Electronics. Advanced Materials, 2016, 28, 4283-4305.	11.1	1,438
22	Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Applied Physics Letters, 2002, 81, 1869-1871.	1.5	1,400
23	Single-Crystal Nanorings Formed by Epitaxial Self-Coiling of Polar Nanobelts. Science, 2004, 303, 1348-1351.	6.0	1,383
24	Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy and Environmental Science, 2013, 6, 3576.	15.6	1,380
25	Alloy Formation of Goldâ^'Silver Nanoparticles and the Dependence of the Plasmon Absorption on Their Composition. Journal of Physical Chemistry B, 1999, 103, 3529-3533.	1.2	1,297
26	Nanostructures of zinc oxide. Materials Today, 2004, 7, 26-33.	8.3	1,259
27	Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review. Nano Energy, 2017, 37, 136-157.	8.2	1,257
28	Triboelectric nanogenerators as new energy technology and self-powered sensors – Principles, problems and perspectives. Faraday Discussions, 2014, 176, 447-458.	1.6	1,256
29	One-dimensional ZnO nanostructures: Solution growth and functional properties. Nano Research, 2011, 4, 1013-1098.	5.8	1,201
30	Quantifying the triboelectric series. Nature Communications, 2019, 10, 1427.	5.8	1,107
31	Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation. Advanced Functional Materials, 2003, 13, 9-24.	7.8	1,102
32	Triboelectric Nanogenerator: A Foundation of the Energy for the New Era. Advanced Energy Materials, 2019, 9, 1802906.	10.2	1,086
33	Spontaneous Polarization-Induced Nanohelixes, Nanosprings, and Nanorings of Piezoelectric Nanobelts. Nano Letters, 2003, 3, 1625-1631.	4.5	1,077
34	Nanoscale Triboelectric-Effect-Enabled Energy Conversion for Sustainably Powering Portable Electronics. Nano Letters, 2012, 12, 6339-6346.	4.5	1,062
35	Field-Effect Transistors Based on Single Semiconducting Oxide Nanobelts. Journal of Physical Chemistry B, 2003, 107, 659-663.	1.2	1,049
36	ZnO nanowire and nanobelt platform for nanotechnology. Materials Science and Engineering Reports, 2009, 64, 33-71.	14.8	1,046

#	Article	IF	CITATIONS
37	Low-Cost High-Performance Solid-State Asymmetric Supercapacitors Based on MnO ₂ Nanowires and Fe ₂ O ₃ Nanotubes. Nano Letters, 2014, 14, 731-736.	4.5	1,035
38	Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nature Communications, 2018, 9, 244.	5.8	1,034
39	Nickel–Cobalt Hydroxide Nanosheets Coated on NiCo ₂ O ₄ Nanowires Grown on Carbon Fiber Paper for High-Performance Pseudocapacitors. Nano Letters, 2013, 13, 3135-3139.	4.5	992
40	Piezoelectric Field Effect Transistor and Nanoforce Sensor Based on a Single ZnO Nanowire. Nano Letters, 2006, 6, 2768-2772.	4.5	983
41	Toward Large-Scale Energy Harvesting by a Nanoparticle-Enhanced Triboelectric Nanogenerator. Nano Letters, 2013, 13, 847-853.	4.5	979
42	Flexible Solid-State Supercapacitors Based on Carbon Nanoparticles/MnO ₂ Nanorods Hybrid Structure. ACS Nano, 2012, 6, 656-661.	7.3	961
43	On the origin of contact-electrification. Materials Today, 2019, 30, 34-51.	8.3	958
44	Theoretical systems of triboelectric nanogenerators. Nano Energy, 2015, 14, 161-192.	8.2	955
45	Functional Nanowires. MRS Bulletin, 2007, 32, 99-108.	1.7	952
46	Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Science Advances, 2017, 3, e1700015.	4.7	920
47	Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy, 2017, 39, 9-23.	8.2	913
48	Nanotechnologyâ€Enabled Energy Harvesting for Selfâ€Powered Microâ€INanosystems. Angewandte Chemie - International Edition, 2012, 51, 11700-11721.	7.2	910
49	Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nature Energy, 2016, 1, .	19.8	879
50	Triboelectric-Generator-Driven Pulse Electrodeposition for Micropatterning. Nano Letters, 2012, 12, 4960-4965.	4.5	874
51	A droplet-based electricity generator with high instantaneous power density. Nature, 2020, 578, 392-396.	13.7	871
52	Power generation with laterally packaged piezoelectric fine wires. Nature Nanotechnology, 2009, 4, 34-39.	15.6	859
53	Conversion of Zinc Oxide Nanobelts into Superlattice-Structured Nanohelices. Science, 2005, 309, 1700-1704.	6.0	835
54	Fiber/Fabricâ€Based Piezoelectric and Triboelectric Nanogenerators for Flexible/Stretchable and Wearable Electronics and Artificial Intelligence. Advanced Materials, 2020, 32, e1902549.	11.1	826

#	Article	IF	CITATIONS
55	High-Sensitivity Humidity Sensor Based on a Single SnO2Nanowire. Journal of the American Chemical Society, 2007, 129, 6070-6071.	6.6	825
56	Taxel-Addressable Matrix of Vertical-Nanowire Piezotronic Transistors for Active and Adaptive Tactile Imaging. Science, 2013, 340, 952-957.	6.0	817
57	Fiber Supercapacitors Made of Nanowireâ€Fiber Hybrid Structures for Wearable/Flexible Energy Storage. Angewandte Chemie - International Edition, 2011, 50, 1683-1687.	7.2	796
58	Recent Progress in Electronic Skin. Advanced Science, 2015, 2, 1500169.	5.6	789
59	The grand challenges of <i>Science Robotics</i> . Science Robotics, 2018, 3, .	9.9	787
60	Hydrogenated ZnO Core–Shell Nanocables for Flexible Supercapacitors and Self-Powered Systems. ACS Nano, 2013, 7, 2617-2626.	7.3	781
61	Towards Selfâ€Powered Nanosystems: From Nanogenerators to Nanopiezotronics. Advanced Functional Materials, 2008, 18, 3553-3567.	7.8	753
62	Freestanding Triboelectricâ€Layerâ€Based Nanogenerators for Harvesting Energy from a Moving Object or Human Motion in Contact and Nonâ€contact Modes. Advanced Materials, 2014, 26, 2818-2824.	11.1	752
63	Reviving Vibration Energy Harvesting and Self-Powered Sensing by a Triboelectric Nanogenerator. Joule, 2017, 1, 480-521.	11.7	748
64	Flexible Piezotronic Strain Sensor. Nano Letters, 2008, 8, 3035-3040.	4.5	742
65	Radial-arrayed rotary electrification for high performance triboelectric generator. Nature Communications, 2014, 5, 3426.	5.8	734
66	Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics. Nano Today, 2010, 5, 540-552.	6.2	731
67	Wearable Selfâ€Charging Power Textile Based on Flexible Yarn Supercapacitors and Fabric Nanogenerators. Advanced Materials, 2016, 28, 98-105.	11.1	723
68	Flexible High-Output Nanogenerator Based on Lateral ZnO Nanowire Array. Nano Letters, 2010, 10, 3151-3155.	4.5	713
69	Piezoelectric BaTiO ₃ Thin Film Nanogenerator on Plastic Substrates. Nano Letters, 2010, 10, 4939-4943.	4.5	711
70	Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Science Advances, 2016, 2, e1600097.	4.7	705
71	Induced Growth of Asymmetric Nanocantilever Arrays on Polar Surfaces. Physical Review Letters, 2003, 91, 185502.	2.9	697
72	Highlyâ€Efficient, Flexible Piezoelectric PZT Thin Film Nanogenerator on Plastic Substrates. Advanced Materials, 2014, 26, 2514-2520.	11,1	690

#	Article	IF	CITATIONS
73	Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nature Materials, 2008, 7, 701-706.	13.3	679
74	Carbon Nanotube Arrays with Strong Shear Binding-On and Easy Normal Lifting-Off. Science, 2008, 322, 238-242.	6.0	674
75	Triboelectric nanogenerators as self-powered active sensors. Nano Energy, 2015, 11, 436-462.	8.2	674
76	Harmonicâ€Resonatorâ€Based Triboelectric Nanogenerator as a Sustainable Power Source and a Selfâ€Powered Active Vibration Sensor. Advanced Materials, 2013, 25, 6094-6099.	11.1	672
77	Human Skin Based Triboelectric Nanogenerators for Harvesting Biomechanical Energy and as Self-Powered Active Tactile Sensor System. ACS Nano, 2013, 7, 9213-9222.	7.3	667
78	Piezoelectric Characterization of Individual Zinc Oxide Nanobelt Probed by Piezoresponse Force Microscope. Nano Letters, 2004, 4, 587-590.	4.5	649
79	Dissolving Behavior and Stability of ZnO Wires in Biofluids: A Study on Biodegradability and Biocompatibility of ZnO Nanostructures. Advanced Materials, 2006, 18, 2432-2435.	11.1	647
80	A Selfâ€Charging Power Unit by Integration of a Textile Triboelectric Nanogenerator and a Flexible Lithiumâ€ion Battery for Wearable Electronics. Advanced Materials, 2015, 27, 2472-2478.	11.1	646
81	Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nature Communications, 2015, 6, 8376.	5.8	644
82	WO _{3–x} @Au@MnO ₂ Core–Shell Nanowires on Carbon Fabric for Highâ€Performance Flexible Supercapacitors. Advanced Materials, 2012, 24, 938-944.	11.1	641
83	High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array. Nature Photonics, 2013, 7, 752-758.	15.6	641
84	Pyroelectric Nanogenerators for Harvesting Thermoelectric Energy. Nano Letters, 2012, 12, 2833-2838.	4.5	639
85	Sliding-Triboelectric Nanogenerators Based on In-Plane Charge-Separation Mechanism. Nano Letters, 2013, 13, 2226-2233.	4.5	633
86	Harvesting Low-Frequency (<5 Hz) Irregular Mechanical Energy: A Possible Killer Application of Triboelectric Nanogenerator. ACS Nano, 2016, 10, 4797-4805.	7.3	606
87	Flexible Nanocomposite Generator Made of BaTiO ₃ Nanoparticles and Graphitic Carbons. Advanced Materials, 2012, 24, 2999-3004.	11.1	601
88	Selfâ€₽owered Nanosensors and Nanosystems. Advanced Materials, 2012, 24, 280-285.	11.1	597
89	Fiber-Based All-Solid-State Flexible Supercapacitors for Self-Powered Systems. ACS Nano, 2012, 6, 9200-9206.	7.3	596
90	A General Approach to Binary and Ternary Hybrid Nanocrystals. Nano Letters, 2006, 6, 875-881.	4.5	593

#	Article	IF	CITATIONS
91	Harvesting Water Drop Energy by a Sequential Contactâ€Electrification and Electrostaticâ€Induction Process. Advanced Materials, 2014, 26, 4690-4696.	11.1	592
92	A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Science Advances, 2020, 6, eaba9624.	4.7	589
93	Nanobelts, Nanowires, and Nanodiskettes of Semiconducting Oxides—From Materials to Nanodevices. Advanced Materials, 2003, 15, 432-436.	11.1	587
94	Theory of Slidingâ€Mode Triboelectric Nanogenerators. Advanced Materials, 2013, 25, 6184-6193.	11.1	581
95	Triboelectric nanogenerators as a new energy technology: From fundamentals, devices, to applications. Nano Energy, 2015, 14, 126-138.	8.2	574
96	A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Science Robotics, 2018, 3, .	9.9	573
97	Converting Ceria Polyhedral Nanoparticles into Single-Crystal Nanospheres. Science, 2006, 312, 1504-1508.	6.0	570
98	Progress in Piezotronics and Piezoâ€₱hototronics. Advanced Materials, 2012, 24, 4632-4646.	11.1	570
99	Largeâ€Area Allâ€Textile Pressure Sensors for Monitoring Human Motion and Physiological Signals. Advanced Materials, 2017, 29, 1703700.	11.1	558
100	Electrostatic Potential in a Bent Piezoelectric Nanowire. The Fundamental Theory of Nanogenerator and Nanopiezotronics. Nano Letters, 2007, 7, 2499-2505.	4.5	555
101	A Hybrid Piezoelectric Structure for Wearable Nanogenerators. Advanced Materials, 2012, 24, 1759-1764.	11.1	555
102	Monopod, Bipod, Tripod, and Tetrapod Gold Nanocrystals. Journal of the American Chemical Society, 2003, 125, 16186-16187.	6.6	547
103	Lithiated MoO ₃ Nanobelts with Greatly Improved Performance for Lithium Batteries. Advanced Materials, 2007, 19, 3712-3716.	11.1	545
104	Fiber-Based Generator for Wearable Electronics and Mobile Medication. ACS Nano, 2014, 8, 6273-6280.	7.3	543
105	Integrated Multilayered Triboelectric Nanogenerator for Harvesting Biomechanical Energy from Human Motions. ACS Nano, 2013, 7, 3713-3719.	7.3	538
106	Semiconducting and Piezoelectric Oxide Nanostructures Induced by Polar Surfaces. Advanced Functional Materials, 2004, 14, 943-956.	7.8	537
107	Nanopiezotronics. Advanced Materials, 2007, 19, 889-892.	11.1	536
108	Triboelectric Active Sensor Array for Self-Powered Static and Dynamic Pressure Detection and Tactile Imaging. ACS Nano, 2013, 7, 8266-8274.	7.3	529

#	Article	IF	CITATIONS
109	A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nature Communications, 2015, 6, 8975.	5.8	526
110	Triboelectric Nanogenerator for Harvesting Wind Energy and as Self-Powered Wind Vector Sensor System. ACS Nano, 2013, 7, 9461-9468.	7.3	524
111	Catch wave power in floating nets. Nature, 2017, 542, 159-160.	13.7	524
112	Single-Electrode-Based Sliding Triboelectric Nanogenerator for Self-Powered Displacement Vector Sensor System. ACS Nano, 2013, 7, 7342-7351.	7.3	523
113	Tin Oxide Nanowires, Nanoribbons, and Nanotubes. Journal of Physical Chemistry B, 2002, 106, 1274-1279.	1.2	517
114	Maximum Surface Charge Density for Triboelectric Nanogenerators Achieved by Ionizedâ€Air Injection: Methodology and Theoretical Understanding. Advanced Materials, 2014, 26, 6720-6728.	11.1	517
115	Enhanced photocatalytic degradation and H2/H2O2 production performance of S-pCN/WO2.72 S-scheme heterojunction with appropriate surface oxygen vacancies. Nano Energy, 2021, 81, 105671.	8.2	517
116	Bimagnetic Core/Shell FePt/Fe3O4Nanoparticles. Nano Letters, 2004, 4, 187-190.	4.5	515
117	Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization. Applied Physics Letters, 2009, 94, 191103.	1.5	515
118	Theoretical Investigation and Structural Optimization of Singleâ€Electrode Triboelectric Nanogenerators. Advanced Functional Materials, 2014, 24, 3332-3340.	7.8	513
119	Networks of Triboelectric Nanogenerators for Harvesting Water Wave Energy: A Potential Approach toward Blue Energy. ACS Nano, 2015, 9, 3324-3331.	7.3	509
120	Controlled Growth of Large-Area, Uniform, Vertically Aligned Arrays of α-Fe2O3Nanobelts and Nanowires. Journal of Physical Chemistry B, 2005, 109, 215-220.	1.2	506
121	Hierarchical Network Architectures of Carbon Fiber Paper Supported Cobalt Oxide Nanonet for High-Capacity Pseudocapacitors. Nano Letters, 2012, 12, 321-325.	4.5	500
122	High‣train Sensors Based on ZnO Nanowire/Polystyrene Hybridized Flexible Films. Advanced Materials, 2011, 23, 5440-5444.	11.1	497
123	Achieving ultrahigh triboelectric charge density for efficient energy harvesting. Nature Communications, 2017, 8, 88.	5.8	495
124	Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator. Science Advances, 2017, 3, e1700694.	4.7	491
125	Splendid One-Dimensional Nanostructures of Zinc Oxide: A New Nanomaterial Family for Nanotechnology. ACS Nano, 2008, 2, 1987-1992.	7.3	487
126	Eardrumâ€Inspired Active Sensors for Selfâ€Powered Cardiovascular System Characterization and Throatâ€Attached Antiâ€Interference Voice Recognition. Advanced Materials, 2015, 27, 1316-1326.	11.1	487

#	Article	IF	CITATIONS
127	Sustainably powering wearable electronics solely by biomechanical energy. Nature Communications, 2016, 7, 12744.	5.8	483
128	On the Electronâ€Transfer Mechanism in the Contactâ€Electrification Effect. Advanced Materials, 2018, 30, e1706790.	11.1	483
129	Theoretical Comparison, Equivalent Transformation, and Conjunction Operations of Electromagnetic Induction Generator and Triboelectric Nanogenerator for Harvesting Mechanical Energy. Advanced Materials, 2014, 26, 3580-3591.	11.1	482
130	Self-Assembly of Gold Nanorods. Journal of Physical Chemistry B, 2000, 104, 8635-8640.	1.2	480
131	In Vivo Powering of Pacemaker by Breathingâ€Driven Implanted Triboelectric Nanogenerator. Advanced Materials, 2014, 26, 5851-5856.	11.1	476
132	Controlled Replication of Butterfly Wings for Achieving Tunable Photonic Properties. Nano Letters, 2006, 6, 2325-2331.	4.5	475
133	A durable and safe solid-state lithium battery with a hybrid electrolyte membrane. Nano Energy, 2018, 45, 413-419.	8.2	475
134	Polyhedral Shapes of CeO2Nanoparticles. Journal of Physical Chemistry B, 2003, 107, 13563-13566.	1.2	472
135	Harvesting Water Wave Energy by Asymmetric Screening of Electrostatic Charges on a Nanostructured Hydrophobic Thin-Film Surface. ACS Nano, 2014, 8, 6031-6037.	7.3	471
136	Dynamic Pressure Mapping of Personalized Handwriting by a Flexible Sensor Matrix Based on the Mechanoluminescence Process. Advanced Materials, 2015, 27, 2324-2331.	11.1	468
137	Dual-mode mechanical resonance of individual ZnO nanobelts. Applied Physics Letters, 2003, 82, 4806-4808.	1.5	467
138	Enhancing Sensitivity of a Single ZnO Micro-/Nanowire Photodetector by Piezo-phototronic Effect. ACS Nano, 2010, 4, 6285-6291.	7.3	466
139	Biodegradable triboelectric nanogenerator as a life-time designed implantable power source. Science Advances, 2016, 2, e1501478.	4.7	461
140	Fundamental Theory of Piezotronics. Advanced Materials, 2011, 23, 3004-3013.	11.1	459
141	Stacking Faults in Formation of Silver Nanodisks. Journal of Physical Chemistry B, 2003, 107, 8717-8720.	1.2	456
142	Single-Crystal Hexagonal Disks and Rings of ZnO: Low-Temperature, Large-Scale Synthesis and Growth Mechanism. Angewandte Chemie - International Edition, 2004, 43, 5238-5242.	7.2	455
143	Kinetically Controlled Growth and Shape Formation Mechanism of Platinum Nanoparticles. Journal of Physical Chemistry B, 1998, 102, 3316-3320.	1.2	453
144	Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nature Communications, 2010, 1, 93.	5.8	449

#	Article	IF	CITATIONS
145	Harvesting Energy from the Natural Vibration of Human Walking. ACS Nano, 2013, 7, 11317-11324.	7.3	448
146	Structural Analysis of Self-Assembling Nanocrystal Superlattices. Advanced Materials, 1998, 10, 13-30.	11.1	447
147	FUNCTIONAL OXIDE NANOBELTS: Materials, Properties and Potential Applications in Nanosystems and Biotechnology. Annual Review of Physical Chemistry, 2004, 55, 159-196.	4.8	445
148	Linear-Grating Triboelectric Generator Based on Sliding Electrification. Nano Letters, 2013, 13, 2282-2289.	4.5	442
149	Converting Biomechanical Energy into Electricity by a Muscle-Movement-Driven Nanogenerator. Nano Letters, 2009, 9, 1201-1205.	4.5	441
150	Gratingâ€Structured Freestanding Triboelectric‣ayer Nanogenerator for Harvesting Mechanical Energy at 85% Total Conversion Efficiency. Advanced Materials, 2014, 26, 6599-6607.	11.1	440
151	Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics. Nature Reviews Materials, 2016, 1, .	23.3	438
152	Segmentally Structured Disk Triboelectric Nanogenerator for Harvesting Rotational Mechanical Energy. Nano Letters, 2013, 13, 2916-2923.	4.5	437
153	Single-Crystal Dendritic Micro-Pines of Magnetic α-Fe2O3: Large-Scale Synthesis, Formation Mechanism, and Properties. Angewandte Chemie - International Edition, 2005, 44, 4197-4201.	7.2	433
154	On the first principle theory of nanogenerators from Maxwell's equations. Nano Energy, 2020, 68, 104272.	8.2	431
155	Triboelectric Nanogenerator (TENG)—Sparking an Energy and Sensor Revolution. Advanced Energy Materials, 2020, 10, 2000137.	10.2	430
156	Symbiotic cardiac pacemaker. Nature Communications, 2019, 10, 1821.	5.8	429
157	Enhanced Ferroelectric-Nanocrystal-Based Hybrid Photocatalysis by Ultrasonic-Wave-Generated Piezophototronic Effect. Nano Letters, 2015, 15, 2372-2379.	4.5	428
158	Lead-Free NaNbO ₃ Nanowires for a High Output Piezoelectric Nanogenerator. ACS Nano, 2011, 5, 10041-10046.	7.3	427
159	Liquidâ€Metal Electrode for Highâ€Performance Triboelectric Nanogenerator at an Instantaneous Energy Conversion Efficiency of 70.6%. Advanced Functional Materials, 2015, 25, 3718-3725.	7.8	427
160	Fabrication of a Highâ€Brightness Blueâ€Lightâ€Emitting Diode Using a ZnOâ€Nanowire Array Grown on pâ€GaN Thin Film. Advanced Materials, 2009, 21, 2767-2770.	11.1	425
161	Ultrathin, Rollable, Paper-Based Triboelectric Nanogenerator for Acoustic Energy Harvesting and Self-Powered Sound Recording. ACS Nano, 2015, 9, 4236-4243.	7.3	419
162	A Highly Stretchable and Washable All-Yarn-Based Self-Charging Knitting Power Textile Composed of Fiber Triboelectric Nanogenerators and Supercapacitors. ACS Nano, 2017, 11, 9490-9499.	7.3	419

#	Article	IF	CITATIONS
163	Progress in nanogenerators for portable electronics. Materials Today, 2012, 15, 532-543.	8.3	417
164	A Shapeâ€Adaptive Thinâ€Filmâ€Based Approach for 50% Highâ€Efficiency Energy Generation Through Microâ€Grating Sliding Electrification. Advanced Materials, 2014, 26, 3788-3796.	11.1	415
165	A bionic stretchable nanogenerator for underwater sensing and energy harvesting. Nature Communications, 2019, 10, 2695.	5.8	413
166	Theory of freestanding triboelectric-layer-based nanogenerators. Nano Energy, 2015, 12, 760-774.	8.2	409
167	Effective energy storage from a triboelectric nanogenerator. Nature Communications, 2016, 7, 10987.	5.8	407
168	Self-Powered, Ultrasensitive, Flexible Tactile Sensors Based on Contact Electrification. Nano Letters, 2014, 14, 3208-3213.	4.5	405
169	Recent Progress on Piezoelectric and Triboelectric Energy Harvesters in Biomedical Systems. Advanced Science, 2017, 4, 1700029.	5.6	405
170	WO _{3â^'<i>x</i>} /MoO _{3â^'<i>x</i>} Core/Shell Nanowires on Carbon Fabric as an Anode for Allâ€5olidâ€5tate Asymmetric Supercapacitors. Advanced Energy Materials, 2012, 2, 1328-1332.	10.2	401
171	Triboelectric Nanogenerator Enabled Body Sensor Network for Self-Powered Human Heart-Rate Monitoring. ACS Nano, 2017, 11, 8830-8837.	7.3	400
172	Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks. Applied Physics Letters, 2006, 88, 203101.	1.5	399
173	Triboelectric–Pyroelectric–Piezoelectric Hybrid Cell for Highâ€Efficiency Energyâ€Harvesting and Selfâ€Powered Sensing. Advanced Materials, 2015, 27, 2340-2347.	11.1	397
174	A Stretchable Yarn Embedded Triboelectric Nanogenerator as Electronic Skin for Biomechanical Energy Harvesting and Multifunctional Pressure Sensing. Advanced Materials, 2018, 30, e1804944.	11.1	396
175	Surface analysis using shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature Protocols, 2013, 8, 52-65.	5.5	395
176	Triboelectric Nanogenerators Driven Selfâ€Powered Electrochemical Processes for Energy and Environmental Science. Advanced Energy Materials, 2016, 6, 1600665.	10.2	394
177	Nanobelts, Nanocombs, and Nanowindmills of Wurtzite ZnS. Advanced Materials, 2003, 15, 228-231.	11.1	393
178	Nanowire Piezoelectric Nanogenerators on Plastic Substrates as Flexible Power Sources for Nanodevices. Advanced Materials, 2007, 19, 67-72.	11.1	393
179	Piezoelectric Nanogenerator Using p-Type ZnO Nanowire Arrays. Nano Letters, 2009, 9, 1223-1227.	4.5	390
180	Triboelectrification-Based Organic Film Nanogenerator for Acoustic Energy Harvesting and Self-Powered Active Acoustic Sensing. ACS Nano, 2014, 8, 2649-2657.	7.3	390

#	Article	IF	CITATIONS
181	Muscleâ€Driven In Vivo Nanogenerator. Advanced Materials, 2010, 22, 2534-2537.	11.1	388
182	Screen-Printed Washable Electronic Textiles as Self-Powered Touch/Gesture Tribo-Sensors for Intelligent Human–Machine Interaction. ACS Nano, 2018, 12, 5190-5196.	7.3	386
183	Self-Powered System with Wireless Data Transmission. Nano Letters, 2011, 11, 2572-2577.	4.5	385
184	Piezoelectric and Semiconducting Coupled Power Generating Process of a Single ZnO Belt/Wire. A Technology for Harvesting Electricity from the Environment. Nano Letters, 2006, 6, 1656-1662.	4.5	384
185	Water–Solid Surface Contact Electrification and its Use for Harvesting Liquidâ€Wave Energy. Angewandte Chemie - International Edition, 2013, 52, 12545-12549.	7.2	384
186	Hybrid Nanogenerator for Concurrently Harvesting Biomechanical and Biochemical Energy. ACS Nano, 2010, 4, 3647-3652.	7.3	383
187	Triboelectric Nanogenerator for Harvesting Vibration Energy in Full Space and as Selfâ€Powered Acceleration Sensor. Advanced Functional Materials, 2014, 24, 1401-1407.	7.8	381
188	Integrated charge excitation triboelectric nanogenerator. Nature Communications, 2019, 10, 1426.	5.8	375
189	Crystallographic Orientation-Aligned ZnO Nanorods Grown by a Tin Catalyst. Nano Letters, 2003, 3, 1315-1320.	4.5	373
190	Triboelectric Nanogenerator Based on Fully Enclosed Rolling Spherical Structure for Harvesting Lowâ€Frequency Water Wave Energy. Advanced Energy Materials, 2015, 5, 1501467.	10.2	373
191	Mesoporous Polyhedral Cages and Shells Formed by Textured Self-Assembly of ZnO Nanocrystals. Journal of the American Chemical Society, 2003, 125, 11299-11305.	6.6	367
192	Paperâ€Based Supercapacitors for Selfâ€Powered Nanosystems. Angewandte Chemie - International Edition, 2012, 51, 4934-4938.	7.2	364
193	Piezo-potential enhanced photocatalytic degradation of organic dye using ZnO nanowires. Nano Energy, 2015, 13, 414-422.	8.2	361
194	Selfâ€Powered Pulse Sensor for Antidiastole of Cardiovascular Disease. Advanced Materials, 2017, 29, 1703456.	11.1	360
195	Piezoelectric Gated Diode of a Single ZnO Nanowire. Advanced Materials, 2007, 19, 781-784.	11.1	359
196	Molten Gallium as a Catalyst for the Large-Scale Growth of Highly Aligned Silica Nanowires. Journal of the American Chemical Society, 2002, 124, 1817-1822.	6.6	351
197	Rectangular Bunched Rutile TiO ₂ Nanorod Arrays Grown on Carbon Fiber for Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2012, 134, 4437-4441.	6.6	349
198	Large-Area Nanowire Arrays of Molybdenum and Molybdenum Oxides: Synthesis and Field Emission Properties. Advanced Materials, 2003, 15, 1835-1840.	11.1	347

#	Article	IF	CITATIONS
199	Selfâ€Powered Highâ€Resolution and Pressureâ€Sensitive Triboelectric Sensor Matrix for Realâ€Time Tactile Mapping. Advanced Materials, 2016, 28, 2896-2903.	11.1	344
200	Electron dynamics in gold and gold–silver alloy nanoparticles: The influence of a nonequilibrium electron distribution and the size dependence of the electron–phonon relaxation. Journal of Chemical Physics, 1999, 111, 1255-1264.	1.2	342
201	ZnO Nanobelt/Nanowire Schottky Diodes Formed by Dielectrophoresis Alignment across Au Electrodes. Nano Letters, 2006, 6, 263-266.	4.5	342
202	<i>In Vivo</i> Self-Powered Wireless Cardiac Monitoring <i>via</i> Implantable Triboelectric Nanogenerator. ACS Nano, 2016, 10, 6510-6518.	7.3	342
203	Porous PVDF As Effective Sonic Wave Driven Nanogenerators. Nano Letters, 2011, 11, 5142-5147.	4.5	339
204	Lead Zirconate Titanate Nanowire Textile Nanogenerator for Wearable Energy-Harvesting and Self-Powered Devices. ACS Nano, 2012, 6, 6231-6235.	7.3	339
205	A Selfâ€Powered and Flexible Organometallic Halide Perovskite Photodetector with Very High Detectivity. Advanced Materials, 2018, 30, 1704611.	11.1	339
206	Flutter-driven triboelectrification for harvesting wind energy. Nature Communications, 2014, 5, 4929.	5.8	338
207	Triboelectric nanogenerator built inside shoe insole for harvesting walking energy. Nano Energy, 2013, 2, 856-862.	8.2	337
208	Single-Crystalline Scroll-Type Nanotube Arrays of Copper Hydroxide Synthesized at Room Temperature. Advanced Materials, 2003, 15, 822-825.	11.1	336
209	Boosted output performance of triboelectric nanogenerator via electric double layer effect. Nature Communications, 2016, 7, 12985.	5.8	336
210	Entropy theory of distributed energy for internet of things. Nano Energy, 2019, 58, 669-672.	8.2	335
211	Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics. Nature Communications, 2019, 10, 5147.	5.8	335
212	Lawn Structured Triboelectric Nanogenerators for Scavenging Sweeping Wind Energy on Rooftops. Advanced Materials, 2016, 28, 1650-1656.	11.1	334
213	MXene electrochemical microsupercapacitor integrated with triboelectric nanogenerator as a wearable self-charging power unit. Nano Energy, 2018, 45, 266-272.	8.2	333
214	Advances in Piezoâ€Phototronic Effect Enhanced Photocatalysis and Photoelectrocatalysis. Advanced Energy Materials, 2020, 10, 2000214.	10.2	333
215	Equilibrium Potential of Free Charge Carriers in a Bent Piezoelectric Semiconductive Nanowire. Nano Letters, 2009, 9, 1103-1110.	4.5	332
216	Recent progress in piezoelectric nanogenerators as a sustainable power source in self-powered systems and active sensors. Nano Energy, 2015, 14, 3-14.	8.2	330

#	Article	IF	CITATIONS
217	Rotary Triboelectric Nanogenerator Based on a Hybridized Mechanism for Harvesting Wind Energy. ACS Nano, 2013, 7, 7119-7125.	7.3	328
218	Self-Assembled Nanowireâ ``Nanoribbon Junction Arrays of ZnO. Journal of Physical Chemistry B, 2002, 106, 12653-12658.	1.2	327
219	Singleâ€Threadâ€Based Wearable and Highly Stretchable Triboelectric Nanogenerators and Their Applications in Clothâ€Based Selfâ€Powered Humanâ€Interactive and Biomedical Sensing. Advanced Functional Materials, 2017, 27, 1604462.	7.8	327
220	Enhancing Light Emission of ZnO Microwire-Based Diodes by Piezo-Phototronic Effect. Nano Letters, 2011, 11, 4012-4017.	4.5	326
221	Growth and Structure Evolution of Novel Tin Oxide Diskettes. Journal of the American Chemical Society, 2002, 124, 8673-8680.	6.6	325
222	Three-Dimensional Tungsten Oxide Nanowire Networks. Advanced Materials, 2005, 17, 2107-2110.	11.1	325
223	3D N-doped ordered mesoporous carbon supported single-atom Fe-N-C catalysts with superior performance for oxygen reduction reaction and zinc-air battery. Applied Catalysis B: Environmental, 2021, 280, 119411.	10.8	324
224	BaTiO ₃ Nanotubes-Based Flexible and Transparent Nanogenerators. Journal of Physical Chemistry Letters, 2012, 3, 3599-3604.	2.1	323
225	A Selfâ€Powered Triboelectric Nanosensor for Mercury Ion Detection. Angewandte Chemie - International Edition, 2013, 52, 5065-5069.	7.2	323
226	A Flexible Fiberâ€Based Supercapacitor–Triboelectricâ€Nanogenerator Power System for Wearable Electronics. Advanced Materials, 2015, 27, 4830-4836.	11.1	322
227	3D Orthogonal Woven Triboelectric Nanogenerator for Effective Biomechanical Energy Harvesting and as Selfâ€Powered Active Motion Sensors. Advanced Materials, 2017, 29, 1702648.	11.1	321
228	Stretchableâ€Rubberâ€Based Triboelectric Nanogenerator and Its Application as Selfâ€Powered Body Motion Sensors. Advanced Functional Materials, 2015, 25, 3688-3696.	7.8	320
229	Probing Contactâ€Electrificationâ€Induced Electron and Ion Transfers at a Liquid–Solid Interface. Advanced Materials, 2020, 32, e1905696.	11.1	320
230	Fully Bioabsorbable Naturalâ€Materialsâ€Based Triboelectric Nanogenerators. Advanced Materials, 2018, 30, e1801895.	11.1	319
231	Woven Structured Triboelectric Nanogenerator for Wearable Devices. ACS Applied Materials & Interfaces, 2014, 6, 14695-14701.	4.0	317
232	Mesoporous pores impregnated with Au nanoparticles as effective dielectrics for enhancing triboelectric nanogenerator performance in harsh environments. Energy and Environmental Science, 2015, 8, 3006-3012.	15.6	315
233	An Integrated Power Pack of Dye-Sensitized Solar Cell and Li Battery Based on Double-Sided TiO ₂ Nanotube Arrays. Nano Letters, 2012, 12, 2520-2523.	4.5	312
234	Universal power management strategy for triboelectric nanogenerator. Nano Energy, 2017, 37, 168-176.	8.2	312

#	Article	IF	CITATIONS
235	Supersensitive, Fastâ€Response Nanowire Sensors by Using Schottky Contacts. Advanced Materials, 2010, 22, 3327-3332.	11.1	311
236	Topographically-Designed Triboelectric Nanogenerator via Block Copolymer Self-Assembly. Nano Letters, 2014, 14, 7031-7038.	4.5	310
237	Highly Stretchable 2D Fabrics for Wearable Triboelectric Nanogenerator under Harsh Environments. ACS Nano, 2015, 9, 6394-6400.	7.3	310
238	Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring. Science Advances, 2020, 6, eaay2840.	4.7	309
239	Quantifying electron-transfer in liquid-solid contact electrification and the formation of electric double-layer. Nature Communications, 2020, 11, 399.	5.8	308
240	Size-Dependent Chemical and Magnetic Ordering inL10-FePt Nanoparticles. Advanced Materials, 2006, 18, 2984-2988.	11.1	307
241	Dynamic Behavior of the Triboelectric Charges and Structural Optimization of the Friction Layer for a Triboelectric Nanogenerator. ACS Nano, 2016, 10, 6131-6138.	7.3	306
242	Giant Enhancement in UV Response of ZnO Nanobelts by Polymer Surface-Functionalization. Journal of the American Chemical Society, 2007, 129, 12096-12097.	6.6	305
243	Lowâ€Temperature In Situ Large‣train Plasticity of Silicon Nanowires. Advanced Materials, 2007, 19, 2112-2118.	11.1	305
244	Preparation of Monodispersed Feâ^'Mo Nanoparticles as the Catalyst for CVD Synthesis of Carbon Nanotubes. Chemistry of Materials, 2001, 13, 1008-1014.	3.2	303
245	Scavenging Wind Energy by Triboelectric Nanogenerators. Advanced Energy Materials, 2018, 8, 1702649.	10.2	302
246	Manganese-doped ZnO nanobelts for spintronics. Applied Physics Letters, 2004, 84, 783-785.	1.5	301
247	A Singleâ€Electrode Based Triboelectric Nanogenerator as Selfâ€Powered Tracking System. Advanced Materials, 2013, 25, 6594-6601.	11.1	299
248	Coupled Triboelectric Nanogenerator Networks for Efficient Water Wave Energy Harvesting. ACS Nano, 2018, 12, 1849-1858.	7.3	299
249	Self-Powered Nanotech. Scientific American, 2008, 298, 82-87.	1.0	298
250	Flexible Weaving Constructed Selfâ€Powered Pressure Sensor Enabling Continuous Diagnosis of Cardiovascular Disease and Measurement of Cuffless Blood Pressure. Advanced Functional Materials, 2019, 29, 1806388.	7.8	297
251	Nanopropeller arrays of zinc oxide. Applied Physics Letters, 2004, 84, 2883-2885.	1.5	296
252	A Highly Stretchable Fiberâ€Based Triboelectric Nanogenerator for Selfâ€Powered Wearable Electronics. Advanced Functional Materials, 2017, 27, 1604378.	7.8	296

#	Article	IF	CITATIONS
253	Wearable and Implantable Triboelectric Nanogenerators. Advanced Functional Materials, 2019, 29, 1808820.	7.8	296
254	Large-Scale Synthesis of Six-Nanometer-Wide ZnO Nanobelts. Journal of Physical Chemistry B, 2004, 108, 8773-8777.	1.2	295
255	Morphology-tuned wurtzite-type ZnS nanobelts. Nature Materials, 2005, 4, 922-927.	13.3	295
256	Triboelectric nanogenerators as flexible power sources. Npj Flexible Electronics, 2017, 1, .	5.1	295
257	Shape Transformation and Surface Melting of Cubic and Tetrahedral Platinum Nanocrystals. Journal of Physical Chemistry B, 1998, 102, 6145-6151.	1.2	293
258	Self-Powered Acceleration Sensor Based on Liquid Metal Triboelectric Nanogenerator for Vibration Monitoring. ACS Nano, 2017, 11, 7440-7446.	7.3	293
259	The new field of nanopiezotronics. Materials Today, 2007, 10, 20-28.	8.3	292
260	Power-generating shoe insole based on triboelectric nanogenerators for self-powered consumer electronics. Nano Energy, 2013, 2, 688-692.	8.2	292
261	Crystallographic facets and shapes of gold nanorods of different aspect ratios. Surface Science, 1999, 440, L809-L814.	0.8	291
262	How Does a Gold Nanorod Melt?#. Journal of Physical Chemistry B, 2000, 104, 7867-7870.	1.2	291
263	Beaklike SnO2 Nanorods with Strong Photoluminescent and Field-Emission Properties. Small, 2006, 2, 116-120.	5.2	291
264	Self-Powered, One-Stop, and Multifunctional Implantable Triboelectric Active Sensor for Real-Time Biomedical Monitoring. Nano Letters, 2016, 16, 6042-6051.	4.5	291
265	All-in-One Shape-Adaptive Self-Charging Power Package for Wearable Electronics. ACS Nano, 2016, 10, 10580-10588.	7.3	290
266	Thermosensitive crystallization–boosted liquid thermocells for low-grade heat harvesting. Science, 2020, 370, 342-346.	6.0	289
267	Cellular Level Biocompatibility and Biosafety of ZnO Nanowires. Journal of Physical Chemistry C, 2008, 112, 20114-20117.	1.5	288
268	Functional Electrical Stimulation by Nanogenerator with 58 V Output Voltage. Nano Letters, 2012, 12, 3086-3090.	4.5	288
269	Quantifying and understanding the triboelectric series of inorganic non-metallic materials. Nature Communications, 2020, 11, 2093.	5.8	287
270	An Ultra-Low-Friction Triboelectric–Electromagnetic Hybrid Nanogenerator for Rotation Energy Harvesting and Self-Powered Wind Speed Sensor. ACS Nano, 2018, 12, 9433-9440.	7.3	286

#	Article	IF	CITATIONS
271	Phase Transformation, Coalescence, and Twinning of Monodisperse FePt Nanocrystals. Nano Letters, 2001, 1, 443-447.	4.5	285
272	Energy Harvesting from the Animal/Human Body for Self-Powered Electronics. Annual Review of Biomedical Engineering, 2017, 19, 85-108.	5.7	285
273	Transparent and stretchable triboelectric nanogenerator for self-powered tactile sensing. Nano Energy, 2019, 59, 302-310.	8.2	285
274	Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e-textiles for power and sensing. Nature Communications, 2020, 11, 2868.	5.8	285
275	Polar-surface dominated ZnO nanobelts and the electrostatic energy induced nanohelixes, nanosprings, and nanospirals. Applied Physics Letters, 2004, 84, 975-977.	1.5	284
276	Direct Heteroepitaxy of Vertical InAs Nanowires on Si Substrates for Broad Band Photovoltaics and Photodetection. Nano Letters, 2009, 9, 2926-2934.	4.5	284
277	GaN Nanowire Arrays for High-Output Nanogenerators. Journal of the American Chemical Society, 2010, 132, 4766-4771.	6.6	284
278	Elastic Property of Vertically Aligned Nanowires. Nano Letters, 2005, 5, 1954-1958.	4.5	280
279	Broadband Vibrational Energy Harvesting Based on a Triboelectric Nanogenerator. Advanced Energy Materials, 2014, 4, 1301322.	10.2	280
280	A MXeneâ€Based Wearable Biosensor System for Highâ€Performance In Vitro Perspiration Analysis. Small, 2019, 15, e1901190.	5.2	280
281	Piezoelectric-Potential-Controlled Polarity-Reversible Schottky Diodes and Switches of ZnO Wires. Nano Letters, 2008, 8, 3973-3977.	4.5	279
282	The Triboelectric Nanogenerator as an Innovative Technology toward Intelligent Sports. Advanced Materials, 2021, 33, e2004178.	11.1	279
283	Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure. Nano Energy, 2019, 57, 432-439.	8.2	278
284	La(OH)3 and La2O3 Nanobelts—Synthesis and Physical Properties. Advanced Materials, 2007, 19, 470-474.	11.1	277
285	Rotating-Disk-Based Hybridized Electromagnetic–Triboelectric Nanogenerator for Sustainably Powering Wireless Traffic Volume Sensors. ACS Nano, 2016, 10, 6241-6247.	7.3	277
286	Enhanced Triboelectric Nanogenerators and Triboelectric Nanosensor Using Chemically Modified TiO ₂ Nanomaterials. ACS Nano, 2013, 7, 4554-4560.	7.3	276
287	A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring. Science Advances, 2016, 2, e1501624.	4.7	274
288	Toward Wearable Selfâ€Charging Power Systems: The Integration of Energyâ€Harvesting and Storage Devices. Small, 2018, 14, 1702817.	5.2	274

#	Article	IF	CITATIONS
289	Electric Eelâ€&kinâ€Inspired Mechanically Durable and Superâ€Stretchable Nanogenerator for Deformable Power Source and Fully Autonomous Conformable Electronicâ€&kin Applications. Advanced Materials, 2016, 28, 10024-10032.	11.1	273
290	Multifunctional TENG for Blue Energy Scavenging and Selfâ€Powered Windâ€6peed Sensor. Advanced Energy Materials, 2017, 7, 1602397.	10.2	273
291	Patterned Growth of Vertically Aligned ZnO Nanowire Arrays on Inorganic Substrates at Low Temperature without Catalyst. Journal of the American Chemical Society, 2008, 130, 14958-14959.	6.6	270
292	A New Catalytically Active Colloidal Platinum Nanocatalyst:  The Multiarmed Nanostar Single Crystal. Journal of the American Chemical Society, 2008, 130, 4590-4591.	6.6	269
293	Hybrid triboelectric nanogenerator for harvesting water wave energy and as a self-powered distress signal emitter. Nano Energy, 2014, 9, 186-195.	8.2	268
294	Freestanding Flag-Type Triboelectric Nanogenerator for Harvesting High-Altitude Wind Energy from Arbitrary Directions. ACS Nano, 2016, 10, 1780-1787.	7.3	268
295	Temperature Dependence of Cation Distribution and Oxidation State in Magnetic Mnâ ^{°°} Fe Ferrite Nanocrystals. Journal of the American Chemical Society, 1998, 120, 1800-1804.	6.6	266
296	Size effects on elasticity, yielding, and fracture of silver nanowires: <i>In situ</i> experiments. Physical Review B, 2012, 85, .	1.1	266
297	Wearable Powerâ€Textiles by Integrating Fabric Triboelectric Nanogenerators and Fiberâ€Shaped Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2016, 6, 1601048.	10.2	266
298	Biotemplated Hierarchical Nanostructure of Layered Double Hydroxides with Improved Photocatalysis Performance. ACS Nano, 2009, 3, 4009-4016.	7.3	265
299	Vitrimer Elastomerâ€Based Jigsaw Puzzleâ€Like Healable Triboelectric Nanogenerator for Selfâ€Powered Wearable Electronics. Advanced Materials, 2018, 30, e1705918.	11.1	265
300	Finger typing driven triboelectric nanogenerator and its use for instantaneously lighting up LEDs. Nano Energy, 2013, 2, 491-497.	8.2	264
301	3D Stack Integrated Triboelectric Nanogenerator for Harvesting Vibration Energy. Advanced Functional Materials, 2014, 24, 4090-4096.	7.8	263
302	Formation of Piezoelectric Single-Crystal Nanorings and Nanobows. Journal of the American Chemical Society, 2004, 126, 6703-6709.	6.6	262
303	Nanowire and nanobelt arrays of zinc oxide from synthesis to properties and to novel devices. Journal of Materials Chemistry, 2007, 17, 711.	6.7	261
304	Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing. Nature Communications, 2015, 6, 8401.	5.8	261
305	Ultrahigh charge density realized by charge pumping at ambient conditions for triboelectric nanogenerators. Nano Energy, 2018, 49, 625-633.	8.2	261
306	Gallium Oxide Nanoribbons and Nanosheets. Journal of Physical Chemistry B, 2002, 106, 902-904.	1.2	260

#	Article	IF	CITATIONS
307	A Flexible Multifunctional Triboelectric Nanogenerator Based on MXene/PVA Hydrogel. Advanced Functional Materials, 2021, 31, 2104928.	7.8	259
308	3D Fiber-Based Hybrid Nanogenerator for Energy Harvesting and as a Self-Powered Pressure Sensor. ACS Nano, 2014, 8, 10674-10681.	7.3	258
309	Piezotronic Effect Enhanced Photocatalysis in Strained Anisotropic ZnO/TiO ₂ Nanoplatelets <i>via</i> Thermal Stress. ACS Nano, 2016, 10, 2636-2643.	7.3	258
310	Measuring the Work Function at a Nanobelt Tip and at a Nanoparticle Surface. Nano Letters, 2003, 3, 1147-1150.	4.5	257
311	Molecular surface functionalization to enhance the power output of triboelectric nanogenerators. Journal of Materials Chemistry A, 2016, 4, 3728-3734.	5.2	257
312	ZnOâ^'ZnS Heterojunction and ZnS Nanowire Arrays for Electricity Generation. ACS Nano, 2009, 3, 357-362.	7.3	256
313	Singleâ€Fiberâ€Based Hybridization of Energy Converters and Storage Units Using Graphene as Electrodes. Advanced Materials, 2011, 23, 3446-3449.	11.1	256
314	Replacing a Battery by a Nanogenerator with 20 V Output. Advanced Materials, 2012, 24, 110-114.	11.1	256
315	Self-Healable, Stretchable, Transparent Triboelectric Nanogenerators as Soft Power Sources. ACS Nano, 2018, 12, 6147-6155.	7.3	256
316	Novel nanostructures of ZnO for nanoscale photonics, optoelectronics, piezoelectricity, and sensing. Applied Physics A: Materials Science and Processing, 2007, 88, 7-15.	1.1	255
317	Hybridizing Energy Conversion and Storage in a Mechanical-to-Electrochemical Process for Self-Charging Power Cell. Nano Letters, 2012, 12, 5048-5054.	4.5	255
318	Core/Shell Au/CuPt Nanoparticles and Their Dual Electrocatalysis for Both Reduction and Oxidation Reactions. Journal of the American Chemical Society, 2014, 136, 5745-5749.	6.6	255
319	Blow-driven triboelectric nanogenerator as an active alcohol breath analyzer. Nano Energy, 2015, 16, 38-46.	8.2	255
320	Flexible Fiber Nanogenerator with 209 V Output Voltage Directly Powers a Light-Emitting Diode. Nano Letters, 2013, 13, 91-94.	4.5	254
321	Triboelectric nanogenerators for sensitive nano-coulomb molecular mass spectrometry. Nature Nanotechnology, 2017, 12, 481-487.	15.6	254
322	Actively Perceiving and Responsive Soft Robots Enabled by Selfâ€Powered, Highly Extensible, and Highly Sensitive Triboelectric Proximity―and Pressureâ€Sensing Skins. Advanced Materials, 2018, 30, e1801114.	11.1	254
323	Paper-Based Origami Triboelectric Nanogenerators and Self-Powered Pressure Sensors. ACS Nano, 2015, 9, 901-907.	7.3	252
324	Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy. Energy and Environmental Science, 2020, 13, 277-285.	15.6	252

#	Article	IF	CITATIONS
325	Size Controlled Synthesis of Gold Nanoparticles using Photochemically Prepared Seed Particles. Journal of Nanoparticle Research, 2001, 3, 257-261.	0.8	251
326	Triboelectric nanogenerator as self-powered active sensors for detecting liquid/gaseous water/ethanol. Nano Energy, 2013, 2, 693-701.	8.2	250
327	Membraneâ€Based Selfâ€Powered Triboelectric Sensors for Pressure Change Detection and Its Uses in Security Surveillance and Healthcare Monitoring. Advanced Functional Materials, 2014, 24, 5807-5813.	7.8	250
328	Cylindrical Rotating Triboelectric Nanogenerator. ACS Nano, 2013, 7, 6361-6366.	7.3	249
329	Self-Powered Electrical Stimulation for Enhancing Neural Differentiation of Mesenchymal Stem Cells on Graphene–Poly(3,4-ethylenedioxythiophene) Hybrid Microfibers. ACS Nano, 2016, 10, 5086-5095.	7.3	249
330	A Oneâ€Structureâ€Based Hybridized Nanogenerator for Scavenging Mechanical and Thermal Energies by Triboelectric–Piezoelectric–Pyroelectric Effects. Advanced Materials, 2016, 28, 2881-2887.	11.1	249
331	Shape Memory Polymers for Body Motion Energy Harvesting and Selfâ€Powered Mechanosensing. Advanced Materials, 2018, 30, 1705195.	11.1	249
332	Structure and growth of aligned carbon nanotube films by pyrolysis. Chemical Physics Letters, 2000, 316, 349-355.	1.2	248
333	Piezoelectric nanogenerator using CdS nanowires. Applied Physics Letters, 2008, 92, .	1.5	248
334	Low-Temperature in Situ Large Strain Plasticity of Ceramic SiC Nanowires and Its Atomic-Scale Mechanism. Nano Letters, 2007, 7, 452-457.	4.5	247
335	Direct Growth of TiO ₂ Nanosheet Arrays on Carbon Fibers for Highly Efficient Photocatalytic Degradation of Methyl Orange. Advanced Materials, 2012, 24, 4761-4764.	11.1	246
336	Nanostructured Sheets of TiO Nanobelts for Gas Sensing and Antibacterial Applications. Advanced Functional Materials, 2008, 18, 1131-1137.	7.8	245
337	Robust Triboelectric Nanogenerator Based on Rolling Electrification and Electrostatic Induction at an Instantaneous Energy Conversion Efficiency of â ¹ /455%. ACS Nano, 2015, 9, 922-930.	7.3	245
338	Triboelectric-Nanogenerator-Based Soft Energy-Harvesting Skin Enabled by Toughly Bonded Elastomer/Hydrogel Hybrids. ACS Nano, 2018, 12, 2818-2826.	7.3	245
339	Growth of Uniformly Aligned ZnO Nanowire Heterojunction Arrays on GaN, AlN, and Al0.5Ga0.5N Substrates. Journal of the American Chemical Society, 2005, 127, 7920-7923.	6.6	244
340	High-Output Nanogenerator by Rational Unipolar Assembly of Conical Nanowires and Its Application for Driving a Small Liquid Crystal Display. Nano Letters, 2010, 10, 5025-5031.	4.5	244
341	Harvesting Broad Frequency Band Blue Energy by a Triboelectric–Electromagnetic Hybrid Nanogenerator. ACS Nano, 2016, 10, 6526-6534.	7.3	244
342	From contact electrification to triboelectric nanogenerators. Reports on Progress in Physics, 2021, 84, 096502.	8.1	244

#	Article	IF	CITATIONS
343	A Waterâ€Proof Triboelectric–Electromagnetic Hybrid Generator for Energy Harvesting in Harsh Environments. Advanced Energy Materials, 2016, 6, 1501593.	10.2	243
344	Triboelectric Nanogenerator Enhanced Nanofiber Air Filters for Efficient Particulate Matter Removal. ACS Nano, 2017, 11, 6211-6217.	7.3	242
345	Density-controlled growth of aligned ZnO nanowire arrays by seedless chemical approach on smooth surfaces. Journal of Materials Research, 2008, 23, 2072-2077.	1.2	240
346	Manipulating the triboelectric surface charge density of polymers by low-energy helium ion irradiation/implantation. Energy and Environmental Science, 2020, 13, 896-907.	15.6	240
347	Flexible Hybrid Energy Cell for Simultaneously Harvesting Thermal, Mechanical, and Solar Energies. ACS Nano, 2013, 7, 785-790.	7.3	239
348	Personalized Keystroke Dynamics for Self-Powered Human–Machine Interfacing. ACS Nano, 2015, 9, 105-116.	7.3	239
349	Super-robust and frequency-multiplied triboelectric nanogenerator for efficient harvesting water and wind energy. Nano Energy, 2019, 64, 103908.	8.2	239
350	Side-by-side silicon carbide–silica biaxial nanowires: Synthesis, structure, and mechanical properties. Applied Physics Letters, 2000, 77, 3349-3351.	1.5	238
351	Systematic Study of the Growth of Aligned Arrays of α-Fe2O3 and Fe3O4 Nanowires by a Vapor–Solid Process. Advanced Functional Materials, 2006, 16, 2243-2251.	7.8	238
352	In Situ Field Emission of Density-Controlled ZnO Nanowire Arrays. Advanced Materials, 2007, 19, 1627-1631.	11.1	237
353	Flexible Pyroelectric Nanogenerators using a Composite Structure of Leadâ€Free KNbO ₃ Nanowires. Advanced Materials, 2012, 24, 5357-5362.	11.1	237
354	Power generation from the interaction of a liquid droplet and a liquid membrane. Nature Communications, 2019, 10, 2264.	5.8	237
355	A constant current triboelectric nanogenerator arising from electrostatic breakdown. Science Advances, 2019, 5, eaav6437.	4.7	237
356	A Nanogenerator for Energy Harvesting from a Rotating Tire and its Application as a Selfâ€Powered Pressure/Speed Sensor. Advanced Materials, 2011, 23, 4068-4071.	11.1	235
357	Surface Reconstruction of the Unstable {110} Surface in Gold Nanorods. Journal of Physical Chemistry B, 2000, 104, 5417-5420.	1.2	234
358	Hierarchically patterned self-powered sensors for multifunctional tactile sensing. Science Advances, 2020, 6, eabb9083.	4.7	234
359	Hybridized Electromagnetic–Triboelectric Nanogenerator for Scavenging Biomechanical Energy for Sustainably Powering Wearable Electronics. ACS Nano, 2015, 9, 3521-3529.	7.3	233
360	Contact Electrification at the Liquid–Solid Interface. Chemical Reviews, 2022, 122, 5209-5232.	23.0	233

#	Article	IF	CITATIONS
361	Superâ€Flexible Nanogenerator for Energy Harvesting from Gentle Wind and as an Active Deformation Sensor. Advanced Functional Materials, 2013, 23, 2445-2449.	7.8	232
362	Piezo-phototronic Effect Enhanced UV/Visible Photodetector Based on Fully Wide Band Gap Type-II ZnO/ZnS Core/Shell Nanowire Array. ACS Nano, 2015, 9, 6419-6427.	7.3	232
363	Room Temperature Ballistic Conduction in Carbon Nanotubes. Journal of Physical Chemistry B, 2002, 106, 12104-12118.	1.2	231
364	Piezotronics and piezo-phototronics: fundamentals and applications. National Science Review, 2014, 1, 62-90.	4.6	231
365	"Cubic―Colloidal Platinum Nanoparticles. Chemistry of Materials, 1996, 8, 1161-1163.	3.2	230
366	Bismuth Telluride Hexagonal Nanoplatelets and Their Two-Step Epitaxial Growth. Journal of the American Chemical Society, 2005, 127, 10112-10116.	6.6	230
367	Gigantic Enhancement in Sensitivity Using Schottky Contacted Nanowire Nanosensor. Journal of the American Chemical Society, 2009, 131, 17690-17695.	6.6	230
368	Piezotronic and Piezophototronic Effects. Journal of Physical Chemistry Letters, 2010, 1, 1388-1393.	2.1	230
369	Natural Leaf Made Triboelectric Nanogenerator for Harvesting Environmental Mechanical Energy. Advanced Energy Materials, 2018, 8, 1703133.	10.2	230
370	Polymer Materials for Highâ€₽erformance Triboelectric Nanogenerators. Advanced Science, 2020, 7, 2000186.	5.6	230
371	Large-Scale Ni-Doped ZnO Nanowire Arrays and Electrical and Optical Properties. Journal of the American Chemical Society, 2005, 127, 16376-16377.	6.6	229
372	Atomic Structure of Auâ^'Pd Bimetallic Alloyed Nanoparticles. Journal of the American Chemical Society, 2010, 132, 12480-12486.	6.6	229
373	Work function at the tips of multiwalled carbon nanotubes. Applied Physics Letters, 2001, 78, 1757-1759.	1.5	228
374	A Flexible, Stretchable and Shapeâ€Adaptive Approach for Versatile Energy Conversion and Selfâ€Powered Biomedical Monitoring. Advanced Materials, 2015, 27, 3817-3824.	11.1	227
375	Ultrafine FePt Nanoparticles Prepared by the Chemical Reduction Method. Nano Letters, 2003, 3, 1647-1649.	4.5	226
376	Piezoelectric-Driven Self-Charging Supercapacitor Power Cell. ACS Nano, 2015, 9, 4337-4345.	7.3	226
377	3D double-faced interlock fabric triboelectric nanogenerator for bio-motion energy harvesting and as self-powered stretching and 3D tactile sensors. Materials Today, 2020, 32, 84-93.	8.3	226
378	Silicon-based hybrid cell for harvesting solar energy and raindrop electrostatic energy. Nano Energy, 2014, 9, 291-300.	8.2	225

#	Article	IF	CITATIONS
379	Self-Powered Wind Sensor System for Detecting Wind Speed and Direction Based on a Triboelectric Nanogenerator. ACS Nano, 2018, 12, 3954-3963.	7.3	224
380	Triboelectric nanogenerators: Fundamental physics and potential applications. Friction, 2020, 8, 481-506.	3.4	224
381	Externalâ€Strain Induced Insulating Phase Transition in VO ₂ Nanobeam and Its Application as Flexible Strain Sensor. Advanced Materials, 2010, 22, 5134-5139.	11.1	223
382	Lateral nanowire/nanobelt based nanogenerators, piezotronics and piezo-phototronics. Materials Science and Engineering Reports, 2010, 70, 320-329.	14.8	223
383	Emerging Implantable Energy Harvesters and Self-Powered Implantable Medical Electronics. ACS Nano, 2020, 14, 6436-6448.	7.3	223
384	Dual-Mode Triboelectric Nanogenerator for Harvesting Water Energy and as a Self-Powered Ethanol Nanosensor. ACS Nano, 2014, 8, 6440-6448.	7.3	222
385	Waterproof Fabricâ€Based Multifunctional Triboelectric Nanogenerator for Universally Harvesting Energy from Raindrops, Wind, and Human Motions and as Selfâ€Powered Sensors. Advanced Science, 2019, 6, 1801883.	5.6	222
386	Single-Crystal CdSe Nanosaws. Journal of the American Chemical Society, 2004, 126, 708-709.	6.6	221
387	Color-Tunable Photoluminescence of Alloyed CdSxSe1-xNanobelts. Journal of the American Chemical Society, 2005, 127, 15692-15693.	6.6	221
388	Light Propagation in Curved Silver Nanowire Plasmonic Waveguides. Nano Letters, 2011, 11, 1603-1608.	4.5	221
389	Pyroelectric Nanogenerators for Driving Wireless Sensors. Nano Letters, 2012, 12, 6408-6413.	4.5	221
390	Tailoring magnetic properties of coreâ^•shell nanoparticles. Applied Physics Letters, 2004, 85, 792-794.	1.5	220
391	Metalâ^'Semiconductor Znâ^'ZnO Coreâ^'Shell Nanobelts and Nanotubes. Journal of Physical Chemistry B, 2004, 108, 570-574.	1.2	219
392	Growth and field-emission property of tungsten oxide nanotip arrays. Applied Physics Letters, 2005, 87, 223108.	1.5	219
393	Optical Fiber/Nanowire Hybrid Structures for Efficient Threeâ€Dimensional Dyeâ€Sensitized Solar Cells. Angewandte Chemie - International Edition, 2009, 48, 8981-8985.	7.2	219
394	Quantitative Measurements of Vibration Amplitude Using a Contact-Mode Freestanding Triboelectric Nanogenerator. ACS Nano, 2014, 8, 12004-12013.	7.3	219
395	Schottkyâ€Gated Probeâ€Free ZnO Nanowire Biosensor. Advanced Materials, 2009, 21, 4975-4978.	11.1	218
396	A paper-based nanogenerator as a power source and active sensor. Energy and Environmental Science, 2013, 6, 1779.	15.6	218

#	Article	IF	CITATIONS
397	Ultra-long single crystalline nanoribbons of tin oxide. Solid State Communications, 2001, 118, 351-354.	0.9	217
398	Noncontact Free-Rotating Disk Triboelectric Nanogenerator as a Sustainable Energy Harvester and Self-Powered Mechanical Sensor. ACS Applied Materials & Interfaces, 2014, 6, 3031-3038.	4.0	217
399	Self-powered cleaning of air pollution by wind driven triboelectric nanogenerator. Nano Energy, 2015, 14, 217-225.	8.2	217
400	Washable Multilayer Triboelectric Air Filter for Efficient Particulate Matter PM _{2.5} Removal. Advanced Functional Materials, 2018, 28, 1706680.	7.8	216
401	Periodically Twinned Nanowires and Polytypic Nanobelts of ZnS:  The Role of Mass Diffusion in Vaporâ^'Liquidâ^'Solid Growth. Nano Letters, 2006, 6, 1650-1655.	4.5	215
402	Multidirection Piezoelectricity in Mono- and Multilayered Hexagonal α-In ₂ Se ₃ . ACS Nano, 2018, 12, 4976-4983.	7.3	215
403	Simulation method for optimizing the performance of an integrated triboelectric nanogenerator energy harvesting system. Nano Energy, 2014, 8, 150-156.	8.2	214
404	Toward self-powered sensor networks. Nano Today, 2010, 5, 512-514.	6.2	213
405	Flexible Self-Powered GaN Ultraviolet Photoswitch with Piezo-Phototronic Effect Enhanced On/Off Ratio. ACS Nano, 2016, 10, 1572-1579.	7.3	213
406	Piezotronics and Piezo-phototronics of Third Generation Semiconductor Nanowires. Chemical Reviews, 2019, 119, 9303-9359.	23.0	213
407	Triboelectric nanogenerator built inside clothes for self-powered glucose biosensors. Nano Energy, 2013, 2, 1019-1024.	8.2	212
408	Fully Packaged Selfâ€Powered Triboelectric Pressure Sensor Using Hemispheresâ€Array. Advanced Energy Materials, 2016, 6, 1502566.	10.2	212
409	Triboelectric microplasma powered by mechanical stimuli. Nature Communications, 2018, 9, 3733.	5.8	212
410	Versatile Core–Sheath Yarn for Sustainable Biomechanical Energy Harvesting and Realâ€Time Humanâ€Interactive Sensing. Advanced Energy Materials, 2018, 8, 1801114.	10.2	212
411	Recent progress of triboelectric nanogenerators: From fundamental theory to practical applications. EcoMat, 2020, 2, e12059.	6.8	212
412	Robust Swing‣tructured Triboelectric Nanogenerator for Efficient Blue Energy Harvesting. Advanced Energy Materials, 2020, 10, 2000064.	10.2	212
413	In Situ Quantitative Study of Nanoscale Triboelectrification and Patterning. Nano Letters, 2013, 13, 2771-2776.	4.5	210
414	Significant Enhancement of Triboelectric Charge Density by Fluorinated Surface Modification in Nanoscale for Converting Mechanical Energy. Advanced Functional Materials, 2015, 25, 5691-5697.	7.8	210

#	Article	IF	CITATIONS
415	Bioinspired Selfâ€Healing Human–Machine Interactive Touch Pad with Pressureâ€&ensitive Adhesiveness on Targeted Substrates. Advanced Materials, 2020, 32, e2004290.	11.1	210
416	Harvesting vibration energy by a triple-cantilever based triboelectric nanogenerator. Nano Research, 2013, 6, 880-886.	5.8	209
417	Largely Enhanced Efficiency in ZnO Nanowire/p-Polymer Hybridized Inorganic/Organic Ultraviolet Light-Emitting Diode by Piezo-Phototronic Effect. Nano Letters, 2013, 13, 607-613.	4.5	209
418	Pulsed Nanogenerator with Huge Instantaneous Output Power Density. ACS Nano, 2013, 7, 7383-7391.	7.3	209
419	Catalystâ^'Nanostructure Interfacial Lattice Mismatch in Determining the Shape of VLS Grown Nanowires and Nanobelts:  A Case of Sn/ZnO. Journal of the American Chemical Society, 2004, 126, 2066-2072.	6.6	208
420	Hierarchical Shelled ZnO Structures Made of Bunched Nanowire Arrays. Advanced Functional Materials, 2007, 17, 1303-1310.	7.8	208
421	Alternating the Output of a CdS Nanowire Nanogenerator by a Whiteâ€Lightâ€Stimulated Optoelectronic Effect. Advanced Materials, 2008, 20, 3127-3130.	11.1	207
422	Ordered Nanowire Array Blue/Nearâ€UV Light Emitting Diodes. Advanced Materials, 2010, 22, 4749-4753.	11.1	206
423	Self-powered environmental sensor system driven by nanogenerators. Energy and Environmental Science, 2011, 4, 3359.	15.6	206
424	Self-powered cardiovascular electronic devices and systems. Nature Reviews Cardiology, 2021, 18, 7-21.	6.1	206
425	Designing the Electric Transport Characteristics of ZnO Micro/Nanowire Devices by Coupling Piezoelectric and Photoexcitation Effects. ACS Nano, 2010, 4, 1234-1240.	7.3	205
426	Stretchable Triboelectric–Photonic Smart Skin for Tactile and Gesture Sensing. Advanced Materials, 2018, 30, e1800066.	11.1	205
427	Triboelectric Nanogenerator Built on Suspended 3D Spiral Structure as Vibration and Positioning Sensor and Wave Energy Harvester. ACS Nano, 2013, 7, 10424-10432.	7.3	204
428	Triboelectrificationâ€Enabled Selfâ€Powered Detection and Removal of Heavy Metal Ions in Wastewater. Advanced Materials, 2016, 28, 2983-2991.	11.1	204
429	Core–Shell-Yarn-Based Triboelectric Nanogenerator Textiles as Power Cloths. ACS Nano, 2017, 11, 12764-12771.	7.3	203
430	Rotation sensing and gesture control of a robot joint via triboelectric quantization sensor. Nano Energy, 2018, 54, 453-460.	8.2	203
431	Nanobelts as nanocantilevers. Applied Physics Letters, 2003, 82, 2886-2888.	1.5	202
432	Nanowire-composite based flexible thermoelectric nanogenerators and self-powered temperature sensors. Nano Research, 2012, 5, 888-895.	5.8	202

#	Article	IF	CITATIONS
433	Wearable Textileâ€Based Inâ€Plane Microsupercapacitors. Advanced Energy Materials, 2016, 6, 1601254.	10.2	201
434	Ultralight Cut-Paper-Based Self-Charging Power Unit for Self-Powered Portable Electronic and Medical Systems. ACS Nano, 2017, 11, 4475-4482.	7.3	201
435	Flexible and Controllable Piezoâ€Phototronic Pressure Mapping Sensor Matrix by ZnO NW/pâ€Polymer LED Array. Advanced Functional Materials, 2015, 25, 2884-2891.	7.8	200
436	Growth of anisotropic one-dimensional ZnS nanostructures. Journal of Materials Chemistry, 2006, 16, 3898.	6.7	199
437	Thermoelectric Nanogenerators Based on Single Sb-Doped ZnO Micro/Nanobelts. ACS Nano, 2012, 6, 6984-6989.	7.3	199
438	Raising the Working Temperature of a Triboelectric Nanogenerator by Quenching Down Electron Thermionic Emission in Contactâ€Electrification. Advanced Materials, 2018, 30, e1803968.	11.1	199
439	Near UV LEDs Made with in Situ Doped p-n Homojunction ZnO Nanowire Arrays. Nano Letters, 2010, 10, 4387-4393.	4.5	198
440	Selfâ€Powered Wireless Sensor Node Enabled by a Duckâ€Shaped Triboelectric Nanogenerator for Harvesting Water Wave Energy. Advanced Energy Materials, 2017, 7, 1601705.	10.2	198
441	Bioinspired Triboelectric Nanogenerators as Selfâ€Powered Electronic Skin for Robotic Tactile Sensing. Advanced Functional Materials, 2020, 30, 1907312.	7.8	198
442	Substrate Atomic-Termination-Induced Anisotropic Growth of ZnO Nanowires/Nanorods by the VLS Process. Journal of Physical Chemistry B, 2004, 108, 7534-7537.	1.2	197
443	Large-Scale Fabrication of Ordered Nanobowl Arrays. Nano Letters, 2004, 4, 2223-2226.	4.5	197
444	Piezo-phototronic Effect Enhanced Visible/UV Photodetector of a Carbon-Fiber/ZnO-CdS Double-Shell Microwire. ACS Nano, 2013, 7, 4537-4544.	7.3	197
445	Paper-Based Triboelectric Nanogenerators Made of Stretchable Interlocking Kirigami Patterns. ACS Nano, 2016, 10, 4652-4659.	7.3	197
446	Strainâ€Gated Piezotronic Logic Nanodevices. Advanced Materials, 2010, 22, 4711-4715.	11.1	196
447	P-Type Polymer-Hybridized High-Performance Piezoelectric Nanogenerators. Nano Letters, 2012, 12, 1959-1964.	4.5	196
448	Enhanced Triboelectric Nanogenerators Based on MoS ₂ Monolayer Nanocomposites Acting as Electron-Acceptor Layers. ACS Nano, 2017, 11, 8356-8363.	7.3	196
449	A Highly Efficient and Self‣tabilizing Metallicâ€Glass Catalyst for Electrochemical Hydrogen Generation. Advanced Materials, 2016, 28, 10293-10297.	11.1	195
450	Rationally designed sea snake structure based triboelectric nanogenerators for effectively and efficiently harvesting ocean wave energy with minimized water screening effect. Nano Energy, 2018, 48, 421-429.	8.2	195

#	Article	IF	CITATIONS
451	Self-Powered Sensors and Systems Based on Nanogenerators. Sensors, 2020, 20, 2925.	2.1	195
452	Composite-Hydroxide-Mediated Approach for the Synthesis of Nanostructures of Complex Functional-Oxides. Nano Letters, 2006, 6, 1535-1540.	4.5	194
453	Air/Liquidâ€Pressure and Heartbeatâ€Driven Flexible Fiber Nanogenerators as a Micro/Nanoâ€Power Source or Diagnostic Sensor. Advanced Materials, 2011, 23, 84-89.	11.1	194
454	A theoretical study of grating structured triboelectric nanogenerators. Energy and Environmental Science, 2014, 7, 2339-2349.	15.6	194
455	3D Heteroatomâ€Doped Carbon Nanomaterials as Multifunctional Metalâ€Free Catalysts for Integrated Energy Devices. Advanced Materials, 2019, 31, e1805598.	11.1	194
456	Contributions of Different Functional Groups to Contact Electrification of Polymers. Advanced Materials, 2020, 32, e2001307.	11.1	194
457	Efficient Scavenging of Solar and Wind Energies in a Smart City. ACS Nano, 2016, 10, 5696-5700.	7.3	193
458	Solution Phase Synthesis of Cu(OH)2Nanoribbons by Coordination Self-Assembly Using Cu2S Nanowires as Precursors. Nano Letters, 2002, 2, 1397-1401.	4.5	192
459	Structural Optimization of Triboelectric Nanogenerator for Harvesting Water Wave Energy. ACS Nano, 2015, 9, 12562-12572.	7.3	192
460	β-cyclodextrin enhanced triboelectrification for self-powered phenol detection and electrochemical degradation. Energy and Environmental Science, 2015, 8, 887-896.	15.6	192
461	Selfâ€₽owered Water Splitting Using Flowing Kinetic Energy. Advanced Materials, 2015, 27, 272-276.	11.1	192
462	Water wave energy harvesting and self-powered liquid-surface fluctuation sensing based on bionic-jellyfish triboelectric nanogenerator. Materials Today, 2018, 21, 88-97.	8.3	192
463	Direct Observation of Superâ€Plasticity of Betaâ€&iC Nanowires at Low Temperature. Advanced Functional Materials, 2007, 17, 3435-3440.	7.8	191
464	Allâ€Plasticâ€Materials Based Selfâ€Charging Power System Composed of Triboelectric Nanogenerators and Supercapacitors. Advanced Functional Materials, 2016, 26, 1070-1076.	7.8	190
465	Triboelectric Nanogenerator Networks Integrated with Power Management Module for Water Wave Energy Harvesting. Advanced Functional Materials, 2019, 29, 1807241.	7.8	190
466	Humidityâ€Resistive Triboelectric Nanogenerator Fabricated Using Metal Organic Framework Composite. Advanced Functional Materials, 2019, 29, 1807655.	7.8	189
467	Superâ€Ðurable, Lowâ€Wear, and Highâ€₽erformance Furâ€Brush Triboelectric Nanogenerator for Wind and Water Energy Harvesting for Smart Agriculture. Advanced Energy Materials, 2021, 11, 2003066.	10.2	189
468	Selective recovery of precious metals through photocatalysis. Nature Sustainability, 2021, 4, 618-626.	11.5	188

#	Article	IF	CITATIONS
469	Piezophototronic Effect in Singleâ€Atomic‣ayer MoS ₂ for Strainâ€Gated Flexible Optoelectronics. Advanced Materials, 2016, 28, 8463-8468.	11.1	187
470	A Soft and Robust Spring Based Triboelectric Nanogenerator for Harvesting Arbitrary Directional Vibration Energy and Selfâ€Powered Vibration Sensing. Advanced Energy Materials, 2018, 8, 1702432.	10.2	186
471	Stretchable, self-healing, conductive hydrogel fibers for strain sensing and triboelectric energy-harvesting smart textiles. Nano Energy, 2020, 78, 105389.	8.2	186
472	Piezo-phototronic Effect Enhanced Visible and Ultraviolet Photodetection Using a ZnO–CdS Core–Shell Micro/nanowire. ACS Nano, 2012, 6, 9229-9236.	7.3	184
473	Bioinspired mechano-photonic artificial synapse based on graphene/MoS ₂ heterostructure. Science Advances, 2021, 7, .	4.7	184
474	In situ imaging of field emission from individual carbon nanotubes and their structural damage. Applied Physics Letters, 2002, 80, 856-858.	1.5	183
475	Aligned AlN Nanorods with Multi-tipped Surfaces—Growth, Field-Emission, and Cathodoluminescence Properties. Advanced Materials, 2006, 18, 650-654.	11.1	183
476	Suppressing self-discharge of supercapacitors via electrorheological effect of liquid crystals. Nano Energy, 2018, 47, 43-50.	8.2	183
477	Temperature-Controlled Growth of Silicon-Based Nanostructures by Thermal Evaporation of SiO Powders. Journal of Physical Chemistry B, 2001, 105, 2507-2514.	1.2	182
478	Nanowire Structured Hybrid Cell for Concurrently Scavenging Solar and Mechanical Energies. Journal of the American Chemical Society, 2009, 131, 5866-5872.	6.6	182
479	Single-Electrode-Based Rotating Triboelectric Nanogenerator for Harvesting Energy from Tires. ACS Nano, 2014, 8, 680-689.	7.3	182
480	Stretchable and Waterproof Self-Charging Power System for Harvesting Energy from Diverse Deformation and Powering Wearable Electronics. ACS Nano, 2016, 10, 6519-6525.	7.3	182
481	Networks of High Performance Triboelectric Nanogenerators Based on Liquid–Solid Interface Contact Electrification for Harvesting Lowâ€Frequency Blue Energy. Advanced Energy Materials, 2018, 8, 1800705.	10.2	182
482	Nanogenerators, self-powered systems, blue energy, piezotronics and piezo-phototronics – A recall on the original thoughts for coining these fields. Nano Energy, 2018, 54, 477-483.	8.2	182
483	Three-dimensional hexagonal close-packed superlattice of passivated Ag nanocrystals. Advanced Materials, 1997, 9, 817-822.	11.1	181
484	Growth of ZnO nanotube arrays and nanotube based piezoelectric nanogenerators. Journal of Materials Chemistry, 2009, 19, 9260.	6.7	181
485	Hybrid Composite Ni(OH) ₂ @NiCo ₂ O ₄ Grown on Carbon Fiber Paper for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2013, 5, 11159-11162.	4.0	181
486	Fully Packaged Blue Energy Harvester by Hybridizing a Rolling Triboelectric Nanogenerator and an Electromagnetic Generator. ACS Nano, 2016, 10, 11369-11376.	7.3	181

#	Article	IF	CITATIONS
487	Spring-assisted triboelectric nanogenerator for efficiently harvesting water wave energy. Nano Energy, 2017, 31, 560-567.	8.2	181
488	Transcatheter Selfâ€Powered Ultrasensitive Endocardial Pressure Sensor. Advanced Functional Materials, 2019, 29, 1807560.	7.8	181
489	A Triboelectric Nanogeneratorâ€Based Smart Insole for Multifunctional Gait Monitoring. Advanced Materials Technologies, 2019, 4, 1800360.	3.0	181
490	Triboelectric Nanogenerator as an Active UV Photodetector. Advanced Functional Materials, 2014, 24, 2810-2816.	7.8	180
491	Harvesting Broadband Kinetic Impact Energy from Mechanical Triggering/Vibration and Water Waves. ACS Nano, 2014, 8, 7405-7412.	7.3	180
492	Dipole-moment-induced effect on contact electrification for triboelectric nanogenerators. Nano Research, 2014, 7, 990-997.	5.8	180
493	Rotatingâ€Diskâ€Based Directâ€Current Triboelectric Nanogenerator. Advanced Energy Materials, 2014, 4, 1301798.	10.2	180
494	A Hierarchically Nanostructured Cellulose Fiberâ€Based Triboelectric Nanogenerator for Selfâ€Powered Healthcare Products. Advanced Functional Materials, 2018, 28, 1805540.	7.8	180
495	Hybridized Electromagnetic–Triboelectric Nanogenerator for a Self-Powered Electronic Watch. ACS Nano, 2015, 9, 12301-12310.	7.3	179
496	Self-Powered Safety Helmet Based on Hybridized Nanogenerator for Emergency. ACS Nano, 2016, 10, 7874-7881.	7.3	179
497	Three-dimensional ultraflexible triboelectric nanogenerator made by 3D printing. Nano Energy, 2018, 45, 380-389.	8.2	178
498	Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistor. Journal of Applied Physics, 2009, 105, 113707.	1.1	176
499	Ultrahigh Sensitive Piezotronic Strain Sensors Based on a ZnSnO ₃ Nanowire/Microwire. ACS Nano, 2012, 6, 4369-4374.	7.3	176
500	Rationally designed graphene-nanotube 3D architectures with a seamless nodal junction for efficient energy conversion and storage. Science Advances, 2015, 1, e1400198.	4.7	176
501	Ultrafast Response p‣i/nâ€ZnO Heterojunction Ultraviolet Detector Based on Pyroâ€Phototronic Effect. Advanced Materials, 2016, 28, 6880-6886.	11.1	176
502	Triboelectric Nanogenerators. Green Energy and Technology, 2016, , .	0.4	176
503	Full Dynamicâ€Range Pressure Sensor Matrix Based on Optical and Electrical Dualâ€Mode Sensing. Advanced Materials, 2017, 29, 1605817.	11.1	176
504	Keystroke dynamics enabled authentication and identification using triboelectric nanogenerator array. Materials Today, 2018, 21, 216-222.	8.3	176

#	Article	IF	CITATIONS
505	Wafer-Scale High-Throughput Ordered Growth of Vertically Aligned ZnO Nanowire Arrays. Nano Letters, 2010, 10, 3414-3419.	4.5	175
506	Manipulating Nanoscale Contact Electrification by an Applied Electric Field. Nano Letters, 2014, 14, 1567-1572.	4.5	175
507	Flexoelectronics of centrosymmetric semiconductors. Nature Nanotechnology, 2020, 15, 661-667.	15.6	175
508	Self-Powered Magnetic Sensor Based on a Triboelectric Nanogenerator. ACS Nano, 2012, 6, 10378-10383.	7.3	174
509	Enhanced Cu ₂ S/CdS Coaxial Nanowire Solar Cells by Piezo-Phototronic Effect. Nano Letters, 2012, 12, 3302-3307.	4.5	174
510	Enhanced Performance of a ZnO Nanowireâ€Based Selfâ€Powered Glucose Sensor by Piezotronic Effect. Advanced Functional Materials, 2013, 23, 5868-5874.	7.8	174
511	A Hybridized Power Panel to Simultaneously Generate Electricity from Sunlight, Raindrops, and Wind around the Clock. Advanced Energy Materials, 2015, 5, 1501152.	10.2	174
512	High Energy Storage Efficiency Triboelectric Nanogenerators with Unidirectional Switches and Passive Power Management Circuits. Advanced Functional Materials, 2018, 28, 1805216.	7.8	174
513	A Highâ€Performance Monolithic Solidâ€State Sodium Battery with Ca ²⁺ Doped Na ₃ Zr ₂ Si ₂ PO ₁₂ Electrolyte. Advanced Energy Materials, 2019, 9, 1901205.	10.2	174
514	Nanomechanics of Individual Carbon Nanotubes from Pyrolytically Grown Arrays. Physical Review Letters, 2000, 85, 622-625.	2.9	173
515	Tailoring Au-core Pd-shell Pt-cluster nanoparticles for enhanced electrocatalytic activity. Chemical Science, 2011, 2, 531-539.	3.7	172
516	Simultaneously Harvesting Electrostatic and Mechanical Energies from Flowing Water by a Hybridized Triboelectric Nanogenerator. ACS Nano, 2014, 8, 1932-1939.	7.3	172
517	Stretchable Porous Carbon Nanotubeâ€Elastomer Hybrid Nanocomposite for Harvesting Mechanical Energy. Advanced Materials, 2017, 29, 1603115.	11.1	172
518	Redox Catalytic Properties of Palladium Nanoparticles:Â Surfactant and Electron Donorâ^'Acceptor Effects. Langmuir, 2000, 16, 2457-2463.	1.6	171
519	Transparent flexible nanogenerator as self-powered sensor for transportation monitoring. Nano Energy, 2013, 2, 75-81.	8.2	171
520	Facet-Selective Epitaxial Growth of Heterogeneous Nanostructures of Semiconductor and Metal: ZnO Nanorods on Ag Nanocrystals. Journal of the American Chemical Society, 2009, 131, 12036-12037.	6.6	170
521	From nanogenerators to piezotronics—A decade-long study of ZnO nanostructures. MRS Bulletin, 2012, 37, 814-827.	1.7	170
522	Direct Current Fabric Triboelectric Nanogenerator for Biomotion Energy Harvesting. ACS Nano, 2020, 14, 4585-4594.	7.3	170

#	Article	IF	CITATIONS
523	Exchange-coupled FePt nanoparticle assembly. Applied Physics Letters, 2002, 80, 2583-2585.	1.5	169
524	Singleâ€InNâ€Nanowire Nanogenerator with Upto 1 V Output Voltage. Advanced Materials, 2010, 22, 4008-4013.	11.1	169
525	Leapfrog Cracking and Nanoamorphization of ZnO Nanowires during In Situ Electrochemical Lithiation. Nano Letters, 2011, 11, 4535-4541.	4.5	169
526	Harvesting Ambient Vibration Energy over a Wide Frequency Range for Self-Powered Electronics. ACS Nano, 2017, 11, 1728-1735.	7.3	169
527	Nanogenerator-based dual-functional and self-powered thin patch loudspeaker or microphone for flexible electronics. Nature Communications, 2017, 8, 15310.	5.8	169
528	Self-Powered Electrostatic Filter with Enhanced Photocatalytic Degradation of Formaldehyde Based on Built-in Triboelectric Nanogenerators. ACS Nano, 2017, 11, 12411-12418.	7.3	169
529	Human–Machine Interfacing Enabled by Triboelectric Nanogenerators and Tribotronics. Advanced Materials Technologies, 2019, 4, 1800487.	3.0	169
530	An Ultrathin Flexible Singleâ€Electrode Triboelectricâ€Nanogenerator for Mechanical Energy Harvesting and Instantaneous Force Sensing. Advanced Energy Materials, 2017, 7, 1601255.	10.2	168
531	Spherical Triboelectric Nanogenerators Based on Springâ€Assisted Multilayered Structure for Efficient Water Wave Energy Harvesting. Advanced Functional Materials, 2018, 28, 1802634.	7.8	168
532	The octa-twin tetraleg ZnO nanostructures. Solid State Communications, 2003, 126, 629-633.	0.9	167
533	ZnO nanotube-based dye-sensitized solar cell and its application in self-powered devices. Nanotechnology, 2010, 21, 405203.	1.3	167
534	Flowâ€Ðriven Triboelectric Generator for Directly Powering a Wireless Sensor Node. Advanced Materials, 2015, 27, 240-248.	11.1	167
535	Hybridized nanogenerator for simultaneously scavenging mechanical and thermal energies by electromagnetic-triboelectric-thermoelectric effects. Nano Energy, 2016, 26, 164-171.	8.2	167
536	High-Performance Organolead Halide Perovskite-Based Self-Powered Triboelectric Photodetector. ACS Nano, 2015, 9, 11310-11316.	7.3	166
537	Ultracomfortable Hierarchical Nanonetwork for Highly Sensitive Pressure Sensor. ACS Nano, 2020, 14, 9605-9612.	7.3	166
538	Sustainable high-voltage source based on triboelectric nanogenerator with a charge accumulation strategy. Energy and Environmental Science, 2020, 13, 2178-2190.	15.6	166
539	Harvesting Wind Energy by a Triboelectric Nanogenerator for an Intelligent High-Speed Train System. ACS Energy Letters, 0, , 1490-1499.	8.8	166
540	Structure Analysis of Nanowires and Nanobelts by Transmission Electron Microscopy. Journal of Physical Chemistry B, 2004, 108, 12280-12291.	1.2	165

#	Article	IF	CITATIONS
541	Elasto-Aerodynamics-Driven Triboelectric Nanogenerator for Scavenging Air-Flow Energy. ACS Nano, 2015, 9, 9554-9563.	7.3	165
542	3D printing of ionic conductors for high-sensitivity wearable sensors. Materials Horizons, 2019, 6, 767-780.	6.4	165
543	Electron Transfer in Nanoscale Contact Electrification: Effect of Temperature in the Metal–Dielectric Case. Advanced Materials, 2019, 31, e1808197.	11.1	165
544	Ordered Self-Assembling of Tetrahedral Oxide Nanocrystals. Physical Review Letters, 1997, 79, 2570-2573.	2.9	164
545	Lead oxide nanobelts and phase transformation induced by electron beam irradiation. Applied Physics Letters, 2002, 80, 309-311.	1.5	164
546	Integration of micro-supercapacitors with triboelectric nanogenerators for a flexible self-charging power unit. Nano Research, 2015, 8, 3934-3943.	5.8	164
547	Nanogenerators: An emerging technology towards nanoenergy. APL Materials, 2017, 5, .	2.2	164
548	A spring-based resonance coupling for hugely enhancing the performance of triboelectric nanogenerators for harvesting low-frequency vibration energy. Nano Energy, 2017, 32, 287-293.	8.2	164
549	Hybrid piezo/triboelectric nanogenerator for highly efficient and stable rotation energy harvesting. Nano Energy, 2019, 57, 440-449.	8.2	164
550	Preparation and Characterization of Nanomaterials for Sustainable Energy Production. ACS Nano, 2010, 4, 5517-5526.	7.3	163
551	Ultrathin Nanogenerators as Selfâ€Powered/Active Skin Sensors for Tracking Eye Ball Motion. Advanced Functional Materials, 2014, 24, 1163-1168.	7.8	163
552	Self-Powered Electrospinning System Driven by a Triboelectric Nanogenerator. ACS Nano, 2017, 11, 10439-10445.	7.3	163
553	Selfâ€Powered Si/CdS Flexible Photodetector with Broadband Response from 325 to 1550 nm Based on Pyroâ€phototronic Effect: An Approach for Photosensing below Bandgap Energy. Advanced Materials, 2018, 30, 1705893.	11.1	163
554	A Breathable and Screenâ€Printed Pressure Sensor Based on Nanofiber Membranes for Electronic Skins. Advanced Materials Technologies, 2018, 3, 1700241.	3.0	163
555	Piezoelectric Nanogenerators Derived Selfâ€Powered Sensors for Multifunctional Applications and Artificial Intelligence. Advanced Functional Materials, 2021, 31, 2102983.	7.8	163
556	A hybrid energy cell for self-powered water splitting. Energy and Environmental Science, 2013, 6, 2429.	15.6	162
557	Triboelectrification Based Motion Sensor for Human-Machine Interfacing. ACS Applied Materials & Interfaces, 2014, 6, 7479-7484.	4.0	162
558	Integrated triboelectric nanogenerator array based on air-driven membrane structures for water wave energy harvesting. Nano Energy, 2017, 31, 351-358.	8.2	162

#	Article	IF	CITATIONS
559	Oblate Spheroidal Triboelectric Nanogenerator for Allâ€Weather Blue Energy Harvesting. Advanced Energy Materials, 2019, 9, 1900801.	10.2	162
560	Active resonance triboelectric nanogenerator for harvesting omnidirectional water-wave energy. Joule, 2021, 5, 1613-1623.	11.7	162
561	Selfâ€Powered Trajectory, Velocity, and Acceleration Tracking of a Moving Object/Body using a Triboelectric Sensor. Advanced Functional Materials, 2014, 24, 7488-7494.	7.8	161
562	Self-Powered Triboelectric Nanosensor with Poly(tetrafluoroethylene) Nanoparticle Arrays for Dopamine Detection. ACS Nano, 2015, 9, 8376-8383.	7.3	161
563	Self-powered electro-tactile system for virtual tactile experiences. Science Advances, 2021, 7, .	4.7	161
564	Recent advances in triboelectric nanogenerator based self-charging power systems. Energy Storage Materials, 2019, 23, 617-628.	9.5	160
565	Direct synthesis and structure characterization of ultrafine CeO2nanoparticles. Nanotechnology, 2006, 17, 5983-5987.	1.3	159
566	Piezoelectric potential in vertically aligned nanowires for high output nanogenerators. Nanotechnology, 2011, 22, 465401.	1.3	159
567	Solution-based fabrication of vanadium dioxide on F:SnO2 substrates with largely enhanced thermochromism and low-emissivity for energy-saving applications. Energy and Environmental Science, 2011, 4, 4290.	15.6	159
568	Phase and shape controlled VO2 nanostructures by antimony doping. Energy and Environmental Science, 2012, 5, 8708.	15.6	159
569	Self-Powered Microfluidic Transport System Based on Triboelectric Nanogenerator and Electrowetting Technique. ACS Nano, 2018, 12, 1491-1499.	7.3	159
570	Flexible self-charging power sources. Nature Reviews Materials, 2022, 7, 870-886.	23.3	159
571	Three-dimensional WO3 nanostructures on carbon paper: photoelectrochemical property and visible light driven photocatalysis. Chemical Communications, 2011, 47, 5804.	2.2	158
572	Motion-Driven Electrochromic Reactions for Self-Powered Smart Window System. ACS Nano, 2015, 9, 4757-4765.	7.3	158
573	Measuring physical and mechanical properties of individual carbon nanotubes by in situ TEM. Journal of Physics and Chemistry of Solids, 2000, 61, 1025-1030.	1.9	157
574	Fundamental theories of piezotronics and piezo-phototronics. Nano Energy, 2015, 14, 257-275.	8.2	157
575	Enhanced Performance of a Selfâ€Powered Organic/Inorganic Photodetector by Pyroâ€Phototronic and Piezoâ€Phototronic Effects. Advanced Materials, 2017, 29, 1606698.	11.1	157
576	Fluid eddy induced piezo-promoted photodegradation of organic dye pollutants in wastewater on ZnO nanorod arrays/3D Ni foam. Materials Today, 2017, 20, 501-506.	8.3	157

#	Article	IF	CITATIONS
577	Self-Powered Electrostatic Adsorption Face Mask Based on a Triboelectric Nanogenerator. ACS Applied Materials & Interfaces, 2018, 10, 7126-7133.	4.0	157
578	Piezotronic Effect Enhanced Plasmonic Photocatalysis by AuNPs/BaTiO ₃ Heterostructures. Advanced Functional Materials, 2019, 29, 1808737.	7.8	157
579	Surface free-carrier screening effect on the output of a ZnO nanowire nanogenerator and its potential as a self-powered active gas sensor. Nanotechnology, 2013, 24, 225501.	1.3	156
580	Auxetic Foamâ€Based Contactâ€Mode Triboelectric Nanogenerator with Highly Sensitive Selfâ€Powered Strain Sensing Capabilities to Monitor Human Body Movement. Advanced Functional Materials, 2017, 27, 1606695.	7.8	156
581	Highly Adaptive Solid–Liquid Interfacing Triboelectric Nanogenerator for Harvesting Diverse Water Wave Energy. ACS Nano, 2018, 12, 4280-4285.	7.3	156
582	New Developments in Transmission Electron Microscopy for Nanotechnology. Advanced Materials, 2003, 15, 1497-1514.	11.1	155
583	Integrated Nanogenerators in Biofluid. Nano Letters, 2007, 7, 2475-2479.	4.5	155
584	High power triboelectric nanogenerator based on printed circuit board (PCB) technology. Nano Research, 2015, 8, 722-730.	5.8	155
585	Stretchable, Washable, and Ultrathin Triboelectric Nanogenerators as Skinâ€Like Highly Sensitive Selfâ€Powered Haptic Sensors. Advanced Functional Materials, 2021, 31, .	7.8	155
586	Multilayer wavy-structured robust triboelectric nanogenerator for harvesting water wave energy. Nano Energy, 2016, 22, 87-94.	8.2	154
587	Selfâ€Powered Intracellular Drug Delivery by a Biomechanical Energyâ€Driven Triboelectric Nanogenerator. Advanced Materials, 2019, 31, e1807795.	11.1	154
588	Triboelectric Nanogenerator Network Integrated with Charge Excitation Circuit for Effective Water Wave Energy Harvesting. Advanced Energy Materials, 2020, 10, 2002123.	10.2	154
589	A Fully Self-Powered Vibration Monitoring System Driven by Dual-Mode Triboelectric Nanogenerators. ACS Nano, 2020, 14, 2475-2482.	7.3	154
590	Switched-capacitor-convertors based on fractal design for output power management of triboelectric nanogenerator. Nature Communications, 2020, 11, 1883.	5.8	154
591	Selection rules of triboelectric materials for direct-current triboelectric nanogenerator. Nature Communications, 2021, 12, 4686.	5.8	154
592	Field emission of individual carbon nanotube within situtip image and real work function. Applied Physics Letters, 2005, 87, 163106.	1.5	153
593	Highly Robust, Transparent, and Breathable Epidermal Electrode. ACS Nano, 2018, 12, 9326-9332.	7.3	153
594	Self-powered intelligent buoy system by water wave energy for sustainable and autonomous wireless sensing and data transmission. Nano Energy, 2019, 61, 1-9.	8.2	153

#	Article	IF	CITATIONS
595	Electroactive Biomaterials and Systems for Cell Fate Determination and Tissue Regeneration: Design and Applications. Advanced Materials, 2021, 33, e2007429.	11.1	153
596	A chaotic pendulum triboelectric-electromagnetic hybridized nanogenerator for wave energy scavenging and self-powered wireless sensing system. Nano Energy, 2020, 69, 104440.	8.2	152
597	Highâ€Power Density Piezoelectric Energy Harvesting Using Radially Strained Ultrathin Trigonal Tellurium Nanowire Assembly. Advanced Materials, 2013, 25, 2920-2925.	11.1	151
598	Steps, ledges and kinks on the surfaces of platinum nanoparticles of different shapes. Surface Science, 1997, 380, 302-310.	0.8	150
599	Gallium Nitride Nanowire Based Nanogenerators and Light-Emitting Diodes. ACS Nano, 2012, 6, 5687-5692.	7.3	150
600	Pumping up the charge density of a triboelectric nanogenerator by charge-shuttling. Nature Communications, 2020, 11, 4203.	5.8	150
601	Single Micro/Nanowire Pyroelectric Nanogenerators as Self-Powered Temperature Sensors. ACS Nano, 2012, 6, 8456-8461.	7.3	149
602	Rotating-disk-based hybridized electromagnetic-triboelectric nanogenerator for scavenging biomechanical energy as a mobile power source. Nano Energy, 2015, 13, 771-780.	8.2	149
603	Silicon Nanowire/Polymer Hybrid Solar Cell-Supercapacitor: A Self-Charging Power Unit with a Total Efficiency of 10.5%. Nano Letters, 2017, 17, 4240-4247.	4.5	149
604	Temperature Effect on Performance of Triboelectric Nanogenerator. Advanced Engineering Materials, 2017, 19, 1700275.	1.6	149
605	Triboelectric nanogenerator for harvesting pendulum oscillation energy. Nano Energy, 2013, 2, 1113-1120.	8.2	148
606	Enhancing the Electrical and Optoelectronic Performance of Nanobelt Devices by Molecular Surface Functionalization. Nano Letters, 2007, 7, 1323-1328.	4.5	147
607	Direct urrent Triboelectric Generator. Advanced Functional Materials, 2014, 24, 3745-3750.	7.8	147
608	Light-Triggered Pyroelectric Nanogenerator Based on a pn-Junction for Self-Powered Near-Infrared Photosensing. ACS Nano, 2017, 11, 8339-8345.	7.3	147
609	Hybrid Piezo/Triboelectricâ€Driven Selfâ€Charging Electrochromic Supercapacitor Power Package. Advanced Energy Materials, 2018, 8, 1800069.	10.2	147
610	Piezoelectricâ€Effectâ€Enhanced Fullâ€Spectrum Photoelectrocatalysis in p–n Heterojunction. Advanced Functional Materials, 2019, 29, 1807279.	7.8	147
611	Recent Progress in Power Generation from Water/Liquid Droplet Interaction with Solid Surfaces. Advanced Functional Materials, 2019, 29, 1901069.	7.8	147
612	A highly-sensitive wave sensor based on liquid-solid interfacing triboelectric nanogenerator for smart marine equipment. Nano Energy, 2019, 57, 574-580.	8.2	147

#	Article	IF	CITATIONS
613	Nanogenerator-Based Self-Powered Sensors for Wearable and Implantable Electronics. Research, 2020, 2020, 8710686.	2.8	147
614	Deformation-Free Single-Crystal Nanohelixes of Polar Nanowires. Nano Letters, 2004, 4, 1309-1312.	4.5	146
615	Integrated Multilayer Nanogenerator Fabricated Using Paired Nanotip-to-Nanowire Brushes. Nano Letters, 2008, 8, 4027-4032.	4.5	146
616	Enhanced Performance of Flexible ZnO Nanowire Based Roomâ€Temperature Oxygen Sensors by Piezotronic Effect. Advanced Materials, 2013, 25, 3701-3706.	11.1	146
617	High efficient harvesting of underwater ultrasonic wave energy by triboelectric nanogenerator. Nano Energy, 2017, 38, 101-108.	8.2	146
618	Rational Synthesis of Heterostructured Nanoparticles with Morphology Control. Journal of the American Chemical Society, 2010, 132, 6524-6529.	6.6	145
619	Nanopillar Arrayed Triboelectric Nanogenerator as a Self-Powered Sensitive Sensor for a Sleep Monitoring System. ACS Nano, 2016, 10, 8097-8103.	7.3	145
620	Managing and maximizing the output power of a triboelectric nanogenerator by controlled tip–electrode air-discharging and application for UV sensing. Nano Energy, 2018, 44, 208-216.	8.2	145
621	Flexible and Stretchable Fiberâ€Shaped Triboelectric Nanogenerators for Biomechanical Monitoring and Humanâ€Interactive Sensing. Advanced Functional Materials, 2021, 31, 2006679.	7.8	145
622	Direct synthesis of silicon nanowires, silica nanospheres, and wire-like nanosphere agglomerates. Applied Physics Letters, 2000, 76, 2346-2348.	1.5	144
623	Optimization of Triboelectric Nanogenerator Charging Systems for Efficient Energy Harvesting and Storage. IEEE Transactions on Electron Devices, 2015, 62, 641-647.	1.6	144
624	Hybridized Electromagnetic–Triboelectric Nanogenerator for Scavenging Air-Flow Energy to Sustainably Power Temperature Sensors. ACS Nano, 2015, 9, 4553-4562.	7.3	144
625	Maximized Effective Energy Output of Contactâ€Separationâ€Triggered Triboelectric Nanogenerators as Limited by Air Breakdown. Advanced Functional Materials, 2017, 27, 1700049.	7.8	144
626	Remarkable merits of triboelectric nanogenerator than electromagnetic generator for harvesting small-amplitude mechanical energy. Nano Energy, 2019, 61, 111-118.	8.2	144
627	Macroscopic self-assembly network of encapsulated high-performance triboelectric nanogenerators for water wave energy harvesting. Nano Energy, 2019, 60, 404-412.	8.2	144
628	pâ€Type MoS ₂ and nâ€Type ZnO Diode and Its Performance Enhancement by the Piezophototronic Effect. Advanced Materials, 2016, 28, 3391-3398.	11.1	143
629	Liquid-FEP-based U-tube triboelectric nanogenerator for harvesting water-wave energy. Nano Research, 2018, 11, 4062-4073.	5.8	143
630	A highly efficient triboelectric negative air ion generator. Nature Sustainability, 2021, 4, 147-153.	11.5	143

#	Article	IF	CITATIONS
631	Bundling and Interdigitation of Adsorbed Thiolate Groups in Self-Assembled Nanocrystal Superlattices. Journal of Physical Chemistry B, 1998, 102, 3068-3072.	1.2	142
632	Carrier Density and Schottky Barrier on the Performance of DC Nanogenerator. Nano Letters, 2008, 8, 328-332.	4.5	142
633	Self-Illuminating ⁶⁴ Cu-Doped CdSe/ZnS Nanocrystals for in Vivo Tumor Imaging. Journal of the American Chemical Society, 2014, 136, 1706-1709.	6.6	142
634	Triboelectric Sensor for Self-Powered Tracking of Object Motion inside Tubing. ACS Nano, 2014, 8, 3843-3850.	7.3	142
635	Theoretical Study of Rotary Freestanding Triboelectric Nanogenerators. Advanced Functional Materials, 2015, 25, 2928-2938.	7.8	142
636	Multilayered electret films based triboelectric nanogenerator. Nano Research, 2016, 9, 1442-1451.	5.8	142
637	Body-Integrated Self-Powered System for Wearable and Implantable Applications. ACS Nano, 2019, 13, 6017-6024.	7.3	142
638	Piezotronic Nanowire-Based Resistive Switches As Programmable Electromechanical Memories. Nano Letters, 2011, 11, 2779-2785.	4.5	141
639	Hybrid Energy Cell for Degradation of Methyl Orange by Self-Powered Electrocatalytic Oxidation. Nano Letters, 2013, 13, 803-808.	4.5	141
640	Piezotronics and piezo-phototronics $\hat{a} \in$ From single nanodevices to array of devices and then to integrated functional system. Nano Today, 2013, 8, 619-642.	6.2	141
641	Triboelectric Nanogenerators as a Self-Powered 3D Acceleration Sensor. ACS Applied Materials & Interfaces, 2015, 7, 19076-19082.	4.0	141
642	Electron Transfer as a Liquid Droplet Contacting a Polymer Surface. ACS Nano, 2020, 14, 17565-17573.	7.3	141
643	Optimizing and Improving the Growth Quality of ZnO Nanowire Arrays Guided by Statistical Design of Experiments. ACS Nano, 2009, 3, 1803-1812.	7.3	140
644	Dynamic Triboelectrificationâ€Induced Electroluminescence and its Use in Visualized Sensing. Advanced Materials, 2016, 28, 6656-6664.	11.1	140
645	RuO2 Nanowires and RuO2/TiO2 Core/Shell Nanowires: From Synthesis to Mechanical, Optical, Electrical, and Photoconductive Properties. Advanced Materials, 2007, 19, 143-149.	11.1	139
646	Motion Charged Battery as Sustainable Flexible-Power-Unit. ACS Nano, 2013, 7, 11263-11271.	7.3	139
647	Performance Optimization of Vertical Nanowireâ€based Piezoelectric Nanogenerators. Advanced Functional Materials, 2014, 24, 971-977.	7.8	139
648	Implantable Self-Powered Low-Level Laser Cure System for Mouse Embryonic Osteoblasts' Proliferation and Differentiation. ACS Nano, 2015, 9, 7867-7873.	7.3	138

#	Article	IF	CITATIONS
649	High performance sound driven triboelectric nanogenerator for harvesting noise energy. Nano Energy, 2015, 15, 321-328.	8.2	138
650	Bicrystalline zinc oxide nanowires. Chemical Physics Letters, 2003, 375, 96-101.	1.2	137
651	Polymer functionalized piezoelectric-FET as humidity/chemical nanosensors. Applied Physics Letters, 2007, 90, 262107.	1.5	137
652	Fully Enclosed Triboelectric Nanogenerators for Applications in Water and Harsh Environments. Advanced Energy Materials, 2013, 3, 1563-1568.	10.2	137
653	Case-Encapsulated Triboelectric Nanogenerator for Harvesting Energy from Reciprocating Sliding Motion. ACS Nano, 2014, 8, 3836-3842.	7.3	137
654	Highly transparent and flexible triboelectric nanogenerators: performance improvements and fundamental mechanisms. Journal of Materials Chemistry A, 2014, 2, 13219-13225.	5.2	137
655	Self-assembled nanoarchitectures of polar nanobelts/nanowires. Journal of Materials Chemistry, 2005, 15, 1021.	6.7	136
656	The Memristive Properties of a Single VO ₂ Nanowire with Switching Controlled by Selfâ€Heating. Advanced Materials, 2013, 25, 5098-5103.	11.1	136
657	Robust Thin Filmsâ€Based Triboelectric Nanogenerator Arrays for Harvesting Bidirectional Wind Energy. Advanced Energy Materials, 2016, 6, 1501799.	10.2	136
658	From Dual-Mode Triboelectric Nanogenerator to Smart Tactile Sensor: A Multiplexing Design. ACS Nano, 2017, 11, 3950-3956.	7.3	136
659	Photothermally tunable biodegradation of implantable triboelectric nanogenerators for tissue repairing. Nano Energy, 2018, 54, 390-399.	8.2	136
660	A Machineâ€Fabricated 3D Honeycombâ€Structured Flameâ€Retardant Triboelectric Fabric for Fire Escape and Rescue. Advanced Materials, 2020, 32, e2003897.	11.1	136
661	Enhanced Piezoâ€Photoelectric Catalysis with Oriented Carrier Migration in Asymmetric Auâ^'ZnO Nanorod Array. Small, 2020, 16, e1907603.	5.2	136
662	Synthesis and properties of Sr2CeO4 blue emission powder phosphor for field emission displays. Applied Physics Letters, 1999, 74, 1677-1679.	1.5	135
663	Metal/Semiconductor Core/Shell Nanodisks and Nanotubes. Advanced Functional Materials, 2006, 16, 53-62.	7.8	135
664	Electricity Generation based on Oneâ€Đimensional Groupâ€III Nitride Nanomaterials. Advanced Materials, 2010, 22, 2155-2158.	11.1	135
665	Piezotronic Effect on the Output Voltage of P3HT/ZnO Micro/Nanowire Heterojunction Solar Cells. Nano Letters, 2011, 11, 4812-4817.	4.5	135
666	Piezo-phototronics effect on nano/microwire solar cells. Energy and Environmental Science, 2012, 5, 6850.	15.6	135

#	Article	IF	CITATIONS
667	Applicability of triboelectric generator over a wide range of temperature. Nano Energy, 2014, 4, 150-156.	8.2	135
668	An Ultrarobust High-Performance Triboelectric Nanogenerator Based on Charge Replenishment. ACS Nano, 2015, 9, 5577-5584.	7.3	135
669	Lattice Strain Induced Remarkable Enhancement in Piezoelectric Performance of ZnO-Based Flexible Nanogenerators. ACS Applied Materials & Interfaces, 2016, 8, 1381-1387.	4.0	135
670	Self-Sterilized Flexible Single-Electrode Triboelectric Nanogenerator for Energy Harvesting and Dynamic Force Sensing. ACS Nano, 2017, 11, 856-864.	7.3	135
671	Power management and effective energy storage of pulsed output from triboelectric nanogenerator. Nano Energy, 2019, 61, 517-532.	8.2	135
672	All-Weather Droplet-Based Triboelectric Nanogenerator for Wave Energy Harvesting. ACS Nano, 2021, 15, 13200-13208.	7.3	135
673	Oxide Nanobelts and Nanowires—Growth, Properties and Applications. Journal of Nanoscience and Nanotechnology, 2008, 8, 27-55.	0.9	134
674	Compact Hybrid Cell Based on a Convoluted Nanowire Structure for Harvesting Solar and Mechanical Energy. Advanced Materials, 2011, 23, 873-877.	11.1	134
675	An ultrathin paper-based self-powered system for portable electronics and wireless human-machine interaction. Nano Energy, 2017, 39, 328-336.	8.2	134
676	Coupled Supercapacitor and Triboelectric Nanogenerator Boost Biomimetic Pressure Sensor. Advanced Energy Materials, 2018, 8, 1702671.	10.2	134
677	High-performance pentacene field-effect transistors using Al2O3 gate dielectrics prepared by atomic layer deposition (ALD). Organic Electronics, 2007, 8, 718-726.	1.4	133
678	Lead-Free Nanogenerator Made from Single ZnSnO ₃ Microbelt. ACS Nano, 2012, 6, 4335-4340.	7.3	133
679	Removal of Particulate Matter Emissions from a Vehicle Using a Self-Powered Triboelectric Filter. ACS Nano, 2015, 9, 12552-12561.	7.3	133
680	Performance Enhancement of Flexible Piezoelectric Nanogenerator via Doping and Rational 3D Structure Design For Selfâ€Powered Mechanosensational System. Advanced Functional Materials, 2019, 29, 1904259.	7.8	133
681	Honeycomb Structure Inspired Triboelectric Nanogenerator for Highly Effective Vibration Energy Harvesting and Selfâ€Powered Engine Condition Monitoring. Advanced Energy Materials, 2019, 9, 1902460.	10.2	133
682	Flame-Retardant Textile-Based Triboelectric Nanogenerators for Fire Protection Applications. ACS Nano, 2020, 14, 15853-15863.	7.3	133
683	Perfect Orientation Ordered in-Situ One-Dimensional Self-Assembly of Mn-Doped PbSe Nanocrystals. Journal of the American Chemical Society, 2004, 126, 14816-14821.	6.6	132
684	Piezoelectric Potential Gated Field-Effect Transistor Based on a Free-Standing ZnO Wire. Nano Letters, 2009, 9, 3435-3439.	4.5	132

#	Article	IF	CITATIONS
685	High-efficiency ramie fiber degumming and self-powered degumming wastewater treatment using triboelectric nanogenerator. Nano Energy, 2016, 22, 548-557.	8.2	132
686	Heterostructured nanorod array with piezophototronic and plasmonic effect for photodynamic bacteria killing and wound healing. Nano Energy, 2018, 46, 29-38.	8.2	132
687	Soft-contact cylindrical triboelectric-electromagnetic hybrid nanogenerator based on swing structure for ultra-low frequency water wave energy harvesting. Nano Energy, 2021, 81, 105625.	8.2	132
688	Seed-mediated successive growth of gold particles accomplished by UV irradiation: a photochemical approach for size-controlled synthesis. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 140, 75-80.	2.0	131
689	Mesoporous Single-Crystal ZnO Nanowires Epitaxially Sheathed with Zn2SiO4. Advanced Materials, 2004, 16, 1215-1218.	11.1	131
690	Self-Powered Triboelectric Micro Liquid/Gas Flow Sensor for Microfluidics. ACS Nano, 2016, 10, 8104-8112.	7.3	131
691	Aspect Ratio Dependence of the Elastic Properties of ZnO Nanobelts. Nano Letters, 2007, 7, 1314-1317.	4.5	130
692	Environmental life cycle assessment and techno-economic analysis of triboelectric nanogenerators. Energy and Environmental Science, 2017, 10, 653-671.	15.6	130
693	Piezoâ€Phototronic Effect for Enhanced Flexible MoS ₂ /WSe ₂ van der Waals Photodiodes. Advanced Functional Materials, 2018, 28, 1802849.	7.8	130
694	Continuous and Scalable Manufacture of Hybridized Nano-Micro Triboelectric Yarns for Energy Harvesting and Signal Sensing. ACS Nano, 2020, 14, 4716-4726.	7.3	130
695	Recent progress in blue energy harvesting for powering distributed sensors in ocean. Nano Energy, 2021, 88, 106199.	8.2	130
696	Superelasticity and Nanofracture Mechanics of ZnO Nanohelices. Nano Letters, 2006, 6, 2536-2543.	4.5	129
697	Simultaneously harvesting mechanical and chemical energies by a hybrid cell for self-powered biosensors and personal electronics. Energy and Environmental Science, 2013, 6, 1744.	15.6	129
698	Nanometer Resolution Selfâ€Powered Static and Dynamic Motion Sensor Based on Microâ€Grated Triboelectrification. Advanced Materials, 2014, 26, 1719-1724.	11.1	129
699	Sustainable Energy Source for Wearable Electronics Based on Multilayer Elastomeric Triboelectric Nanogenerators. Advanced Energy Materials, 2017, 7, 1602832.	10.2	129
700	Rationally patterned electrode of direct-current triboelectric nanogenerators for ultrahigh effective surface charge density. Nature Communications, 2020, 11, 6186.	5.8	129
701	Self-driven power management system for triboelectric nanogenerators. Nano Energy, 2020, 71, 104642.	8.2	129
702	Enhancing the Photon- and Gas-Sensing Properties of a Single SnO ₂ Nanowire Based Nanodevice by Nanoparticle Surface Functionalization. Journal of Physical Chemistry C, 2008, 112, 11539-11544.	1.5	128

#	Article	IF	CITATIONS
703	A flexible p-CuO/n-MoS ₂ heterojunction photodetector with enhanced photoresponse by the piezo-phototronic effect. Materials Horizons, 2017, 4, 274-280.	6.4	128
704	Energy harvesting and wireless power transmission by a hybridized electromagnetic–triboelectric nanogenerator. Energy and Environmental Science, 2019, 12, 2678-2684.	15.6	128
705	Dynamically Crosslinked Dry Ion onducting Elastomers for Soft Iontronics. Advanced Materials, 2021, 33, e2101396.	11.1	128
706	On the expanded Maxwell's equations for moving charged media system – General theory, mathematical solutions and applications in TENG. Materials Today, 2022, 52, 348-363.	8.3	128
707	High-Yield Synthesis of Single-Crystal Nanosprings of ZnO. Small, 2005, 1, 945-949.	5.2	127
708	DNA Functionalized Single-Walled Carbon Nanotubes for Electrochemical Detection. Journal of Physical Chemistry B, 2005, 109, 20072-20076.	1.2	127
709	Self-powered thin-film motion vector sensor. Nature Communications, 2015, 6, 8031.	5.8	127
710	Construction of a 3D rGO–collagen hybrid scaffold for enhancement of the neural differentiation of mesenchymal stem cells. Nanoscale, 2016, 8, 1897-1904.	2.8	127
711	High-performance triboelectric nanogenerators for self-powered, in-situ and real-time water quality mapping. Nano Energy, 2019, 66, 104117.	8.2	127
712	Enhanced photocatalytic H2 evolution by plasmonic and piezotronic effects based on periodic Al/BaTiO3 heterostructures. Nano Energy, 2019, 62, 513-520.	8.2	127
713	Self-power electroreduction of N2 into NH3 by 3D printed triboelectric nanogenerators. Materials Today, 2019, 28, 17-24.	8.3	127
714	Zinc-blende ZnO and its role in nucleating wurtzite tetrapods and twinned nanowires. Applied Physics Letters, 2007, 90, 153510.	1.5	126
715	Mechanicalâ^'Electrical Triggers and Sensors Using Piezoelectric Micowires/Nanowires. Nano Letters, 2008, 8, 2725-2730.	4.5	126
716	Piezoâ€Phototronic Effect Modulated Deep UV Photodetector Based on ZnOâ€Ga ₂ O ₃ Heterojuction Microwire. Advanced Functional Materials, 2018, 28, 1706379.	7.8	126
717	Piezophotonic effect based on mechanoluminescent materials for advanced flexible optoelectronic applications. Nano Energy, 2019, 55, 389-400.	8.2	126
718	Mechanical and electrostatic properties of carbon nanotubes and nanowires. Materials Science and Engineering C, 2001, 16, 3-10.	3.8	125
719	Nanowire Piezoâ€phototronic Photodetector: Theory and Experimental Design. Advanced Materials, 2012, 24, 1410-1417.	11.1	125
720	Silicon-Based Hybrid Energy Cell for Self-Powered Electrodegradation and Personal Electronics. ACS Nano, 2013, 7, 2808-2813.	7.3	125

#	Article	IF	CITATIONS
721	Structural and chemical disorder near theY2BaCu05/YBa2Cu3O7â^ÎÎnterface and its possible relation to the flux-pinning behavior in melt-texturedYBa2Cu3O7â^Îſ. Physical Review B, 1993, 47, 5373-5382.	1.1	124
722	Systematic Study on Experimental Conditions for Large-Scale Growth of Aligned ZnO Nanwires on Nitrides. Journal of Physical Chemistry B, 2005, 109, 9869-9872.	1.2	124
723	Inductorâ€Free Wireless Energy Delivery via Maxwell's Displacement Current from an Electrodeless Triboelectric Nanogenerator. Advanced Materials, 2018, 30, 1704077.	11.1	124
724	Fully Elastic and Metalâ€Free Tactile Sensors for Detecting both Normal and Tangential Forces Based on Triboelectric Nanogenerators. Advanced Functional Materials, 2018, 28, 1802989.	7.8	124
725	Sustainable and Biodegradable Wood Sponge Piezoelectric Nanogenerator for Sensing and Energy Harvesting Applications. ACS Nano, 2020, 14, 14665-14674.	7.3	124
726	Charge Pumping Strategy for Rotation and Sliding Type Triboelectric Nanogenerators. Advanced Energy Materials, 2020, 10, 2000605.	10.2	124
727	Wurtzite ZnS nanosaws produced by polar surfaces. Chemical Physics Letters, 2004, 385, 8-11.	1.2	123
728	Thermal conductivities of individual tin dioxide nanobelts. Applied Physics Letters, 2004, 84, 2638-2640.	1.5	123
729	PLD-Assisted VLS Growth of Aligned Ferrite Nanorods, Nanowires, and NanobeltsSynthesis, and Properties. Journal of Physical Chemistry B, 2006, 110, 21672-21679.	1.2	123
730	Energy harvesting for self-powered nanosystems. Nano Research, 2008, 1, 1-8.	5.8	123
731	Large enhancement in photon detection sensitivity via Schottky-gated CdS nanowire nanosensors. Applied Physics Letters, 2010, 96, .	1.5	123
732	Solution-Derived ZnO Homojunction Nanowire Films on Wearable Substrates for Energy Conversion and Self-Powered Gesture Recognition. Nano Letters, 2014, 14, 6897-6905.	4.5	123
733	Contact Electrification Field-Effect Transistor. ACS Nano, 2014, 8, 8702-8709.	7.3	123
734	Self-Powered Wireless Smart Sensor Node Enabled by an Ultrastable, Highly Efficient, and Superhydrophobic-Surface-Based Triboelectric Nanogenerator. ACS Nano, 2016, 10, 9044-9052.	7.3	123
735	A self-powered sterilization system with both instant and sustainable anti-bacterial ability. Nano Energy, 2017, 36, 241-249.	8.2	123
736	An aeroelastic flutter based triboelectric nanogenerator as a self-powered active wind speed sensor in harsh environment. Extreme Mechanics Letters, 2017, 15, 122-129.	2.0	123
737	Cellulose II Aerogelâ€Based Triboelectric Nanogenerator. Advanced Functional Materials, 2020, 30, 2001763.	7.8	123
738	Growth of Horizonatal ZnO Nanowire Arrays on Any Substrate. Journal of Physical Chemistry C, 2008, 112, 18734-18736.	1.5	122

#	Article	IF	CITATIONS
739	Dual functional transparent film for proximity and pressure sensing. Nano Research, 2014, 7, 1488-1496.	5.8	122
740	Self-powered metal surface anti-corrosion protection using energy harvested from rain drops and wind. Nano Energy, 2015, 14, 193-200.	8.2	122
741	High-Resolution Dynamic Pressure Sensor Array Based on Piezo-phototronic Effect Tuned Photoluminescence Imaging. ACS Nano, 2015, 9, 3143-3150.	7.3	122
742	Efficient Charging of Liâ€lon Batteries with Pulsed Output Current of Triboelectric Nanogenerators. Advanced Science, 2016, 3, 1500255.	5.6	122
743	A Selfâ€Powered Implantable Drugâ€Đelivery System Using Biokinetic Energy. Advanced Materials, 2017, 29, 1605668.	11.1	122
744	Selfâ€Powered Tactile Sensor Array Systems Based on the Triboelectric Effect. Advanced Functional Materials, 2019, 29, 1806379.	7.8	122
745	Large-scale fabrication of robust textile triboelectric nanogenerators. Nano Energy, 2020, 71, 104605.	8.2	122
746	Temperature-Dependent Size-Controlled Nucleation and Growth of Gold Nanoclusters. Journal of Physical Chemistry A, 1999, 103, 10255-10259.	1.1	121
747	Springs, Rings, and Spirals of Rutile-Structured Tin Oxide Nanobelts. Journal of the American Chemical Society, 2006, 128, 1466-1467.	6.6	121
748	Optimizing the Power Output of a ZnO Photocell by Piezopotential. ACS Nano, 2010, 4, 4220-4224.	7.3	121
749	Highly anisotropic power generation in piezoelectric hemispheres composed stretchable composite film for self-powered motion sensor. Nano Energy, 2015, 11, 1-10.	8.2	121
750	Piezotronics and piezo-phototronics with third-generation semiconductors. MRS Bulletin, 2018, 43, 922-927.	1.7	121
751	Piezoelectric and triboelectric nanogenerators: Trends and impacts. Nano Today, 2018, 22, 10-13.	6.2	121
752	Shape-Adaptive, Self-Healable Triboelectric Nanogenerator with Enhanced Performances by Soft Solid–Solid Contact Electrification. ACS Nano, 2019, 13, 8936-8945.	7.3	121
753	Dualâ€Tube Helmholtz Resonatorâ€Based Triboelectric Nanogenerator for Highly Efficient Harvesting of Acoustic Energy. Advanced Energy Materials, 2019, 9, 1902824.	10.2	121
754	Electrically Responsive Materials and Devices Directly Driven by the High Voltage of Triboelectric Nanogenerators. Advanced Functional Materials, 2019, 29, 1806351.	7.8	121
755	Natural wood-based triboelectric nanogenerator as self-powered sensing for smart homes and floors. Nano Energy, 2020, 75, 104957.	8.2	121
756	Pattern and Feature Designed Growth of ZnO Nanowire Arrays for Vertical Devices. Journal of Physical Chemistry B, 2006, 110, 50-53.	1.2	120

#	Article	IF	CITATIONS
757	Lasing Mechanism of ZnO Nanowires/Nanobelts at Room Temperature. Journal of Physical Chemistry B, 2006, 110, 12865-12873.	1.2	120
758	Density-Controlled Growth of Aligned ZnO Nanowires Sharing a Common Contact:  A Simple, Low-Cost, and Mask-Free Technique for Large-Scale Applications. Journal of Physical Chemistry B, 2006, 110, 7720-7724.	1.2	120
759	Optimizing Performance of Silicon-Based p–n Junction Photodetectors by the Piezo-Phototronic Effect. ACS Nano, 2014, 8, 12866-12873.	7.3	120
760	Controllable interior structure of ZnCo2O4 microspheres for high-performance lithium-ion batteries. Nano Energy, 2015, 11, 64-70.	8.2	120
761	Signal Output of Triboelectric Nanogenerator at Oil–Water–Solid Multiphase Interfaces and its Application for Dualâ€ 6 ignal Chemical Sensing. Advanced Materials, 2019, 31, e1902793.	11.1	120
762	Crystal Orientation-Ordered ZnS Nanowire Bundles. Journal of the American Chemical Society, 2004, 126, 14372-14373.	6.6	119
763	Elastic Properties and Buckling of Silicon Nanowires. Advanced Materials, 2008, 20, 3919-3923.	11.1	119
764	Mechanism and Optimization of pH Sensing Using SnO ₂ Nanobelt Field Effect Transistors. Nano Letters, 2008, 8, 4179-4184.	4.5	119
765	Luminescent and Raman Active Silver Nanoparticles with Polycrystalline Structure. Journal of the American Chemical Society, 2008, 130, 10472-10473.	6.6	119
766	Engineering of efficiency limiting free carriers and an interfacial energy barrier for an enhancing piezoelectric generation. Energy and Environmental Science, 2013, 6, 97-104.	15.6	119
767	Enhancing the performance of triboelectric nanogenerator through prior-charge injection and its application on self-powered anticorrosion. Nano Energy, 2014, 10, 37-43.	8.2	119
768	A Selfâ€Powered Angle Measurement Sensor Based on Triboelectric Nanogenerator. Advanced Functional Materials, 2015, 25, 2166-2174.	7.8	119
769	Triboelectric Charging at the Nanostructured Solid/Liquid Interface for Area-Scalable Wave Energy Conversion and Its Use in Corrosion Protection. ACS Nano, 2015, 9, 7671-7677.	7.3	119
770	Enhanced performances of flexible ZnO/perovskite solar cells by piezo-phototronic effect. Nano Energy, 2016, 23, 27-33.	8.2	119
771	Superhydrophobic Cellulose Paperâ€Based Triboelectric Nanogenerator for Water Drop Energy Harvesting. Advanced Materials Technologies, 2020, 5, 2000454.	3.0	119
772	Self-Healing and Elastic Triboelectric Nanogenerators for Muscle Motion Monitoring and Photothermal Treatment. ACS Nano, 2021, 15, 14653-14661.	7.3	119
773	Piezotronic Effect in Solution-Grown p-Type ZnO Nanowires and Films. Nano Letters, 2013, 13, 2647-2653.	4.5	118
774	Electret Film-Enhanced Triboelectric Nanogenerator Matrix for Self-Powered Instantaneous Tactile Imaging. ACS Applied Materials & Interfaces, 2014, 6, 3680-3688.	4.0	118

#	Article	IF	CITATIONS
775	Advances in Highâ€Performance Autonomous Energy and Selfâ€Powered Sensing Textiles with Novel 3D Fabric Structures. Advanced Materials, 2022, 34, e2109355.	11.1	118
776	Bulk Acoustic Resonator Based on Piezoelectric ZnO Belts. Nano Letters, 2006, 6, 1155-1159.	4.5	117
777	A self-powered electrochromic device driven by a nanogenerator. Energy and Environmental Science, 2012, 5, 9462.	15.6	117
778	A Selfâ€Powered Dynamic Displacement Monitoring System Based on Triboelectric Accelerometer. Advanced Energy Materials, 2017, 7, 1700565.	10.2	117
779	Contact-electrification-activated artificial afferents at femtojoule energy. Nature Communications, 2021, 12, 1581.	5.8	117
780	Optical Properties of Amorphous ZnO, CdO, and PbO Nanoclusters in Solution. Chemistry of Materials, 1999, 11, 3037-3043.	3.2	116
781	Hybrid energy cells for simultaneously harvesting multi-types of energies. Nano Energy, 2015, 14, 245-256.	8.2	116
782	Rotating-Sleeve Triboelectric–Electromagnetic Hybrid Nanogenerator for High Efficiency of Harvesting Mechanical Energy. ACS Nano, 2017, 11, 8370-8378.	7.3	116
783	High Power Density Tower-like Triboelectric Nanogenerator for Harvesting Arbitrary Directional Water Wave Energy. ACS Nano, 2019, 13, 1932-1939.	7.3	116
784	Elastic and Inelastic Scattering in Electron Diffraction and Imaging. , 1995, , .		115
785	Quantifying the Traction Force of a Single Cell by Aligned Silicon Nanowire Array. Nano Letters, 2009, 9, 3575-3580.	4.5	115
786	Piezotronic Effect in Flexible Thinâ€film Based Devices. Advanced Materials, 2013, 25, 3371-3379.	11.1	115
787	Piezoâ€Phototronic Enhanced UV Sensing Based on a Nanowire Photodetector Array. Advanced Materials, 2015, 27, 7963-7969.	11.1	115
788	Si@void@C Nanofibers Fabricated Using a Self-Powered Electrospinning System for Lithium-Ion Batteries. ACS Nano, 2018, 12, 4835-4843.	7.3	115
789	Self-powered nanofiber-based screen-print triboelectric sensors for respiratory monitoring. Nano Research, 2018, 11, 3771-3779.	5.8	115
790	Selfâ€Powered Distributed Water Level Sensors Based on Liquid–Solid Triboelectric Nanogenerators for Ship Draft Detecting. Advanced Functional Materials, 2019, 29, 1900327.	7.8	115
791	Allâ€Nanofiber Selfâ€Powered Skinâ€Interfaced Realâ€Time Respiratory Monitoring System for Obstructive Sleep Apneaâ€Hypopnea Syndrome Diagnosing. Advanced Functional Materials, 2021, 31, 2103559.	7.8	115
792	Tribovoltaic Effect on Metal–Semiconductor Interface for Directâ€Current Lowâ€Impedance Triboelectric Nanogenerators. Advanced Energy Materials, 2020, 10, 1903713.	10.2	115

#	Article	IF	CITATIONS
793	Characteristics of output voltage and current of integrated nanogenerators. Applied Physics Letters, 2009, 94, .	1.5	114
794	Study of the Piezoelectric Power Generation of ZnO Nanowire Arrays Grown by Different Methods. Advanced Functional Materials, 2011, 21, 628-633.	7.8	114
795	Piezotronic Effect on the Transport Properties of GaN Nanobelts for Active Flexible Electronics. Advanced Materials, 2012, 24, 3532-3537.	11.1	114
796	Fe ²⁺ â€Doped Layered Double (Ni, Fe) Hydroxides as Efficient Electrocatalysts for Water Splitting and Selfâ€Powered Electrochemical Systems. Small, 2019, 15, e1902551.	5.2	114
797	Conjunction of triboelectric nanogenerator with induction coils as wireless power sources and self-powered wireless sensors. Nature Communications, 2020, 11, 58.	5.8	114
798	Stretchable, Transparent, and Thermally Stable Triboelectric Nanogenerators Based on Solventâ€Free Ionâ€Conducting Elastomer Electrodes. Advanced Functional Materials, 2020, 30, 1909252.	7.8	114
799	Sensing of joint and spinal bending or stretching via a retractable and wearable badge reel. Nature Communications, 2021, 12, 2950.	5.8	114
800	Auto‧witching Selfâ€Powered System for Efficient Broadâ€Band Wind Energy Harvesting Based on Dualâ€Rotation Shaft Triboelectric Nanogenerator. Advanced Energy Materials, 2021, 11, 2101194.	10.2	114
801	Strain-Gated Piezotronic Transistors Based on Vertical Zinc Oxide Nanowires. ACS Nano, 2012, 6, 3760-3766.	7.3	113
802	Conjuncted Pyroâ€Piezoelectric Effect for Selfâ€Powered Simultaneous Temperature and Pressure Sensing. Advanced Materials, 2019, 31, e1902831.	11.1	113
803	All-in-one 3D acceleration sensor based on coded liquid–metal triboelectric nanogenerator for vehicle restraint system. Materials Today, 2021, 43, 37-44.	8.3	113
804	Formation of PbSe Nanocrystals:Â A Growth toward Nanocubes. Journal of Physical Chemistry B, 2005, 109, 19219-19222.	1.2	112
805	Hybridizing Triboelectrification and Electromagnetic Induction Effects for High-Efficient Mechanical Energy Harvesting. ACS Nano, 2014, 8, 7442-7450.	7.3	112
806	Subdermal Flexible Solar Cell Arrays for Powering Medical Electronic Implants. Advanced Healthcare Materials, 2016, 5, 1572-1580.	3.9	112
807	Tribotronic Transistor Array as an Active Tactile Sensing System. ACS Nano, 2016, 10, 10912-10920.	7.3	112
808	Triboelectric micromotors actuated by ultralow frequency mechanical stimuli. Nature Communications, 2019, 10, 2309.	5.8	112
809	Simultaneously Enhancing Power Density and Durability of Slidingâ€Mode Triboelectric Nanogenerator via Interface Liquid Lubrication. Advanced Energy Materials, 2020, 10, 2002920.	10.2	112
810	Lead-free KNbO ₃ ferroelectric nanorod based flexible nanogenerators and capacitors. Nanotechnology, 2012, 23, 375401.	1.3	111

#	Article	IF	CITATIONS
811	Hybrid energy cell for simultaneously harvesting wind, solar, and chemical energies. Nano Research, 2014, 7, 1631-1639.	5.8	111
812	Automatic Mode Transition Enabled Robust Triboelectric Nanogenerators. ACS Nano, 2015, 9, 12334-12343.	7.3	111
813	Thermal–Electric Nanogenerator Based on the Electrokinetic Effect in Porous Carbon Film. Advanced Energy Materials, 2018, 8, 1702481.	10.2	111
814	Direct urrent Triboelectric Nanogenerator Realized by Air Breakdown Induced Ionized Air Channel. Advanced Energy Materials, 2018, 8, 1800889.	10.2	111
815	Boosting the Solar Cell Efficiency by Flexo-photovoltaic Effect?. ACS Nano, 2019, 13, 12259-12267.	7.3	111
816	Rationally designed rotation triboelectric nanogenerators with much extended lifetime and durability. Nano Energy, 2020, 68, 104378.	8.2	111
817	UV-Protective, Self-Cleaning, and Antibacterial Nanofiber-Based Triboelectric Nanogenerators for Self-Powered Human Motion Monitoring. ACS Applied Materials & Interfaces, 2021, 13, 11205-11214.	4.0	111
818	Smart textile triboelectric nanogenerators: Current status and perspectives. MRS Bulletin, 2021, 46, 512-521.	1.7	111
819	A Dual-Mode Triboelectric Nanogenerator for Wind Energy Harvesting and Self-Powered Wind Speed Monitoring. ACS Nano, 2022, 16, 6244-6254.	7.3	111
820	Multiwalled carbon nanotubes are ballistic conductors at room temperature. Applied Physics A: Materials Science and Processing, 2002, 74, 363-365.	1.1	110
821	Road Map for the Controlled Synthesis of CdSe Nanowires, Nanobelts, and Nanosaws—A Step Towards Nanomanufacturing. Advanced Materials, 2005, 17, 2635-2639.	11.1	110
822	pâ€Type αâ€Fe ₂ O ₃ Nanowires and their nâ€Type Transition in a Reductive Ambient. Small, 2007, 3, 1356-1361.	5.2	110
823	Nanogenerator as self-powered vibration sensor. Nano Energy, 2012, 1, 418-423.	8.2	110
824	Flexible and Transparent Nanogenerators Based on a Composite of Leadâ€Free ZnSnO ₃ Triangularâ€Belts. Advanced Materials, 2012, 24, 6094-6099.	11.1	110
825	Progress in Piezoâ€Phototronicâ€Effectâ€Enhanced Lightâ€Emitting Diodes and Pressure Imaging. Advanced Materials, 2016, 28, 1535-1552.	11.1	110
826	Tribotronics—A new field by coupling triboelectricity and semiconductor. Nano Today, 2016, 11, 521-536.	6.2	110
827	Antibacterial Composite Film-Based Triboelectric Nanogenerator for Harvesting Walking Energy. ACS Applied Materials & Interfaces, 2017, 9, 11882-11888.	4.0	110
828	Unity Convoluted Design of Solid Liâ€Ion Battery and Triboelectric Nanogenerator for Selfâ€Powered Wearable Electronics. Advanced Energy Materials, 2017, 7, 1701629.	10.2	110

#	Article	IF	CITATIONS
829	Piezoâ€Phototronic Effect Enhanced Flexible Solar Cells Based on nâ€ZnO/pâ€&nS Core–Shell Nanowire Array. Advanced Science, 2017, 4, 1600185.	5.6	110
830	Theoretical modeling of triboelectric nanogenerators (TENGs). Journal of Applied Physics, 2020, 128, .	1.1	110
831	A Triboelectric–Electromagnetic Hybrid Nanogenerator with Broadband Working Range for Wind Energy Harvesting and a Self-Powered Wind Speed Sensor. ACS Energy Letters, 0, , 1443-1452.	8.8	110
832	Gravity triboelectric nanogenerator for the steady harvesting of natural wind energy. Nano Energy, 2021, 82, 105740.	8.2	110
833	Giant Voltage Enhancement <i>via</i> Triboelectric Charge Supplement Channel for Self-Powered Electroadhesion. ACS Nano, 2018, 12, 10262-10271.	7.3	109
834	Wireless self-powered sensor networks driven by triboelectric nanogenerator for in-situ real time survey of environmental monitoring. Nano Energy, 2018, 53, 501-507.	8.2	109
835	Self-Powered Multifunctional Motion Sensor Enabled by Magnetic-Regulated Triboelectric Nanogenerator. ACS Nano, 2018, 12, 5726-5733.	7.3	109
836	Highâ€Energy Asymmetric Supercapacitor Yarns for Selfâ€Charging Power Textiles. Advanced Functional Materials, 2019, 29, 1806298.	7.8	109
837	Simulating high-angle annular dark-field stem images including inelastic thermal diffuse scattering. Ultramicroscopy, 1989, 31, 437-453.	0.8	108
838	Phase controlled synthesis of ZnS nanobelts: zinc blende vs wurtzite. Chemical Physics Letters, 2004, 398, 32-36.	1.2	108
839	Ten years' venturing in ZnO nanostructures: from discovery to scientific understanding and to technology applications. Science Bulletin, 2009, 54, 4021-4034.	1.7	108
840	Low-threshold two-photon pumped ZnO nanowire lasers. Optics Express, 2009, 17, 7893.	1.7	108
841	High performance of ZnO nanowire protein sensors enhanced by the piezotronic effect. Energy and Environmental Science, 2013, 6, 494.	15.6	108
842	One-Piece Triboelectric Nanosensor for Self-Triggered Alarm System and Latent Fingerprint Detection. ACS Nano, 2016, 10, 10366-10372.	7.3	108
843	On‣kin Triboelectric Nanogenerator and Selfâ€Powered Sensor with Ultrathin Thickness and High Stretchability. Small, 2017, 13, 1702929.	5.2	108
844	The Current Development and Future Outlook of Triboelectric Nanogenerators: A Survey of Literature. Advanced Materials Technologies, 2019, 4, 1800588.	3.0	108
845	Triboelectric nanogenerators powered electrodepositing tri-functional electrocatalysts for water splitting and rechargeable zinc-air battery: A case of Pt nanoclusters on NiFe-LDH nanosheets. Nano Energy, 2020, 72, 104669.	8.2	108
846	Advanced Matrixes for Binderâ€Free Nanostructured Electrodes in Lithiumâ€Ion Batteries. Advanced Materials, 2020, 32, e1908445.	11.1	108

#	Article	IF	CITATIONS
847	Hierarchical TiO2 nanowire/graphite fiber photoelectrocatalysis setup powered by a wind-driven nanogenerator: A highly efficient photoelectrocatalytic device entirely based on renewable energy. Nano Energy, 2015, 11, 19-27.	8.2	107
848	Self-Powered Tactile Sensor with Learning and Memory. ACS Nano, 2020, 14, 1390-1398.	7.3	107
849	Energy Harvesting from Breeze Wind (0.7–6ÂmÂs ^{â^'1}) Using Ultraâ€&tretchable Triboelectric Nanogenerator. Advanced Energy Materials, 2020, 10, 2001770.	10.2	107
850	Multifunctional Coaxial Energy Fiber toward Energy Harvesting, Storage, and Utilization. ACS Nano, 2021, 15, 1597-1607.	7.3	107
851	A Three Dimensional Multi‣ayered Sliding Triboelectric Nanogenerator. Advanced Energy Materials, 2014, 4, 1301592.	10.2	106
852	Optimization of the Output Efficiency of GaN Nanowire Piezoelectric Nanogenerators by Tuning the Free Carrier Concentration. Advanced Energy Materials, 2014, 4, 1400392.	10.2	106
853	Fully Rollable Lead-Free Poly(vinylidene fluoride)-Niobate-Based Nanogenerator with Ultra-Flexible Nano-Network Electrodes. ACS Nano, 2018, 12, 4803-4811.	7.3	106
854	Fully Bioabsorbable Capacitor as an Energy Storage Unit for Implantable Medical Electronics. Advanced Science, 2019, 6, 1801625.	5.6	106
855	Magnetic and Electrical Characterizations of Halfâ€Metallic Fe ₃ O ₄ Nanowires. Advanced Materials, 2007, 19, 2290-2294.	11.1	105
856	Bio-inspired fabrication of antireflection nanostructures by replicating fly eyes. Nanotechnology, 2008, 19, 025602.	1.3	105
857	Tunable Tribotronic Dualâ€Gate Logic Devices Based on 2DÂMoS ₂ and Black Phosphorus. Advanced Materials, 2018, 30, e1705088.	11.1	105
858	Ordered-Vacancy-Induced Cation Intercalation into Layered Double Hydroxides: A General Approach for High-Performance Supercapacitors. CheM, 2018, 4, 2168-2179.	5.8	105
859	Selfâ€Powered Iontophoretic Transdermal Drug Delivery System Driven and Regulated by Biomechanical Motions. Advanced Functional Materials, 2020, 30, 1907378.	7.8	105
860	Self-Powered Sensor for Quantifying Ocean Surface Water Waves Based on Triboelectric Nanogenerator. ACS Nano, 2020, 14, 7092-7100.	7.3	105
861	Synthesis of Single-Crystalline Niobate Nanorods via Ion-Exchange Based on Molten-Salt Reaction. Journal of the American Chemical Society, 2007, 129, 15444-15445.	6.6	104
862	Single-Crystalline Branched Zinc Phosphide Nanostructures:Â Synthesis, Properties, and Optoelectronic Devices. Nano Letters, 2007, 7, 269-275.	4.5	104
863	Electrochemical Cathodic Protection Powered by Triboelectric Nanogenerator. Advanced Functional Materials, 2014, 24, 6691-6699.	7.8	104
864	A Streaming Potential/Currentâ€Based Microfluidic Direct Current Generator for Selfâ€Powered Nanosystems. Advanced Materials, 2015, 27, 6482-6487.	11.1	104

#	Article	IF	CITATIONS
865	An inductor-free auto-power-management design built-in triboelectric nanogenerators. Nano Energy, 2017, 31, 302-310.	8.2	104
866	Self â€Powered Insole Plantar Pressure Mapping System. Advanced Functional Materials, 2018, 28, 1801606.	7.8	104
867	Unconventional Route to Oxygenâ€Vacancyâ€Enabled Highly Efficient Electron Extraction and Transport in Perovskite Solar Cells. Angewandte Chemie - International Edition, 2020, 59, 1611-1618.	7.2	104
868	Breeze-driven triboelectric nanogenerator for wind energy harvesting and application in smart agriculture. Applied Energy, 2022, 306, 117977.	5.1	104
869	Stretchable Unsymmetrical Piezoelectric BaTiO ₃ Composite Hydrogel for Triboelectric Nanogenerators and Multimodal Sensors. ACS Nano, 2022, 16, 1661-1670.	7.3	104
870	Shapes, multiple twins and surface structures of monodisperse FePt magnetic nanocrystals. Surface Science, 2002, 505, 325-335.	0.8	103
871	A Packaged Selfâ€Powered System with Universal Connectors Based on Hybridized Nanogenerators. Advanced Materials, 2016, 28, 846-852.	11.1	103
872	Electronic Skin for Closed-Loop Systems. ACS Nano, 2019, 13, 12287-12293.	7.3	103
873	Mg Doped Perovskite LaNiO ₃ Nanofibers as an Efficient Bifunctional Catalyst for Rechargeable Zinc–Air Batteries. ACS Applied Energy Materials, 2019, 2, 923-931.	2.5	103
874	Mechanoplastic Tribotronic Floatingâ€Gate Neuromorphic Transistor. Advanced Functional Materials, 2020, 30, 2002506.	7.8	103
875	Environmental energy harvesting based on triboelectric nanogenerators. Nanotechnology, 2020, 31, 242001.	1.3	103
876	Polar Charges Induced Electric Hysteresis of ZnO Nano/Microwire for Fast Data Storage. Nano Letters, 2011, 11, 2829-2834.	4.5	102
877	Hybrid energy cell for harvesting mechanical energy from one motion using two approaches. Nano Energy, 2015, 11, 162-170.	8.2	102
878	Elasticâ€Beam Triboelectric Nanogenerator for Highâ€Performance Multifunctional Applications: Sensitive Scale, Acceleration/Force/Vibration Sensor, and Intelligent Keyboard. Advanced Energy Materials, 2018, 8, 1802159.	10.2	102
879	Helical Fiber Strain Sensors Based on Triboelectric Nanogenerators for Self-Powered Human Respiratory Monitoring. ACS Nano, 2022, 16, 2811-2821.	7.3	102
880	Heterogeneous ultrathin films fabricated by alternate assembly of exfoliated layered double hydroxides and polyanion. Chemical Communications, 2008, , 5188.	2.2	101
881	Conjunction of fiber solar cells with groovy micro-reflectors as highly efficient energy harvesters. Energy and Environmental Science, 2011, 4, 3379.	15.6	101
882	Triboelectric liquid volume sensor for self-powered lab-on-chip applications. Nano Energy, 2016, 23, 80-88.	8.2	101

#	Article	IF	CITATIONS
883	Rolling Friction Enhanced Freeâ€6tanding Triboelectric Nanogenerators and their Applications in Selfâ€Powered Electrochemical Recovery Systems. Advanced Functional Materials, 2016, 26, 1054-1062.	7.8	101
884	Multifunctional Sensor Based on Translationalâ€Rotary Triboelectric Nanogenerator. Advanced Energy Materials, 2019, 9, 1901124.	10.2	101
885	Piezoelectric Nanostructures: From Growth Phenomena to Electric Nanogenerators. MRS Bulletin, 2007, 32, 109-116.	1.7	100
886	Nanowire Structural Evolution from Fe3 O4 to ϵ-Fe2 O3. Advanced Functional Materials, 2007, 17, 1172-1178.	7.8	100
887	Controlled Growth of Aligned Polymer Nanowires. Journal of Physical Chemistry C, 2009, 113, 16571-16574.	1.5	100
888	Piezotronic Effect on the Sensitivity and Signal Level of Schottky Contacted Proactive Micro/Nanowire Nanosensors. ACS Nano, 2013, 7, 1803-1810.	7.3	100
889	Fully Enclosed Cylindrical Single-Electrode-Based Triboelectric Nanogenerator. ACS Applied Materials & Interfaces, 2014, 6, 553-559.	4.0	100
890	Largely Improving the Robustness and Lifetime of Triboelectric Nanogenerators through Automatic Transition between Contact and Noncontact Working States. ACS Nano, 2015, 9, 7479-7487.	7.3	100
891	Stimulating Acrylic Elastomers by a Triboelectric Nanogenerator – Toward Selfâ€Powered Electronic Skin and Artificial Muscle. Advanced Functional Materials, 2016, 26, 4906-4913.	7.8	100
892	Piezotronic Effect Modulated Heterojunction Electron Gas in AlGaN/AlN/GaN Heterostructure Microwire. Advanced Materials, 2016, 28, 7234-7242.	11.1	100
893	Enhanced P3HT/ZnO Nanowire Array Solar Cells by Pyro-phototronic Effect. ACS Nano, 2016, 10, 10331-10338.	7.3	100
894	Structure and Dimension Effects on the Performance of Layered Triboelectric Nanogenerators in Contact-Separation Mode. ACS Nano, 2019, 13, 698-705.	7.3	100
895	Robust Triboelectric Nanogenerator Achieved by Centrifugal Force Induced Automatic Working Mode Transition. Advanced Energy Materials, 2020, 10, 2000886.	10.2	100
896	Synthesis of FeNi3Alloyed Nanoparticles by Hydrothermal Reduction. Journal of Physical Chemistry B, 2006, 110, 14262-14265.	1.2	99
897	Mismatch Strain Induced Formation of ZnO/ZnS Heterostructured Rings. Advanced Materials, 2007, 19, 2319-2323.	11.1	99
898	Structures of planar defects in ZnO nanobelts and nanowires. Micron, 2009, 40, 335-342.	1.1	99
899	Generating Electricity from Biofluid with a Nanowireâ€Based Biofuel Cell for Selfâ€Powered Nanodevices. Advanced Materials, 2010, 22, 5388-5392.	11.1	99
900	Planar Waveguideâ^'Nanowire Integrated Three-Dimensional Dye-Sensitized Solar Cells. Nano Letters, 2010, 10, 2092-2096.	4.5	99

#	Article	IF	CITATIONS
901	Doping and Raman Characterization of Boron and Phosphorus Atoms in Germanium Nanowires. ACS Nano, 2010, 4, 3807-3816.	7.3	99
902	Self-Powered Triboelectric Nanosensor for Microfluidics and Cavity-Confined Solution Chemistry. ACS Nano, 2015, 9, 11056-11063.	7.3	99
903	Self-powered, on-demand transdermal drug delivery system driven by triboelectric nanogenerator. Nano Energy, 2019, 62, 610-619.	8.2	99
904	Ultrathin In ₂ O ₃ Nanowires with Diameters below 4 nm: Synthesis, Reversible Wettability Switching Behavior, and Transparent Thin-Film Transistor Applications. ACS Nano, 2011, 5, 6148-6155.	7.3	98
905	Multi-layered disk triboelectric nanogenerator for harvesting hydropower. Nano Energy, 2014, 6, 129-136.	8.2	98
906	Flexible Organic Tribotronic Transistor Memory for a Visible and Wearable Touch Monitoring System. Advanced Materials, 2016, 28, 106-110.	11.1	98
907	Triboelectric Nanogenerator Tree for Harvesting Wind Energy and Illuminating in Subway Tunnel. Advanced Materials Technologies, 2018, 3, 1700317.	3.0	98
908	Silicone-Based Triboelectric Nanogenerator for Water Wave Energy Harvesting. ACS Applied Materials & Interfaces, 2018, 10, 3616-3623.	4.0	98
909	Whirlingâ€Folded Triboelectric Nanogenerator with High Average Power for Water Wave Energy Harvesting. Advanced Functional Materials, 2019, 29, 1904867.	7.8	98
910	Direct current triboelectric cell by sliding an n-type semiconductor on a p-type semiconductor. Nano Energy, 2019, 66, 104185.	8.2	98
911	Synthesis and photoluminescence enhancement of Mn2+-doped ZnS nanocrystals. Journal of Luminescence, 2000, 92, 73-78.	1.5	97
912	Position-Controlled Seedless Growth of ZnO Nanorod Arrays on a Polymer Substrate via Wet Chemical Synthesis. Journal of Physical Chemistry C, 2007, 111, 10162-10165.	1.5	97
913	Equilibrium piezoelectric potential distribution in a deformed ZnO nanowire. Nano Research, 2009, 2, 624-629.	5.8	97
914	Patterned Growth of Horizontal ZnO Nanowire Arrays. Journal of the American Chemical Society, 2009, 131, 6670-6671.	6.6	97
915	Hybrid cells for simultaneously harvesting multi-type energies for self-powered micro/nanosystems. Nano Energy, 2012, 1, 259-272.	8.2	97
916	Silk fibroin-based biodegradable piezoelectric composite nanogenerators using lead-free ferroelectric nanoparticles. Nano Energy, 2015, 14, 87-94.	8.2	97
917	Selfâ€Powered Electronic Skin with Biotactile Selectivity. Advanced Materials, 2016, 28, 3549-3556.	11.1	97
918	Triboelectric nanogenerator as a highly sensitive self-powered sensor for driver behavior monitoring. Nano Energy, 2018, 51, 721-727.	8.2	97

#	Article	IF	CITATIONS
919	Stretchable Energyâ€Harvesting Tactile Interactive Interface with Liquidâ€Metalâ€Nanoparticleâ€Based Electrodes. Advanced Functional Materials, 2020, 30, 1909652.	7.8	97
920	Microstructure of epitaxial La[sub 0.7]Ca[sub 0.3]MnO[sub 3] thin films grown on LaAlO[sub 3] and SrTiO[sub 3]. Journal of Applied Physics, 2000, 88, 4032.	1.1	96
921	MoS ₂ Tribotronic Transistor for Smart Tactile Switch. Advanced Functional Materials, 2016, 26, 2104-2109.	7.8	96
922	All-Elastomer-Based Triboelectric Nanogenerator as a Keyboard Cover To Harvest Typing Energy. ACS Nano, 2016, 10, 7973-7981.	7.3	96
923	Farms of triboelectric nanogenerators for harvesting wind energy: A potential approach towards green energy. Nano Energy, 2017, 36, 21-29.	8.2	96
924	Compressible hexagonal-structured triboelectric nanogenerators for harvesting tire rotation energy. Extreme Mechanics Letters, 2018, 18, 1-8.	2.0	96
925	A full-packaged rolling triboelectric-electromagnetic hybrid nanogenerator for energy harvesting and building up self-powered wireless systems. Nano Energy, 2019, 56, 300-306.	8.2	96
926	The tribovoltaic effect and electron transfer at a liquid-semiconductor interface. Nano Energy, 2020, 76, 105070.	8.2	96
927	Refreshable Braille Display System Based on Triboelectric Nanogenerator and Dielectric Elastomer. Advanced Functional Materials, 2021, 31, 2006612.	7.8	96
928	Fully Fabric-Based Triboelectric Nanogenerators as Self-Powered Human–Machine Interactive Keyboards. Nano-Micro Letters, 2021, 13, 103.	14.4	96
929	Breeze-Wind-Energy-Powered Autonomous Wireless Anemometer Based on Rolling Contact-Electrification. ACS Energy Letters, 2021, 6, 2343-2350.	8.8	96
930	Kinetically Controlled Growth of Helical and Zigzag Shapes of Carbon Nanotubes. Journal of Physical Chemistry B, 2000, 104, 1227-1234.	1.2	95
931	Hierarchical Structured Nanohelices of ZnS. Angewandte Chemie - International Edition, 2006, 45, 5150-5154.	7.2	95
932	Cover-sheet-based nanogenerator for charging mobile electronics using low-frequency body motion/vibration. Nano Energy, 2014, 9, 121-127.	8.2	95
933	Self-powered velocity and trajectory tracking sensor array made of planar triboelectric nanogenerator pixels. Nano Energy, 2014, 9, 325-333.	8.2	95
934	Highly porous piezoelectric PVDF membrane as effective lithium ion transfer channels for enhanced self-charging power cell. Nano Energy, 2015, 14, 77-86.	8.2	95
935	Comprehensive Pyroâ€Phototronic Effect Enhanced Ultraviolet Detector with ZnO/Ag Schottky Junction. Advanced Functional Materials, 2019, 29, 1807111.	7.8	95
936	Piezoelectric Nanogenerator Based on In Situ Growth Allâ€Inorganic CsPbBr ₃ Perovskite Nanocrystals in PVDF Fibers with Longâ€Term Stability. Advanced Functional Materials, 2021, 31, 2011073.	7.8	95

#	Article	IF	CITATIONS
937	Segmented Swing‣tructured Furâ€Based Triboelectric Nanogenerator for Harvesting Blue Energy toward Marine Environmental Applications. Advanced Functional Materials, 2021, 31, 2106398.	7.8	95
938	Effect of the Lattice Crystallinity on the Electronâ^'Phonon Relaxation Rates in Gold Nanoparticles. Journal of Physical Chemistry C, 2007, 111, 10751-10757.	1.5	94
939	Electrical and photoelectrical performances of nano-photodiode based on ZnO nanowires. Chemical Physics Letters, 2007, 435, 119-122.	1.2	94
940	Tuning the Shape and Catalytic Activity of Fe Nanocrystals from Rhombic Dodecahedra and Tetragonal Bipyramids to Cubes by Electrochemistry. Journal of the American Chemical Society, 2009, 131, 10860-10862.	6.6	94
941	Stretchable Coplanar Self-Charging Power Textile with Resist-Dyeing Triboelectric Nanogenerators and Microsupercapacitors. ACS Nano, 2020, 14, 5590-5599.	7.3	94
942	Hybrid Energy-Harvesting Systems Based on Triboelectric Nanogenerators. Matter, 2021, 4, 116-143.	5.0	94
943	Spherical triboelectric nanogenerator based on spring-assisted swing structure for effective water wave energy harvesting. Nano Energy, 2021, 83, 105836.	8.2	94
944	Tungsten Oxide Nanowires Grown on Carbon Cloth as a Flexible Cold Cathode. Advanced Materials, 2010, 22, 5292-5296.	11.1	93
945	Harvesting energy from automobile brake in contact and non-contact mode by conjunction of triboelectrication and electrostatic-induction processes. Nano Energy, 2014, 6, 59-65.	8.2	93
946	Biocompatible Nanogenerators through High Piezoelectric Coefficient 0.5Ba(Zr _{0.2} Ti _{0.8})O ₃ â€0.5(Ba _{0.7} Ca _{0.3})TiO <sub Nanowires for Inâ€Vivo Applications. Advanced Materials, 2014, 26, 7432-7437.</sub)> 13 a/sub>	93
947	Active Microâ€Actuators for Optical Modulation Based on a Planar Sliding Triboelectric Nanogenerator. Advanced Materials, 2015, 27, 719-726.	11.1	93
948	Transparent and Flexible Self-Charging Power Film and Its Application in a Sliding Unlock System in Touchpad Technology. ACS Nano, 2016, 10, 8078-8086.	7.3	93
949	Phase-transition induced giant negative electrocaloric effect in a lead-free relaxor ferroelectric thin film. Energy and Environmental Science, 2019, 12, 1708-1717.	15.6	93
950	Triboiontronic Transistor of MoS ₂ . Advanced Materials, 2019, 31, e1806905.	11.1	93
951	Blue energy fuels: converting ocean wave energy to carbon-based liquid fuels <i>via</i> CO ₂ reduction. Energy and Environmental Science, 2020, 13, 1300-1308.	15.6	93
952	Celluloseâ€Based Fully Green Triboelectric Nanogenerators with Output Power Density of 300 W m ^{â^²2} . Advanced Materials, 2020, 32, e2002824.	11.1	93
953	A Selfâ€Powered Angle Sensor at Nanoradianâ€Resolution for Robotic Arms and Personalized Medicare. Advanced Materials, 2020, 32, e2001466.	11.1	93
954	Scanning Probing of the Tribovoltaic Effect at the Sliding Interface of Two Semiconductors. Advanced Materials, 2020, 32, e2000928.	11.1	93

#	Article	IF	CITATIONS
955	Triboelectric nanogenerators for human-health care. Science Bulletin, 2021, 66, 490-511.	4.3	93
956	Photonic Crystals Fabricated Using Patterned Nanorod Arrays. Advanced Materials, 2005, 17, 2103-2106.	11.1	92
957	Si nanowire metal–insulator–semiconductor photodetectors as efficient light harvesters. Nanotechnology, 2010, 21, 095502.	1.3	92
958	Fiberâ€Based Hybrid Nanogenerators for/as Selfâ€Powered Systems in Biological Liquid. Angewandte Chemie - International Edition, 2011, 50, 11192-11196.	7.2	92
959	Tunable Optical Modulator by Coupling a Triboelectric Nanogenerator and a Dielectric Elastomer. Advanced Functional Materials, 2017, 27, 1603788.	7.8	92
960	A Hybridized Triboelectric–Electromagnetic Water Wave Energy Harvester Based on a Magnetic Sphere. ACS Nano, 2019, 13, 2349-2356.	7.3	92
961	Rational Structure Optimized Hybrid Nanogenerator for Highly Efficient Water Wave Energy Harvesting. Advanced Energy Materials, 2019, 9, 1802892.	10.2	92
962	Enhanced NO2 gas sensing of a single-layer MoS2 by photogating and piezo-phototronic effects. Science Bulletin, 2019, 64, 128-135.	4.3	92
963	Nanomeasurements of individual carbon nanotubes by in situ TEM. Pure and Applied Chemistry, 2000, 72, 209-219.	0.9	91
964	Vertically Aligned CdSe Nanowire Arrays for Energy Harvesting and Piezotronic Devices. ACS Nano, 2012, 6, 6478-6482.	7.3	91
965	Flexible Selfâ€Charging Power Cell for Oneâ€Step Energy Conversion and Storage. Advanced Energy Materials, 2014, 4, 1301329.	10.2	91
966	Single-electrode-based rotationary triboelectric nanogenerator and its applications as self-powered contact area and eccentric angle sensors. Nano Energy, 2015, 11, 323-332.	8.2	91
967	Triboelectric Nanogenerator Powered Electrochemical Degradation of Organic Pollutant Using Pt-Free Carbon Materials. ACS Nano, 2017, 11, 3965-3972.	7.3	91
968	Flexible Seaweed-Like Triboelectric Nanogenerator as a Wave Energy Harvester Powering Marine Internet of Things. ACS Nano, 2021, 15, 15700-15709.	7.3	91
969	Selfâ€Powered Electrostatic Actuation Systems for Manipulating the Movement of both Microfluid and Solid Objects by Using Triboelectric Nanogenerator. Advanced Functional Materials, 2017, 27, 1606408.	7.8	90
970	Transparent and Flexible Triboelectric Sensing Array for Touch Security Applications. ACS Nano, 2017, 11, 8364-8369.	7.3	90
971	Effects of Surface Functional Groups on Electron Transfer at Liquid–Solid Interfacial Contact Electrification. ACS Nano, 2020, 14, 10733-10741.	7.3	90
972	Biocompatible Poly(lactic acid)â€Based Hybrid Piezoelectric and Electret Nanogenerator for Electronic Skin Applications. Advanced Functional Materials, 2020, 30, 1908724.	7.8	90

#	Article	IF	CITATIONS
973	Boosting the Power and Lowering the Impedance of Triboelectric Nanogenerators through Manipulating the Permittivity for Wearable Energy Harvesting. ACS Nano, 2021, 15, 7513-7521.	7.3	90
974	Monitoring the Degree of Comfort of Shoes In-Motion Using Triboelectric Pressure Sensors with an Ultrawide Detection Range. ACS Nano, 2022, 16, 4654-4665.	7.3	90
975	Hybridizing ZnO Nanowires with Micropyramid Silicon Wafers as Superhydrophobic Highâ€Efficiency Solar Cells. Advanced Energy Materials, 2012, 2, 47-51.	10.2	89
976	Nanoâ€Newton Transverse Force Sensor Using a Vertical GaN Nanowire based on the Piezotronic Effect. Advanced Materials, 2013, 25, 883-888.	11.1	89
977	A power-transformed-and-managed triboelectric nanogenerator and its applications in a self-powered wireless sensing node. Nanotechnology, 2014, 25, 225402.	1.3	89
978	A multi-layered interdigitative-electrodes-based triboelectric nanogenerator for harvesting hydropower. Nano Energy, 2015, 15, 256-265.	8.2	89
979	Triboelectrificationâ€Enabled Selfâ€Charging Lithiumâ€Ion Batteries. Advanced Energy Materials, 2017, 7, 1700103.	10.2	89
980	Au nanocomposite enhanced electret film for triboelectric nanogenerator. Nano Research, 2018, 11, 3096-3105.	5.8	89
981	All-in-one cellulose based hybrid tribo/piezoelectric nanogenerator. Nano Research, 2019, 12, 1831-1835.	5.8	89
982	Dual-polarity response in self-powered ZnO NWs/Sb2Se3 film heterojunction photodetector array for optical communication. Nano Energy, 2020, 68, 104312.	8.2	89
983	Studying piezoelectric nanowires and nanowalls for energy harvesting. Sensors and Actuators B: Chemical, 2009, 139, 511-519.	4.0	88
984	Enhanced photodegradation of methyl orange with TiO ₂ nanoparticles using a triboelectric nanogenerator. Nanotechnology, 2013, 24, 295401.	1.3	88
985	A Nonencapsulative Pendulum‣ike Paper–Based Hybrid Nanogenerator for Energy Harvesting. Advanced Energy Materials, 2019, 9, 1901149.	10.2	88
986	Synthesis and characterization of Y ₂ O ₃ : Eu ³⁺ powder phosphor by a hydrolysis technique. Journal of Materials Research, 1998, 13, 2950-2955.	1.2	87
987	Selfâ€Powered Electrochemical Synthesis of Polypyrrole from the Pulsed Output of a Triboelectric Nanogenerator as a Sustainable Energy System. Advanced Functional Materials, 2016, 26, 3542-3548.	7.8	87
988	Temperature dependence of pyro-phototronic effect on self-powered ZnO/perovskite heterostructured photodetectors. Nano Research, 2016, 9, 3695-3704.	5.8	87
989	Enhanced Solar Cell Conversion Efficiency of InGaN/GaN Multiple Quantum Wells by Piezo-Phototronic Effect. ACS Nano, 2017, 11, 9405-9412.	7.3	87
990	Complementary Electromagneticâ€Triboelectric Active Sensor for Detecting Multiple Mechanical Triggering. Advanced Functional Materials, 2018, 28, 1705808.	7.8	87

#	Article	IF	CITATIONS
991	MoS ₂ Negativeâ€Capacitance Fieldâ€Effect Transistors with Subthreshold Swing below the Physics Limit. Advanced Materials, 2018, 30, e1800932.	11.1	87
992	An Easily Assembled Electromagneticâ€Triboelectric Hybrid Nanogenerator Driven by Magnetic Coupling for Fluid Energy Harvesting and Selfâ€Powered Flow Monitoring in a Smart Home/City. Advanced Materials Technologies, 2019, 4, 1900741.	3.0	87
993	3D mathematical model of contact-separation and single-electrode mode triboelectric nanogenerators. Nano Energy, 2019, 60, 630-640.	8.2	87
994	Piezotronic Effect-Augmented Cu _{2–<i>x</i>} O–BaTiO ₃ Sonosensitizers for Multifunctional Cancer Dynamic Therapy. ACS Nano, 2022, 16, 9304-9316.	7.3	87
995	Synthesis and Characterization of Polystyrene-Encapsulated Laponite Composites via Miniemulsion Polymerization. Macromolecular Materials and Engineering, 2004, 289, 288-295.	1.7	86
996	Synthesis and Electrical Transport of Single-Crystal NH4V3O8Nanobelts. Journal of Physical Chemistry B, 2006, 110, 18138-18141.	1.2	86
997	Enhancing Output Power of Cylindrical Triboelectric Nanogenerators by Segmentation Design and Multilayer Integration. Advanced Functional Materials, 2014, 24, 6684-6690.	7.8	86
998	Enhancing Photoresponsivity of Self-Aligned MoS ₂ Field-Effect Transistors by Piezo-Phototronic Effect from GaN Nanowires. ACS Nano, 2016, 10, 7451-7457.	7.3	86
999	A Sliding-Mode Triboelectric Nanogenerator with Chemical Group Grated Structure by Shadow Mask Reactive Ion Etching. ACS Nano, 2017, 11, 8796-8803.	7.3	86
1000	Freestanding Triboelectric Nanogenerator Enables Noncontact Motion-Tracking and Positioning. ACS Nano, 2018, 12, 3461-3467.	7.3	86
1001	Multilanguage-handwriting self-powered recognition based on triboelectric nanogenerator enabled machine learning. Nano Energy, 2020, 77, 105174.	8.2	86
1002	Microstructure and its effect on field electron emission of grain-size-controlled nanocrystalline diamond films. Journal of Applied Physics, 2000, 88, 2967-2974.	1.1	85
1003	Assemblies of Aligned Magnetotactic Bacteria and Extracted Magnetosomes: What Is the Main Factor Responsible for the Magnetic Anisotropy?. ACS Nano, 2009, 3, 1539-1547.	7.3	85
1004	A Highâ€Reliability Kevlar Fiberâ€ZnO Nanowires Hybrid Nanogenerator and its Application on Selfâ€Powered UV Detection. Advanced Functional Materials, 2015, 25, 5794-5798.	7.8	85
1005	Theoretical study on two-dimensional MoS2 piezoelectric nanogenerators. Nano Research, 2016, 9, 800-807.	5.8	85
1006	Polydirectional Microvibration Energy Collection for Self-Powered Multifunctional Systems Based on Hybridized Nanogenerators. ACS Nano, 2020, 14, 3328-3336.	7.3	85
1007	A Bioresorbable Dynamic Pressure Sensor for Cardiovascular Postoperative Care. Advanced Materials, 2021, 33, e2102302.	11.1	85
1008	Windâ€Driven Softâ€Contact Rotary Triboelectric Nanogenerator Based on Rabbit Fur with High Performance and Durability for Smart Farming. Advanced Functional Materials, 2022, 32, 2108580.	7.8	85

#	Article	IF	CITATIONS
1009	In Situ Structure Evolution from Cu(OH)2Nanobelts to Copper Nanowires. Journal of Physical Chemistry B, 2003, 107, 8275-8280.	1.2	84
1010	Toward high output-power nanogenerator. Applied Physics Letters, 2008, 92, .	1.5	84
1011	Seedless synthesis of patterned ZnO nanowire arrays on metal thin films (Au, Ag, Cu, Sn) and their application for flexible electromechanical sensing. Journal of Materials Chemistry, 2012, 22, 9469.	6.7	84
1012	Development and progress in piezotronics. Nano Energy, 2015, 14, 276-295.	8.2	84
1013	Triboelectric Nanogenerator for Sustainable Wastewater Treatment via a Selfâ€Powered Electrochemical Process. Advanced Energy Materials, 2016, 6, 1501778.	10.2	84
1014	Electron Transfer in Nanoscale Contact Electrification: Photon Excitation Effect. Advanced Materials, 2019, 31, e1901418.	11.1	84
1015	Quantifying the power output and structural figure-of-merits of triboelectric nanogenerators in a charging system starting from the Maxwell's displacement current. Nano Energy, 2019, 59, 380-389.	8.2	84
1016	Self-powered electrocatalytic ammonia synthesis directly from air as driven by dual triboelectric nanogenerators. Energy and Environmental Science, 2020, 13, 2450-2458.	15.6	84
1017	Piezoelectricity in Multilayer Black Phosphorus for Piezotronics and Nanogenerators. Advanced Materials, 2020, 32, e1905795.	11.1	84
1018	Eco-friendly and recyclable all cellulose triboelectric nanogenerator and self-powered interactive interface. Nano Energy, 2021, 89, 106354.	8.2	84
1019	Triboelectric Nanogenerators as a Selfâ€Powered Motion Tracking System. Advanced Functional Materials, 2014, 24, 5059-5066.	7.8	83
1020	Enhancing the Output Charge Density of TENG via Building Longitudinal Paths of Electrostatic Charges in the Contacting Layers. ACS Applied Materials & Interfaces, 2018, 10, 2158-2165.	4.0	83
1021	Theoretical foundations of triboelectric nanogenerators (TENGs). Science China Technological Sciences, 2020, 63, 1087-1109.	2.0	83
1022	Recent Progress of Functional Fiber and Textile Triboelectric Nanogenerators: Towards Electricity Power Generation and Intelligent Sensing. Advanced Fiber Materials, 2021, 3, 394-412.	7.9	83
1023	A Hydrophobic Self-Repairing Power Textile for Effective Water Droplet Energy Harvesting. ACS Nano, 2021, 15, 18172-18181.	7.3	83
1024	Contact-electro-catalysis for the degradation of organic pollutants using pristine dielectric powders. Nature Communications, 2022, 13, 130.	5.8	83
1025	Self-Cleaning Flexible Infrared Nanosensor Based on Carbon Nanoparticles. ACS Nano, 2011, 5, 4007-4013.	7.3	82
1026	Single crystalline lead zirconate titanate (PZT) nano/micro-wire based self-powered UV sensor. Nano Energy, 2012, 1, 789-795.	8.2	82

#	Article	IF	CITATIONS
1027	GaN Nanobelt-Based Strain-Gated Piezotronic Logic Devices and Computation. ACS Nano, 2013, 7, 6403-6409.	7.3	82
1028	Harshâ€Environmentalâ€Resistant Triboelectric Nanogenerator and Its Applications in Autodrive Safety Warning. Advanced Energy Materials, 2018, 8, 1801898.	10.2	82
1029	Piezo-phototronic Effect Enhanced Efficient Flexible Perovskite Solar Cells. ACS Nano, 2019, 13, 4507-4513.	7.3	82
1030	Piezoâ€Phototronic Effect on Selective Electron or Hole Transport through Depletion Region of Vis–NIR Broadband Photodiode. Advanced Materials, 2017, 29, 1701412.	11.1	82
1031	Single-crystal nanocastles of ZnO. Chemical Physics Letters, 2006, 424, 86-90.	1.2	81
1032	Piezotronic effect enhanced Schottky-contact ZnO micro/nanowire humidity sensors. Nano Research, 2014, 7, 1083-1091.	5.8	81
1033	Transparent paper-based triboelectric nanogenerator as a page mark and anti-theft sensor. Nano Research, 2014, 7, 1215-1223.	5.8	81
1034	Enhancing Light Emission of ZnOâ€Nanofilm/Siâ€Micropillar Heterostructure Arrays by Piezoâ€Phototronic Effect. Advanced Materials, 2015, 27, 4447-4453.	11.1	81
1035	Transparent and Self-Powered Multistage Sensation Matrix for Mechanosensation Application. ACS Nano, 2018, 12, 254-262.	7.3	81
1036	High-Performance Li-CO ₂ Batteries from Free-Standing, Binder-Free, Bifunctional Three-Dimensional Carbon Catalysts. ACS Energy Letters, 2020, 5, 916-921.	8.8	81
1037	Selfâ€₽owered Gesture Recognition Wristband Enabled by Machine Learning for Full Keyboard and Multicommand Input. Advanced Materials, 2022, 34, e2200793.	11.1	81
1038	Formation of double-side teethed nanocombs of ZnO and self-catalysis of Zn-terminated polar surface. Chemical Physics Letters, 2006, 417, 358-362.	1.2	80
1039	Optical Fiberâ€Based Core–Shell Coaxially Structured Hybrid Cells for Selfâ€Powered Nanosystems. Advanced Materials, 2012, 24, 3356-3361.	11.1	80
1040	Strain-Gated Field Effect Transistor of a MoS ₂ –ZnO 2D–1D Hybrid Structure. ACS Nano, 2016, 10, 1546-1551.	7.3	80
1041	Evolutionary trend analysis of nanogenerator research based on a novel perspective of phased bibliographic coupling. Nano Energy, 2017, 34, 93-102.	8.2	80
1042	Self-powered modulation of elastomeric optical grating by using triboelectric nanogenerator. Nano Energy, 2017, 38, 91-100.	8.2	80
1043	Magnetic switch structured triboelectric nanogenerator for continuous and regular harvesting of wind energy. Nano Energy, 2021, 83, 105851.	8.2	80
1044	Soft triboelectric nanogenerators for mechanical energy scavenging and self-powered sensors. Nano Energy, 2021, 84, 105919.	8.2	80

#	Article	IF	CITATIONS
1045	Sweatâ€Permeable, Biodegradable, Transparent and Selfâ€powered Chitosanâ€Based Electronic Skin with Ultrathin Elastic Gold Nanofibers. Advanced Functional Materials, 2022, 32, .	7.8	80
1046	Synthesis, chemical ordering, and magnetic properties of FePtCu nanoparticle films. Journal of Applied Physics, 2003, 93, 7337-7339.	1.1	79
1047	Magnetic Force Driven Nanogenerators as a Noncontact Energy Harvester and Sensor. Nano Letters, 2012, 12, 3701-3705.	4.5	79
1048	High-performance hybrid cell based on an organic photovoltaic device and a direct current piezoelectric nanogenerator. Nano Energy, 2015, 12, 547-555.	8.2	79
1049	Self-powered acoustic source locator in underwater environment based on organic film triboelectric nanogenerator. Nano Research, 2015, 8, 765-773.	5.8	79
1050	Robust Multilayered Encapsulation for High-Performance Triboelectric Nanogenerator in Harsh Environment. ACS Applied Materials & Interfaces, 2016, 8, 26697-26703.	4.0	79
1051	Enhancing the Efficiency of Silicon-Based Solar Cells by the Piezo-Phototronic Effect. ACS Nano, 2017, 11, 1894-1900.	7.3	79
1052	Ultrasensitive 2D ZnO Piezotronic Transistor Array for High Resolution Tactile Imaging. Advanced Materials, 2017, 29, 1606346.	11.1	79
1053	Fingerprintâ€Inspired Conducting Hierarchical Wrinkles for Energyâ€Harvesting Eâ€6kin. Advanced Functional Materials, 2019, 29, 1903580.	7.8	79
1054	Self-Powered Sensing for Smart Agriculture by Electromagnetic–Triboelectric Hybrid Generator. ACS Nano, 2021, 15, 20278-20286.	7.3	79
1055	Fabrication of triboelectric polymer films via repeated rheological forging for ultrahigh surface charge density. Nature Communications, 2022, 13, .	5.8	79
1056	Nanoscale mechanical behavior of individual semiconducting nanobelts. Applied Physics Letters, 2003, 83, 993-995.	1.5	78
1057	Three-dimensional interconnected nanowire networks of ZnO. Chemical Physics Letters, 2005, 408, 174-178.	1.2	78
1058	Vertically Aligned Zn2SiO4 Nanotube/ZnO Nanowire Heterojunction Arrays. Small, 2007, 3, 622-626.	5.2	78
1059	Self-powered triboelectric velocity sensor for dual-mode sensing of rectified linear and rotary motions. Nano Energy, 2014, 10, 305-312.	8.2	78
1060	Ultrasensitive self-powered pressure sensing system. Extreme Mechanics Letters, 2015, 2, 28-36.	2.0	78
1061	Two-dimensional rotary triboelectric nanogenerator as a portable and wearable power source for electronics. Nano Energy, 2015, 17, 10-16.	8.2	78
1062	Conductive Fabric-Based Stretchable Hybridized Nanogenerator for Scavenging Biomechanical Energy. ACS Nano, 2016, 10, 4728-4734.	7.3	78

#	Article	IF	CITATIONS
1063	A washable, stretchable, and self-powered human-machine interfacing Triboelectric nanogenerator for wireless communications and soft robotics pressure sensor arrays. Extreme Mechanics Letters, 2017, 13, 25-35.	2.0	78
1064	Smart Floor with Integrated Triboelectric Nanogenerator As Energy Harvester and Motion Sensor. ACS Applied Materials & Interfaces, 2017, 9, 26126-26133.	4.0	78
1065	Thermal strain induced large electrocaloric effect of relaxor thin film on LaNiO3/Pt composite electrode with the coexistence of nanoscale antiferroelectric and ferroelectric phases in a broad temperature range. Nano Energy, 2018, 47, 285-293.	8.2	78
1066	Concurrent Harvesting of Ambient Energy by Hybrid Nanogenerators for Wearable Self-Powered Systems and Active Remote Sensing. ACS Applied Materials & Interfaces, 2018, 10, 14708-14715.	4.0	78
1067	Flexible self-charging power units for portable electronics based on folded carbon paper. Nano Research, 2018, 11, 4313-4322.	5.8	78
1068	Structural and electrochemical properties of LiMn0.6Fe0.4PO4 as a cathode material for flexible lithium-ion batteries and self-charging power pack. Nano Energy, 2018, 52, 510-516.	8.2	78
1069	Matryoshka-inspired hierarchically structured triboelectric nanogenerators for wave energy harvesting. Nano Energy, 2019, 66, 104131.	8.2	78
1070	Contact-Electrification between Two Identical Materials: Curvature Effect. ACS Nano, 2019, 13, 2034-2041.	7.3	78
1071	Open-book-like triboelectric nanogenerators based on low-frequency roll–swing oscillators for wave energy harvesting. Nanoscale, 2019, 11, 7199-7208.	2.8	78
1072	A Motion Vector Sensor via Direct urrent Triboelectric Nanogenerator. Advanced Functional Materials, 2020, 30, 2002547.	7.8	78
1073	Self-cleaning triboelectric nanogenerator based on TiO2 photocatalysis. Nano Energy, 2020, 70, 104499.	8.2	78
1074	Stretchable negative Poisson's ratio yarn for triboelectric nanogenerator for environmental energy harvesting and self-powered sensor. Energy and Environmental Science, 2021, 14, 955-964.	15.6	78
1075	Type-II hetero-junction dual shell hollow spheres loaded with spatially separated cocatalyst for enhancing visible light hydrogen evolution. Nano Energy, 2017, 38, 518-525.	8.2	78
1076	Reflection electron energy loss spectroscopy (reels): A technique for the study of surfaces. Surface Science, 1988, 193, 501-512.	0.8	77
1077	Nanogenerator as an active sensor for vortex capture and ambient wind-velocity detection. Energy and Environmental Science, 2012, 5, 8528.	15.6	77
1078	Piezoâ€₱hototronic Effect of CdSe Nanowires. Advanced Materials, 2012, 24, 5470-5475.	11.1	77
1079	A Safe High-Performance All-Solid-State Lithium–Vanadium Battery with a Freestanding V ₂ O ₅ Nanowire Composite Paper Cathode. ACS Applied Materials & Interfaces, 2016, 8, 34309-34316.	4.0	77
1080	Tribotronic Enhanced Photoresponsivity of a MoS ₂ Phototransistor. Advanced Science, 2016, 3, 1500419.	5.6	77

#	Article	IF	CITATIONS
1081	Butterflyâ€Inspired Triboelectric Nanogenerators with Springâ€Assisted Linkage Structure for Water Wave Energy Harvesting. Advanced Materials Technologies, 2019, 4, 1800514.	3.0	77
1082	Human Motion Driven Self-Powered Photodynamic System for Long-Term Autonomous Cancer Therapy. ACS Nano, 2020, 14, 8074-8083.	7.3	77
1083	Decoding lip language using triboelectric sensors with deep learning. Nature Communications, 2022, 13, 1401.	5.8	77
1084	Room-temperature, texture-controlled growth of ZnO thin films and their application for growing aligned ZnO nanowire arrays. Nanotechnology, 2009, 20, 085609.	1.3	76
1085	Temperature Dependence of the Piezotronic Effect in ZnO Nanowires. Nano Letters, 2013, 13, 5026-5032.	4.5	76
1086	Two dimensional woven nanogenerator. Nano Energy, 2013, 2, 749-753.	8.2	76
1087	Self-charging power textiles integrating energy harvesting triboelectric nanogenerators with energy storage batteries/supercapacitors. Journal of Semiconductors, 2021, 42, 101601.	2.0	76
1088	Tetragonal domain structure and magnetoresistance ofLa1â^'xSrxCoO3. Physical Review B, 1996, 54, 1153-1158.	1.1	75
1089	Synthesis, characterization, and photocatalytic properties of ZnO/(La,Sr)CoO3 composite nanorod arrays. Journal of Materials Chemistry, 2009, 19, 970.	6.7	75
1090	Composite-hydroxide-mediated approach as a general methodology for synthesizing nanostructures. Journal of Materials Chemistry, 2009, 19, 858.	6.7	75
1091	Tuning Light Emission of a Pressure-Sensitive Silicon/ZnO Nanowires Heterostructure Matrix through Piezo-phototronic Effects. ACS Nano, 2016, 10, 6074-6079.	7.3	75
1092	Effects of Metal Work Function and Contact Potential Difference on Electron Thermionic Emission in Contact Electrification. Advanced Functional Materials, 2019, 29, 1903142.	7.8	75
1093	Piezoelectric Nanotopography Induced Neuronâ€Like Differentiation of Stem Cells. Advanced Functional Materials, 2019, 29, 1900372.	7.8	75
1094	Electrical Properties of Tin Dioxide Two-Dimensional Nanostructures. Journal of Physical Chemistry B, 2004, 108, 1882-1887.	1.2	74
1095	Synthesis of vertically aligned ultra-long ZnO nanowires on heterogeneous substrates with catalyst at the root. Nanotechnology, 2012, 23, 055604.	1.3	74
1096	Piezotronic effect enhanced detection of flammable/toxic gases by ZnO micro/nanowire sensors. Nano Energy, 2015, 12, 588-596.	8.2	74
1097	Piezotronic Effect Enhanced Label-Free Detection of DNA Using a Schottky-Contacted ZnO Nanowire Biosensor. ACS Nano, 2016, 10, 8038-8044.	7.3	74
1098	BaTiO3 nanocrystal-mediated micro pseudo-electrochemical cells with ultrasound-driven piezotronic enhancement for polymerization. Nano Energy, 2017, 39, 461-469.	8.2	74

#	Article	IF	CITATIONS
1099	Flexible Organic Tribotronic Transistor for Pressure and Magnetic Sensing. ACS Nano, 2017, 11, 11566-11573.	7.3	74
1100	Triboelectric nanogenerator enhanced multilayered antibacterial nanofiber air filters for efficient removal of ultrafine particulate matter. Nano Research, 2018, 11, 4090-4101.	5.8	74
1101	Multishelled Si@Cu Microparticles Supported on 3D Cu Current Collectors for Stable and Binder-free Anodes of Lithium-Ion Batteries. ACS Nano, 2018, 12, 3587-3599.	7.3	74
1102	Efficient Delivery of Power Generated by a Rotating Triboelectric Nanogenerator by Conjunction of Wired and Wireless Transmissions Using Maxwell's Displacement Currents. Advanced Energy Materials, 2018, 8, 1802084.	10.2	74
1103	TriboPump: A Low ost, Handâ€Powered Water Disinfection System. Advanced Energy Materials, 2019, 9, 1901320.	10.2	74
1104	Piezo–pyro–photoelectric effects induced coupling enhancement of charge quantity in BaTiO ₃ materials for simultaneously scavenging light and vibration energies. Energy and Environmental Science, 2019, 12, 1231-1240.	15.6	74
1105	Biodegradable, Super-Strong, and Conductive Cellulose Macrofibers for Fabric-Based Triboelectric Nanogenerator. Nano-Micro Letters, 2022, 14, 115.	14.4	74
1106	Piezoelectric Potential Output from ZnO Nanowire Functionalized with p-Type Oligomer. Nano Letters, 2008, 8, 203-207.	4.5	73
1107	Piezotronic Effect in Polarity-Controlled GaN Nanowires. ACS Nano, 2015, 9, 8578-8583.	7.3	73
1108	Theoretical study on rotary-sliding disk triboelectric nanogenerators in contact and non-contact modes. Nano Research, 2016, 9, 1057-1070.	5.8	73
1109	A multi-dielectric-layered triboelectric nanogenerator as energized by corona discharge. Nanoscale, 2017, 9, 9668-9675.	2.8	73
1110	Magnetorheological elastomers enabled high-sensitive self-powered tribo-sensor for magnetic field detection. Nanoscale, 2018, 10, 4745-4752.	2.8	73
1111	Polymer nanogenerators: Opportunities and challenges for largeâ€scale applications. Journal of Applied Polymer Science, 2018, 135, 45674.	1.3	73
1112	Water-solid triboelectric nanogenerators: An alternative means for harvesting hydropower. Renewable and Sustainable Energy Reviews, 2019, 115, 109366.	8.2	73
1113	Embedded self-powered sensing systems for smart vehicles and intelligent transportation. Nano Energy, 2019, 66, 104103.	8.2	73
1114	Harvesting wind energy: A hybridized design of pinwheel by coupling triboelectrification and electromagnetic induction effects. Nano Energy, 2019, 60, 641-648.	8.2	73
1115	Cylindrical triboelectric nanogenerator based on swing structure for efficient harvesting of ultra-low-frequency water wave energy. Applied Physics Reviews, 2020, 7, 021401.	5.5	73
1116	Advanced 3D printing-based triboelectric nanogenerator for mechanical energy harvesting and self-powered sensing. Materials Today, 2021, 50, 224-238.	8.3	73

#	Article	IF	CITATIONS
1117	Flexible Textile Direct-Current Generator Based on the Tribovoltaic Effect at Dynamic Metal-Semiconducting Polymer Interfaces. ACS Energy Letters, 2021, 6, 2442-2450.	8.8	73
1118	Underwater wireless communication via TENG-generated Maxwell's displacement current. Nature Communications, 2022, 13, .	5.8	73
1119	Interface and defect structures of Zn–ZnO core–shell heteronanobelts. Journal of Applied Physics, 2004, 95, 306-310.	1.1	72
1120	ZnS/Silica Nanocable Field Effect Transistors as Biological and Chemical Nanosensors. Journal of Physical Chemistry C, 2007, 111, 12152-12156.	1.5	72
1121	Piezoelectric Nanogenerators for Self-Powered Nanodevices. IEEE Pervasive Computing, 2008, 7, 49-55.	1.1	72
1122	Electronic Transport in Superlattice-Structured ZnO Nanohelix. Nano Letters, 2009, 9, 137-143.	4.5	72
1123	Carbon Nanoparticles on Carbon Fabric for Flexible and Highâ€Performance Field Emitters. Advanced Functional Materials, 2011, 21, 2150-2154.	7.8	72
1124	Nanoparticle chemically end-linking elastomer network with super-low hysteresis loss for fuel-saving automobile. Nano Energy, 2016, 28, 87-96.	8.2	72
1125	Biomimetic Hairy Whiskers for Robotic Skin Tactility. Advanced Materials, 2021, 33, e2101891.	11.1	72
1126	Flexible Wood-Based Triboelectric Self-Powered Smart Home System. ACS Nano, 2022, 16, 3341-3350.	7.3	72
1127	Multiâ€Parameter Optimized Triboelectric Nanogenerator Based Selfâ€Powered Sensor Network for Broadband Aeolian Vibration Onlineâ€Monitoring of Transmission Lines. Advanced Energy Materials, 2022, 12, .	10.2	72
1128	An Openâ€Environment Tactile Sensing System: Toward Simple and Efficient Material Identification. Advanced Materials, 2022, 34, e2203073.	11.1	72
1129	Analyzing the Structure of CoFeâ^'Fe3O4 Coreâ^'Shell Nanoparticles by Electron Imaging and Diffraction. Journal of Physical Chemistry B, 2004, 108, 14005-14008.	1.2	71
1130	Effective piezo-phototronic enhancement of solar cell performance by tuning material properties. Nano Energy, 2013, 2, 1093-1100.	8.2	71
1131	Piezotronic effect enhanced performance of Schottky-contacted optical, gas, chemical and biological nanosensors. Nano Energy, 2015, 14, 312-339.	8.2	71
1132	Hybrid Allâ€inâ€One Power Source Based on Highâ€Performance Spherical Triboelectric Nanogenerators for Harvesting Environmental Energy. Advanced Energy Materials, 2020, 10, 2001669.	10.2	71
1133	Bifilarâ€Pendulumâ€Assisted Multilayerâ€6tructured Triboelectric Nanogenerators for Wave Energy Harvesting. Advanced Energy Materials, 2021, 11, 2003616.	10.2	71
1134	The shape evolution of gold seeds and gold@silver core–shell nanostructures. Nanotechnology, 2009, 20, 305602.	1.3	70

#	Article	IF	CITATIONS
1135	Intercrossed Sheet-Like Ga-Doped ZnS Nanostructures with Superb Photocatalytic Actvitiy and Photoresponse. Journal of Physical Chemistry C, 2009, 113, 12878-12882.	1.5	70
1136	Surface-charge engineering for high-performance triboelectric nanogenerator based on identical electrification materials. Nano Energy, 2014, 10, 83-89.	8.2	70
1137	Selfâ€Powered Trace Memorization by Conjunction of Contactâ€Electrification and Ferroelectricity. Advanced Functional Materials, 2015, 25, 739-747.	7.8	70
1138	3D printing of thermoreversible polyurethanes with targeted shape memory and precise <i>in situ</i> self-healing properties. Journal of Materials Chemistry A, 2019, 7, 6972-6984.	5.2	70
1139	Rationally Designed Dualâ€Mode Triboelectric Nanogenerator for Harvesting Mechanical Energy by Both Electrostatic Induction and Dielectric Breakdown Effects. Advanced Energy Materials, 2020, 10, 2000965.	10.2	70
1140	Triboelectric mechanical sensors—Progress and prospects. Extreme Mechanics Letters, 2021, 42, 101100.	2.0	70
1141	Stimulation of ambient energy generated electric field on crop plant growth. Nature Food, 2022, 3, 133-142.	6.2	70
1142	Self-attraction among aligned Au/ZnO nanorods under electron beam. Applied Physics Letters, 2005, 86, 013111.	1.5	69
1143	Growth and replication of ordered ZnO nanowire arrays on general flexible substrates. Journal of Materials Chemistry, 2010, 20, 10606.	6.7	69
1144	Photoinduced enhancement of a triboelectric nanogenerator based on an organolead halide perovskite. Journal of Materials Chemistry C, 2016, 4, 10395-10399.	2.7	69
1145	Triboelectrification-enabled touch sensing for self-powered position mapping and dynamic tracking by a flexible and area-scalable sensor array. Nano Energy, 2017, 41, 387-393.	8.2	69
1146	Piezo-phototronic effect on photocatalysis, solar cells, photodetectors and light-emitting diodes. Chemical Society Reviews, 2021, 50, 13646-13691.	18.7	69
1147	Selfâ€heating and External Strain Coupling Induced Phase Transition of VO ₂ Nanobeam as Single Domain Switch. Advanced Materials, 2011, 23, 3536-3541.	11.1	68
1148	A Stretchable, Flexible Triboelectric Nanogenerator for Selfâ€Powered Realâ€Time Motion Monitoring. Advanced Materials Technologies, 2018, 3, 1800021.	3.0	68
1149	A Batteryâ€Like Selfâ€Charge Universal Module for Motional Energy Harvest. Advanced Energy Materials, 2019, 9, 1901875.	10.2	68
1150	Photovoltaic effect and tribovoltaic effect at liquid-semiconductor interface. Nano Energy, 2021, 83, 105810.	8.2	68
1151	Elastic onnection and Soft ontact Triboelectric Nanogenerator with Superior Durability and Efficiency. Advanced Functional Materials, 2021, 31, 2105237.	7.8	68
1152	Harvesting Multidirectional Breeze Energy and Selfâ€Powered Intelligent Fire Detection Systems Based on Triboelectric Nanogenerator and Fluidâ€Dynamic Modeling. Advanced Functional Materials, 2021, 31, 2106527.	7.8	68

#	Article	IF	CITATIONS
1153	A method for quantitatively separating the piezoelectric component from the as-received "Piezoelectric―signal. Nature Communications, 2022, 13, 1391.	5.8	68
1154	Structures of indium oxide nanobelts. Solid State Communications, 2003, 128, 1-4.	0.9	67
1155	Size-Manipulable Synthesis of Single-Crystalline BaMnO3and BaTi1/2Mn1/2O3Nanorods/Nanowires. Journal of Physical Chemistry B, 2006, 110, 14050-14054.	1.2	67
1156	Tuning the Thermal Stability of Molecular Precursors for the Nonhydrolytic Synthesis of Magnetic MnFe2O4 Spinel Nanocrystals. Chemistry of Materials, 2007, 19, 4633-4638.	3.2	67
1157	Energy Harvesting Using Piezoelectric Nanowires–A Correspondence on "Energy Harvesting Using Nanowires?―by Alexe et al Advanced Materials, 2009, 21, 1311-1315.	11.1	67
1158	Wafer-Scale High-Throughput Ordered Arrays of Si and Coaxial Si/Si _{1–<i>x</i>} Ge _{<i>x</i>} Wires: Fabrication, Characterization, and Photovoltaic Application. ACS Nano, 2011, 5, 6629-6636.	7.3	67
1159	Charging System Optimization of Triboelectric Nanogenerator for Water Wave Energy Harvesting and Storage. ACS Applied Materials & amp; Interfaces, 2016, 8, 21398-21406.	4.0	67
1160	A flexible lithium-ion battery with quasi-solid gel electrolyte for storing pulsed energy generated by triboelectric nanogenerator. Energy Storage Materials, 2018, 12, 17-22.	9.5	67
1161	Piezo-phototronic Effect Enhanced Photodetector Based on CH ₃ NH ₃ Pbl ₃ Single Crystals. ACS Nano, 2018, 12, 10501-10508.	7.3	67
1162	Highly stretchable triboelectric tactile sensor for electronic skin. Nano Energy, 2019, 64, 103907.	8.2	67
1163	Bandgap alignment of α-CsPbI3 perovskites with synergistically enhanced stability and optical performance via B-site minor doping. Nano Energy, 2019, 61, 389-396.	8.2	67
1164	A universal and arbitrary tactile interactive system based on self-powered optical communication. Nano Energy, 2020, 69, 104419.	8.2	67
1165	Self-charging power system for distributed energy: beyond the energy storage unit. Chemical Science, 2021, 12, 34-49.	3.7	67
1166	Improved Output Performance of Triboelectric Nanogenerator by Fast Accumulation Process of Surface Charges. Advanced Energy Materials, 2021, 11, 2100050.	10.2	67
1167	Triboelectric Nanogenerator as a Probe for Measuring the Charge Transfer between Liquid and Solid Surfaces. ACS Nano, 2021, 15, 14830-14837.	7.3	67
1168	Formation of Orientation-Ordered Superlattices of Magnetite Magnetic Nanocrystals from Shape-Segregated Self-Assembliesâ€. Journal of Physical Chemistry B, 2006, 110, 25547-25550.	1.2	66
1169	Laser assisted chemical vapor deposition synthesis of carbon nanotubes and their characterization. Carbon, 2006, 44, 1393-1403.	5.4	66
1170	Synthesis of Ba-doped CeO ₂ nanowires and their application as humidity sensors. Nanotechnology, 2007, 18, 465504.	1.3	66

#	Article	IF	CITATIONS
1171	Self-powered wireless optical transmission of mechanical agitation signals. Nano Energy, 2018, 47, 566-572.	8.2	66
1172	Direct-Current Rotary-Tubular Triboelectric Nanogenerators Based on Liquid-Dielectrics Contact for Sustainable Energy Harvesting and Chemical Composition Analysis. ACS Nano, 2019, 13, 2587-2598.	7.3	66
1173	Stretchable, transparent triboelectric nanogenerator as a highly sensitive self-powered sensor for driver fatigue and distraction monitoring. Nano Energy, 2020, 78, 105359.	8.2	66
1174	Fish Bladder Film-Based Triboelectric Nanogenerator for Noncontact Position Monitoring. ACS Energy Letters, 2020, 5, 3005-3011.	8.8	66
1175	Triboelectric nanogenerator: from alternating current to direct current. IScience, 2021, 24, 102018.	1.9	66
1176	Materials and technologies for multifunctional, flexible or integrated supercapacitors and batteries. Materials Today, 2021, 48, 176-197.	8.3	66
1177	Scalable fabrication of stretchable and washable textile triboelectric nanogenerators as constant power sources for wearable electronics. Nano Energy, 2021, 88, 106247.	8.2	66
1178	Single-Crystal Mesoporous ZnO Thin Films Composed of Nanowalls. Journal of Physical Chemistry C, 2009, 113, 1791-1794.	1.5	65
1179	High output nanogenerator based on assembly of GaN nanowires. Nanotechnology, 2011, 22, 475401.	1.3	65
1180	High temperature processed ZnO nanorods using flexible and transparent mica substrates for dye-sensitized solar cells and piezoelectric nanogenerators. Nano Energy, 2014, 9, 101-111.	8.2	65
1181	Fully enclosed bearing-structured self-powered rotation sensor based on electrification at rolling interfaces for multi-tasking motion measurement. Nano Energy, 2015, 12, 606-611.	8.2	65
1182	Environmental Energy Harvesting Adapting to Different Weather Conditions and Self-Powered Vapor Sensor Based on Humidity-Responsive Triboelectric Nanogenerators. ACS Applied Materials & Interfaces, 2019, 11, 6143-6153.	4.0	65
1183	Dynamic Photomaskâ€Assisted Direct Ink Writing Multimaterial for Multilevel Triboelectric Nanogenerator. Advanced Functional Materials, 2019, 29, 1903568.	7.8	65
1184	Standard and figure-of-merit for quantifying the performance of pyroelectric nanogenerators. Nano Energy, 2019, 55, 534-540.	8.2	65
1185	Enhanced Photocatalysis by Synergistic Piezotronic Effect and Exciton–Plasmon Interaction Based on (Agâ€Ag ₂ S)/BaTiO ₃ Heterostructures. Advanced Functional Materials, 2020, 30, 2005716.	7.8	65
1186	Dynamic real-time imaging of living cell traction force by piezo-phototronic light nano-antenna array. Science Advances, 2021, 7, .	4.7	65
1187	Ultra-stability high-voltage triboelectric nanogenerator designed by ternary dielectric triboelectrification with partial soft-contact and non-contact mode. Nano Energy, 2021, 90, 106585.	8.2	65
1188	Characterization of Impurity Doping and Stress in Si/Ge and Ge/Si Core–Shell Nanowires. ACS Nano, 2012, 6, 8887-8895.	7.3	64

#	Article	IF	CITATIONS
1189	Magnetism in Dopant-Free ZnO Nanoplates. Nano Letters, 2012, 12, 576-581.	4.5	64
1190	Theoretical Study of Piezoâ€phototronic Nano‣EDs. Advanced Materials, 2014, 26, 7209-7216.	11.1	64
1191	Complementary power output characteristics of electromagnetic generators and triboelectric generators. Nanotechnology, 2014, 25, 135402.	1.3	64
1192	Lightweight Triboelectric Nanogenerator for Energy Harvesting and Sensing Tiny Mechanical Motion. Advanced Functional Materials, 2016, 26, 4370-4376.	7.8	64
1193	Ultrafine Capillaryâ€Tube Triboelectric Nanogenerator as Active Sensor for Microliquid Biological and Chemical Sensing. Advanced Materials Technologies, 2018, 3, 1700229.	3.0	64
1194	Mechanosensation-Active Matrix Based on Direct-Contact Tribotronic Planar Graphene Transistor Array. ACS Nano, 2018, 12, 9381-9389.	7.3	64
1195	Surface charge density of triboelectric nanogenerators: Theoretical boundary and optimization methodology. Applied Materials Today, 2020, 18, 100496.	2.3	64
1196	Triboelectric Nanogenerator for Ocean Wave Graded Energy Harvesting and Condition Monitoring. ACS Nano, 2021, 15, 16368-16375.	7.3	64
1197	Well-aligned graphitic nanofibers synthesized by plasma-assisted chemical vapor deposition. Chemical Physics Letters, 1997, 272, 178-182.	1.2	63
1198	Phosphorus Doped Zn _{1-<i>x</i>} Mg _{<i>x</i>} O Nanowire Arrays. Nano Letters, 2009, 9, 3877-3882.	4.5	63
1199	PVDF–PZT nanocomposite film based self-charging power cell. Nanotechnology, 2014, 25, 105401.	1.3	63
1200	Organic Tribotronic Transistor for Contactâ€Electrificationâ€Gated Lightâ€Emitting Diode. Advanced Functional Materials, 2015, 25, 5625-5632.	7.8	63
1201	Piezo-Phototronic Effect in a Quantum Well Structure. ACS Nano, 2016, 10, 5145-5152.	7.3	63
1202	Coupling of photoelectric and triboelectric effects as an effective approach for PZT-based high-performance self-powered ultraviolet photodetector. Nano Energy, 2017, 31, 264-269.	8.2	63
1203	Piezotronic Effect Enhanced Flexible Humidity Sensing of Monolayer MoS ₂ . ACS Applied Materials & Interfaces, 2018, 10, 8110-8116.	4.0	63
1204	Ultrathin Piezotronic Transistors with 2 nm Channel Lengths. ACS Nano, 2018, 12, 4903-4908.	7.3	63
1205	Triboelectric nanogenerator by integrating a cam and a movable frame for ambient mechanical energy harvesting. Nano Energy, 2019, 60, 137-143.	8.2	63
1206	A piezoelectric nanogenerator promotes highly stretchable and self-chargeable supercapacitors. Materials Horizons, 2020, 7, 2158-2167.	6.4	63

#	Article	IF	CITATIONS
1207	Tailoring carrier dynamics in perovskite solar cells <i>via</i> precise dimension and architecture control and interfacial positioning of plasmonic nanoparticles. Energy and Environmental Science, 2020, 13, 1743-1752.	15.6	63
1208	Acid and Alkaliâ€Resistant Textile Triboelectric Nanogenerator as a Smart Protective Suit for Liquid Energy Harvesting and Selfâ€Powered Monitoring in Highâ€Risk Environments. Advanced Functional Materials, 2021, 31, 2102963.	7.8	63
1209	Natural cotton-based triboelectric nanogenerator as a self-powered system for efficient use of water and wind energy. Nano Energy, 2022, 92, 106685.	8.2	63
1210	Gyroscope-Structured Triboelectric Nanogenerator for Harvesting Multidirectional Ocean Wave Energy. ACS Nano, 2022, 16, 6781-6788.	7.3	63
1211	Lithium ion battery anodes using Si-Fe based nanocomposite structures. Nano Energy, 2016, 26, 37-42.	8.2	62
1212	Electrospun Poly(<scp>l</scp> ‣actic Acid) Nanofibers for Nanogenerator and Diagnostic Sensor Applications. Macromolecular Materials and Engineering, 2017, 302, 1600476.	1.7	62
1213	Flexible transparent tribotronic transistor for active modulation of conventional electronics. Nano Energy, 2017, 31, 533-540.	8.2	62
1214	Effective removing of hexavalent chromium from wasted water by triboelectric nanogenerator driven self-powered electrochemical system – Why pulsed DC is better than continuous DC?. Nano Energy, 2019, 64, 103915.	8.2	62
1215	Nanofiberâ€Reinforced Silver Nanowires Network as a Robust, Ultrathin, and Conformable Epidermal Electrode for Ambulatory Monitoring of Physiological Signals. Small, 2019, 15, e1900755.	5.2	62
1216	Enhanced Photovoltaic Performances of La-Doped Bismuth Ferrite/Zinc Oxide Heterojunction by Coupling Piezo-Phototronic Effect and Ferroelectricity. ACS Nano, 2020, 14, 10723-10732.	7.3	62
1217	Smart Wearable Sensors Based on Triboelectric Nanogenerator for Personal Healthcare Monitoring. Micromachines, 2021, 12, 352.	1.4	62
1218	Waterâ€Wave Driven Route Avoidance Warning System for Wireless Ocean Navigation. Advanced Energy Materials, 2021, 11, 2101116.	10.2	62
1219	Stretching-enhanced triboelectric nanogenerator for efficient wind energy scavenging and ultrasensitive strain sensing. Nano Energy, 2020, 75, 104920.	8.2	62
1220	A highly efficient constant-voltage triboelectric nanogenerator. Energy and Environmental Science, 2022, 15, 1334-1345.	15.6	62
1221	Surface plasmon excitation for supported metal particles. Ultramicroscopy, 1987, 21, 77-93.	0.8	61
1222	Large-Size Liftable Inverted-Nanobowl Sheets as Reusable Masks for Nanolithiography. Nano Letters, 2005, 5, 1784-1788.	4.5	61
1223	Solid Au nanoparticles as a catalyst for growing aligned ZnO nanowires: a new understanding of the vapour–liquid–solid process. Nanotechnology, 2007, 18, 365304.	1.3	61
1224	Flexible hybrid cell for simultaneously harvesting thermal and mechanical energies. Nano Energy, 2013, 2, 817-825.	8.2	61

#	Article	IF	CITATIONS
1225	Tribotronic Logic Circuits and Basic Operations. Advanced Materials, 2015, 27, 3533-3540.	11.1	61
1226	Piezotronic Effect on Rashba Spin–Orbit Coupling in a ZnO/P3HT Nanowire Array Structure. ACS Nano, 2018, 12, 1811-1820.	7.3	61
1227	Lightâ€Driven Shapeâ€Memory Porous Films with Precisely Controlled Dimensions. Angewandte Chemie - International Edition, 2018, 57, 2139-2143.	7.2	61
1228	Triboelectric–Thermoelectric Hybrid Nanogenerator for Harvesting Energy from Ambient Environments. Advanced Materials Technologies, 2018, 3, 1800166.	3.0	61
1229	Reversible Conversion between Schottky and Ohmic Contacts for Highly Sensitive, Multifunctional Biosensors. Advanced Functional Materials, 2020, 30, 1907999.	7.8	61
1230	The Overlapped Electronâ€Cloud Model for Electron Transfer in Contact Electrification. Advanced Functional Materials, 2020, 30, 1909724.	7.8	61
1231	Shock compression response of magnetic nanocomposite powders. Acta Materialia, 2004, 52, 2147-2154.	3.8	60
1232	Quantifying the elastic deformation behavior of bridged nanobelts. Applied Physics Letters, 2006, 89, 073112.	1.5	60
1233	Lateral Self-Aligned p-Type In2O3 Nanowire Arrays Epitaxially Grown on Si Substrates. Nano Letters, 2007, 7, 1799-1803.	4.5	60
1234	Anisotropic Third-Order Optical Nonlinearity of a single ZnO Micro/Nanowire. Nano Letters, 2012, 12, 833-838.	4.5	60
1235	Increase Output Energy and Operation Frequency of a Triboelectric Nanogenerator by Two Grounded Electrodes Approach. Advanced Functional Materials, 2014, 24, 2892-2898.	7.8	60
1236	Temperature Dependence of the Piezotronic and Piezophototronic Effects in <i>a</i> â€axis GaN Nanobelts. Advanced Materials, 2015, 27, 8067-8074.	11.1	60
1237	Piezoâ€₽hototronic UV/Visible Photosensing with Opticalâ€Fiber–Nanowire Hybridized Structures. Advanced Materials, 2015, 27, 1553-1560.	11.1	60
1238	Excluding Contact Electrification in Surface Potential Measurement Using Kelvin Probe Force Microscopy. ACS Nano, 2016, 10, 2528-2535.	7.3	60
1239	Studying about applied force and the output performance of sliding-mode triboelectric nanogenerators. Nano Energy, 2018, 48, 292-300.	8.2	60
1240	Actuation and sensor integrated self-powered cantilever system based on TENG technology. Nano Energy, 2019, 64, 103920.	8.2	60
1241	Stacked pendulum-structured triboelectric nanogenerators for effectively harvesting low-frequency water wave energy. Nano Energy, 2019, 66, 104108.	8.2	60
1242	2D piezotronics in atomically thin zinc oxide sheets: Interfacing gating and channel width gating. Nano Energy, 2019, 60, 724-733.	8.2	60

#	Article	IF	CITATIONS
1243	Dripping Channel Based Liquid Triboelectric Nanogenerators for Energy Harvesting and Sensing. ACS Nano, 2020, 14, 10510-10517.	7.3	60
1244	Rationally segmented triboelectric nanogenerator with a constant direct-current output and low crest factor. Energy and Environmental Science, 0, , .	15.6	60
1245	Integrated All-Fiber Electronic Skin toward Self-Powered Sensing Sports Systems. ACS Applied Materials & Interfaces, 2021, 13, 50329-50337.	4.0	60
1246	Strong, Asymmetric Flux Pinning by Miscut-Growth-Initiated Columnar Defects in EpitaxialYBa2Cu3O7â^'xFilms. Physical Review Letters, 1995, 74, 2355-2358.	2.9	59
1247	Graphitic hollow carbon calabashes. Chemical Physics Letters, 1998, 289, 189-192.	1.2	59
1248	Collective oscillations in a single-wall carbon nanotube excited by fast electrons. Physical Review B, 2001, 64, .	1.1	59
1249	Theory of Piezoâ€Phototronics for Lightâ€Emitting Diodes. Advanced Materials, 2012, 24, 4712-4718.	11.1	59
1250	Visualization Recording and Storage of Pressure Distribution through a Smart Matrix Based on the Piezotronic Effect. Advanced Materials, 2017, 29, 1701253.	11.1	59
1251	Structural figure-of-merits of triboelectric nanogenerators at powering loads. Nano Energy, 2018, 51, 688-697.	8.2	59
1252	Biodegradable Electrospun Poly(lactic acid) Nanofibers for Effective PM 2.5 Removal. Macromolecular Materials and Engineering, 2019, 304, 1900259.	1.7	59
1253	Electrohydrodynamic Jet Printing Driven by a Triboelectric Nanogenerator. Advanced Functional Materials, 2019, 29, 1901102.	7.8	59
1254	Novel sweep-type triboelectric nanogenerator utilizing single freewheel for random triggering motion energy harvesting and driver habits monitoring. Nano Energy, 2020, 68, 104360.	8.2	59
1255	Power cables for triboelectric nanogenerator networks for large-scale blue energy harvesting. Nano Energy, 2020, 75, 104975.	8.2	59
1256	Non-contact and liquid–liquid interfacing triboelectric nanogenerator for self-powered water/liquid level sensing. Nano Energy, 2020, 72, 104703.	8.2	59
1257	Natural polymers based triboelectric nanogenerator for harvesting biomechanical energy and monitoring human motion. Nano Research, 2022, 15, 2505-2511.	5.8	59
1258	Smart Textile Triboelectric Nanogenerators: Prospective Strategies for Improving Electricity Output Performance. Nanoenergy Advances, 2022, 2, 133-164.	3.6	59
1259	In Situ Structural Evolution of Self-Assembled Oxide Nanocrystals. Journal of Physical Chemistry B, 1997, 101, 8979-8983.	1.2	58
1260	Catalytically active nickel {110} surfaces in growth of carbon tubular structures. Applied Physics Letters, 2000, 76, 1255-1257.	1.5	58

#	Article	IF	CITATIONS
1261	"Simulating Synthesisâ€⊧ Ceria Nanosphere Self-Assembly into Nanorods and Framework Architectures. Journal of the American Chemical Society, 2007, 129, 7924-7935.	6.6	58
1262	Piezo-Phototronic Effect on Electroluminescence Properties of <i>p</i> -Type GaN Thin Films. Nano Letters, 2012, 12, 3851-3856.	4.5	58
1263	Optical-fiber/TiO2-nanowire-arrays hybrid structures with tubular counterelectrode for dye-sensitized solar cell. Nano Energy, 2012, 1, 176-182.	8.2	58
1264	Piezotronics and Piezo-Phototronics. Microtechnology and MEMS, 2012, , .	0.2	58
1265	Triboelectric Nanogenerator as a Self-Powered Communication Unit for Processing and Transmitting Information. ACS Nano, 2016, 10, 3944-3950.	7.3	58
1266	Theory of contact electrification: Optical transitions in two-level systems. Nano Energy, 2018, 52, 517-523.	8.2	58
1267	A self-powered and self-functional tracking system based on triboelectric-electromagnetic hybridized blue energy harvesting module. Nano Energy, 2020, 72, 104684.	8.2	58
1268	A 25-year bibliometric study of implantable energy harvesters and self-powered implantable medical electronics researches. Materials Today Energy, 2020, 16, 100386.	2.5	58
1269	One-structure-based multi-effects coupled nanogenerators for flexible and self-powered multi-functional coupled sensor systems. Nano Energy, 2020, 71, 104632.	8.2	58
1270	Flexible sliding sensor for simultaneous monitoring deformation and displacement on a robotic hand/arm. Nano Energy, 2020, 73, 104764.	8.2	58
1271	Wind-driven self-powered wireless environmental sensors for Internet of Things at long distance. Nano Energy, 2020, 73, 104819.	8.2	58
1272	High output direct-current power fabrics based on the air breakdown effect. Energy and Environmental Science, 2021, 14, 2460-2471.	15.6	58
1273	Studies of Mn valence conversion and oxygen vacancies in La1â [~] xCaxMnO3â [~] y using electron energy-loss spectroscopy. Applied Physics Letters, 1997, 70, 3362-3364.	1.5	57
1274	Nanobelt and nanosaw structures of II-VI semiconductors. International Journal of Nanotechnology, 2004, 1, 431.	0.1	57
1275	SiO2/Ta2O5 Core–Shell Nanowires and Nanotubes. Angewandte Chemie - International Edition, 2006, 45, 7773-7778.	7.2	57
1276	Large-Scale Synthesis of Rings of Bundled Single-Walled Carbon Nanotubes by Floating Chemical Vapor Deposition. Advanced Materials, 2006, 18, 1817-1821.	11.1	57
1277	Sublimationâ€Induced Shape Evolution of Silver Cubes. Small, 2009, 5, 2812-2815.	5.2	57
1278	A self-powered piezotronic strain sensor based on single ZnSnO3 microbelts. RSC Advances, 2013, 3, 25184.	1.7	57

#	Article	IF	CITATIONS
1279	Enhanced photoresponsivity of the MoS2-GaN heterojunction diode via the piezo-phototronic effect. NPG Asia Materials, 2017, 9, e418-e418.	3.8	57
1280	Largely Improved Near-Infrared Silicon-Photosensing by the Piezo-Phototronic Effect. ACS Nano, 2017, 11, 7118-7125.	7.3	57
1281	Piezotronic Transistor Based on Topological Insulators. ACS Nano, 2018, 12, 779-785.	7.3	57
1282	Tire Condition Monitoring and Intelligent Tires Using Nanogenerators Based on Piezoelectric, Electromagnetic, and Triboelectric Effects. Advanced Materials Technologies, 2019, 4, 1800105.	3.0	57
1283	Keystroke Dynamics Identification Based on Triboelectric Nanogenerator for Intelligent Keyboard Using Deep Learning Method. Advanced Materials Technologies, 2019, 4, 1800167.	3.0	57
1284	Recent Progress in Piezoâ€₽hototronic Effect Enhanced Solar Cells. Advanced Functional Materials, 2019, 29, 1808214.	7.8	57
1285	Design of biodegradable wheat-straw based triboelectric nanogenerator as self-powered sensor for wind detection. Nano Energy, 2021, 86, 106032.	8.2	57
1286	Ultra-Stable and Durable Piezoelectric Nanogenerator with All-Weather Service Capability Based on NÂDoped 4H-SiC Nanohole Arrays. Nano-Micro Letters, 2022, 14, 30.	14.4	57
1287	High-Quality Alloyed CdSxSe1-xWhiskers as Waveguides with Tunable Stimulated Emission. Journal of Physical Chemistry B, 2006, 110, 22313-22317.	1.2	56
1288	Anisotropic Outputs of a Nanogenerator from Oblique-Aligned ZnO Nanowire Arrays. ACS Nano, 2011, 5, 6707-6713.	7.3	56
1289	Functional nanogenerators as vibration sensors enhanced by piezotronic effects. Nano Research, 2014, 7, 190-198.	5.8	56
1290	Multilayeredâ€Electrodeâ€Based Triboelectric Nanogenerators with Managed Output Voltage and Multifold Enhanced Charge Transport. Advanced Energy Materials, 2015, 5, 1401452.	10.2	56
1291	A substrate-enhanced MoS ₂ photodetector through a dual-photogating effect. Materials Horizons, 2019, 6, 826-833.	6.4	56
1292	Wind-Driven Radial-Engine-Shaped Triboelectric Nanogenerators for Self-Powered Absorption and Degradation of NO _X . ACS Nano, 2020, 14, 2751-2759.	7.3	56
1293	Understanding contact electrification at liquid–solid interfaces from surface electronic structure. Nature Communications, 2021, 12, 1752.	5.8	56
1294	All-Fabric Ultrathin Capacitive Sensor with High Pressure Sensitivity and Broad Detection Range for Electronic Skin. ACS Applied Materials & Interfaces, 2021, 13, 24062-24069.	4.0	56
1295	Piezoelectric nanogenerators with high performance against harsh conditions based on tunable N doped 4H-SiC nanowire arrays. Nano Energy, 2021, 83, 105826.	8.2	56
1296	Low-Cost, Environmentally Friendly, and High-Performance Triboelectric Nanogenerator Based on a Common Waste Material. ACS Applied Materials & Interfaces, 2021, 13, 30776-30784.	4.0	56

#	Article	IF	CITATIONS
1297	Real-Time and Online Lubricating Oil Condition Monitoring Enabled by Triboelectric Nanogenerator. ACS Nano, 2021, 15, 11869-11879.	7.3	56
1298	Transparent self-powered triboelectric sensor based on PVA/PA hydrogel for promoting human-machine interaction in nursing and patient safety. Nano Energy, 2022, 97, 107199.	8.2	56
1299	Bioinspired soft electroreceptors for artificial precontact somatosensation. Science Advances, 2022, 8, .	4.7	56
1300	Carrier recombination in clusters of NiO. Chemical Physics Letters, 2001, 337, 117-124.	1.2	55
1301	Modifying the anti-wetting property of butterfly wings and water strider legs by atomic layer deposition coating: surface materials versus geometry. Nanotechnology, 2008, 19, 355708.	1.3	55
1302	Nanogenerator based on zinc blende CdTe micro/nanowires. Nano Energy, 2013, 2, 387-393.	8.2	55
1303	Simultaneously Enhancing Light Emission and Suppressing Efficiency Droop in GaN Microwire-Based Ultraviolet Light-Emitting Diode by the Piezo-Phototronic Effect. Nano Letters, 2017, 17, 3718-3724.	4.5	55
1304	A Poly(<scp>l</scp> ‣actic Acid) Polymerâ€Based Thermally Stable Cantilever for Vibration Energy Harvesting Applications. Advanced Sustainable Systems, 2017, 1, 1700068.	2.7	55
1305	Prediction of strong piezoelectricity in 3R-MoS2 multilayer structures. Nano Energy, 2019, 56, 512-515.	8.2	55
1306	β-Phase-Preferential blow-spun fabrics for wearable triboelectric nanogenerators and textile interactive interface. Nano Energy, 2020, 77, 105262.	8.2	55
1307	TENG-Bot: Triboelectric nanogenerator powered soft robot made of uni-directional dielectric elastomer. Nano Energy, 2021, 85, 106012.	8.2	55
1308	A Singleâ€Droplet Electricity Generator Achieves an Ultrahigh Output Over 100ÂV Without Preâ€Charging. Advanced Materials, 2021, 33, e2105761.	11.1	55
1309	Ultrathin, transparent, and robust self-healing electronic skins for tactile and non-contact sensing. Nano Energy, 2022, 95, 107056.	8.2	55
1310	Epitaxial growth of BaTiO3 thin films at 600 °C by metalorganic chemical vapor deposition. Applied Physics Letters, 1995, 66, 2801-2803.	1.5	54
1311	Self-Catalysis and Phase Transformation in the Formation of CdSe Nanosaws. Advanced Materials, 2004, 16, 1740-1743.	11.1	54
1312	Magneticâ€Mechanicalâ€Electricalâ€Optical Coupling Effects in GaNâ€Based LED/Rareâ€Earth Terfenolâ€D Structures. Advanced Materials, 2014, 26, 6767-6772.	11.1	54
1313	One-step synthesis of ultrathin nanobelts-assembled urchin-like anatase TiO ₂ nanostructures for highly efficient photocatalysis. CrystEngComm, 2017, 19, 129-136.	1.3	54
1314	Enhanced performances of Si/CdS heterojunction near-infrared photodetector by the piezo-phototronic effect. Nano Energy, 2018, 44, 311-318.	8.2	54

#	Article	IF	CITATIONS
1315	High-frequency supercapacitors based on carbonized melamine foam as energy storage devices for triboelectric nanogenerators. Nano Energy, 2019, 55, 447-453.	8.2	54
1316	Alternating Current Photovoltaic Effect. Advanced Materials, 2020, 32, e1907249.	11.1	54
1317	Selfâ€powered technology based on nanogenerators for biomedical applications. Exploration, 2021, 1, 90-114.	5.4	54
1318	Intelligent facemask based on triboelectric nanogenerator for respiratory monitoring. Nano Energy, 2022, 91, 106612.	8.2	54
1319	Bioinspired Electron Polarization of Nanozymes with a Human Selfâ€Generated Electric Field for Cancer Catalytic Therapy. Advanced Materials, 2022, 34, e2109568.	11.1	54
1320	Tin oxide nanosensor fabrication using AC dielectrophoretic manipulation of nanobelts. Electrochimica Acta, 2005, 51, 943-951.	2.6	53
1321	An elastic-spring-substrated nanogenerator as an active sensor for self-powered balance. Energy and Environmental Science, 2013, 6, 1164.	15.6	53
1322	Piezotronic Effect on ZnO Nanowire Film Based Temperature Sensor. ACS Applied Materials & Interfaces, 2014, 6, 5955-5961.	4.0	53
1323	Self-Powered Electrochemical Oxidation of 4-Aminoazobenzene Driven by a Triboelectric Nanogenerator. ACS Nano, 2017, 11, 770-778.	7.3	53
1324	Flexible Light Emission Diode Arrays Made of Transferred Si Microwires-ZnO Nanofilm with Piezo-Phototronic Effect Enhanced Lighting. ACS Nano, 2017, 11, 3883-3889.	7.3	53
1325	Tunable WSe ₂ –CdS mixed-dimensional van der Waals heterojunction with a piezo-phototronic effect for an enhanced flexible photodetector. Nanoscale, 2018, 10, 14472-14479.	2.8	53
1326	A Triboelectric Nanogenerator as a Selfâ€Powered Sensor for a Soft–Rigid Hybrid Actuator. Advanced Materials Technologies, 2019, 4, 1900337.	3.0	53
1327	A flexible and wide pressure range triboelectric sensor array for real-time pressure detection and distribution mapping. Journal of Materials Chemistry A, 2020, 8, 23827-23833.	5.2	53
1328	Soft robots with self-powered configurational sensing. Nano Energy, 2020, 77, 105171.	8.2	53
1329	Strain-controlled power devices as inspired by human reflex. Nature Communications, 2020, 11, 326.	5.8	53
1330	Long‣ifetime Triboelectric Nanogenerator Operated in Conjunction Modes and Low Crest Factor. Advanced Energy Materials, 2020, 10, 1903024.	10.2	53
1331	Multifunctional Selfâ€Charging Electrochromic Supercapacitors Driven by Directâ€Current Triboelectric Nanogenerators. Advanced Functional Materials, 2021, 31, 2104348.	7.8	53
1332	Mechanoluminescent hybrids from a natural resource for energyâ€related applications. InformaÄnÃ- Materiály, 2021, 3, 1272-1284.	8.5	53

#	Article	IF	CITATIONS
1333	Triboelectric Polymer with High Thermal Charge Stability for Harvesting Energy from 200°C Flowing Air. Advanced Functional Materials, 2021, 31, 2106082.	7.8	53
1334	Improving performance of triboelectric nanogenerators by dielectric enhancement effect. Matter, 2022, 5, 180-193.	5.0	53
1335	Dynamic theory of high-angle annular-dark-field stem lattice images for a Ge/Si interface. Ultramicroscopy, 1990, 32, 275-289.	0.8	52
1336	Poly(vinyl pyrrolidone)-capped five-fold twinned gold particles with sizes from nanometres to micrometres. Nanotechnology, 2006, 17, 3533-3538.	1.3	52
1337	Bulk FePt-based nanocomposite magnets with enhanced exchange coupling. Journal of Applied Physics, 2007, 102, 023908.	1.1	52
1338	Waferâ€Level Patterned and Aligned Polymer Nanowire/Micro―and Nanotube Arrays on any Substrate. Advanced Materials, 2009, 21, 2072-2076.	11.1	52
1339	Synthesis and Characterization of Gold Nanoparticles Coated with Ultrathin and Chemically Inert Dielectric Shells for SHINERS Applications. Applied Spectroscopy, 2011, 65, 620-626.	1.2	52
1340	Triboelectric Nanogenerators Based on Melamine and Selfâ€Powered Highâ€Sensitive Sensors for Melamine Detection. Advanced Functional Materials, 2016, 26, 3029-3035.	7.8	52
1341	SATURN. , 2018, 2, 1-28.		52
1342	A highly elastic self-charging power system for simultaneously harvesting solar and mechanical energy. Nano Energy, 2019, 65, 103997.	8.2	52
1343	Triboelectric Nanogenerator Boosts Smart Green Tires. Advanced Functional Materials, 2019, 29, 1806331.	7.8	52
1344	Atomic threshold-switching enabled MoS2 transistors towards ultralow-power electronics. Nature Communications, 2020, 11, 6207.	5.8	52
1345	Cylindrical Directâ€Current Triboelectric Nanogenerator with Constant Output Current. Advanced Energy Materials, 2020, 10, 1904227.	10.2	52
1346	Selfâ€Powered Controllable Transdermal Drug Delivery System. Advanced Functional Materials, 2021, 31, 2104092.	7.8	52
1347	Blue Energy for Green Hydrogen Fuel: A Selfâ€Powered Electrochemical Conversion System Driven by Triboelectric Nanogenerators. Advanced Energy Materials, 2022, 12, .	10.2	52
1348	Semiconductor Contactâ€Electrificationâ€Dominated Tribovoltaic Effect for Ultrahigh Power Generation. Advanced Materials, 2022, 34, e2200146.	11.1	52
1349	Wearable and humidity-resistant biomaterials-based triboelectric nanogenerator for high entropy energy harvesting and self-powered sensing. Nano Research, 2022, 15, 6213-6219.	5.8	52
1350	Transmission electron microscopy and theoretical analysis of AuCu nanoparticles: Atomic distribution and dynamic behavior. Microscopy Research and Technique, 2006, 69, 522-530.	1.2	51

#	Article	IF	CITATIONS
1351	Growth of Ultralong ZnS/SiO ₂ Coreâ^'Shell Nanowires by Volume and Surface Diffusion VLS Process. Journal of Physical Chemistry C, 2008, 112, 2895-2903.	1.5	51
1352	ZnO Nanotubes Grown at Low Temperature Using Ga as Catalysts and Their Enhanced Photocatalytic Activities. Journal of Physical Chemistry C, 2009, 113, 10379-10383.	1.5	51
1353	Heteroepitaxial Patterned Growth of Vertically Aligned and Periodically Distributed ZnO Nanowires on GaN Using Laser Interference Ablation. Advanced Functional Materials, 2010, 20, 3484-3489.	7.8	51
1354	Control of naturally coupled piezoelectric and photovoltaic properties for multi-type energy scavengers. Energy and Environmental Science, 2011, 4, 4607.	15.6	51
1355	Tribotronic Phototransistor for Enhanced Photodetection and Hybrid Energy Harvesting. Advanced Functional Materials, 2016, 26, 2554-2560.	7.8	51
1356	A Shared-Electrode-Based Hybridized Electromagnetic-Triboelectric Nanogenerator. ACS Applied Materials & Interfaces, 2016, 8, 19573-19578.	4.0	51
1357	High-Output Lead-Free Flexible Piezoelectric Generator Using Single-Crystalline GaN Thin Film. ACS Applied Materials & Interfaces, 2018, 10, 12839-12846.	4.0	51
1358	Piezoelectric Effect Tuning on ZnO Microwire Whispering-Gallery Mode Lasing. ACS Nano, 2018, 12, 11899-11906.	7.3	51
1359	Self-Powered High-Responsivity Photodetectors Enhanced by the Pyro-Phototronic Effect Based on a BaTiO ₃ /GaN Heterojunction. Nano Letters, 2021, 21, 8808-8816.	4.5	51
1360	Size and shape dependence of the surface plasmon frequencies for supported metal particle systems. Ultramicroscopy, 1987, 23, 97-107.	0.8	50
1361	In-Situ Analysis of Valence Conversion in Transition Metal Oxides Using Electron Energy-Loss Spectroscopy. Journal of Physical Chemistry B, 1997, 101, 6793-6798.	1.2	50
1362	Growth of high quality, epitaxial InSb nanowires. Journal of Crystal Growth, 2007, 304, 399-401.	0.7	50
1363	Temperature Dependence of the Piezophototronic Effect in CdS Nanowires. Advanced Functional Materials, 2015, 25, 5277-5284.	7.8	50
1364	Multilayered flexible nanocomposite for hybrid nanogenerator enabled by conjunction of piezoelectricity and triboelectricity. Nano Research, 2017, 10, 785-793.	5.8	50
1365	Flexible Timbo‣ike Triboelectric Nanogenerator as Selfâ€Powered Force and Bend Sensor for Wireless and Distributed Landslide Monitoring. Advanced Materials Technologies, 2018, 3, 1800144.	3.0	50
1366	A monolayer MoS ₂ p-n homogenous photodiode with enhanced photoresponse by piezo-phototronic effect. 2D Materials, 2018, 5, 035038.	2.0	50
1367	Self-doubled-rectification of triboelectric nanogenerator. Nano Energy, 2019, 66, 104165.	8.2	50
1368	Temperature dependence of the pyro-phototronic effect in self-powered p-Si/n-ZnO nanowires heterojuncted ultraviolet sensors. Nano Today, 2019, 29, 100798.	6.2	50

#	Article	IF	CITATIONS
1369	A paradigm shift fully self-powered long-distance wireless sensing solution enabled by discharge-induced displacement current. Science Advances, 2021, 7, eabi6751.	4.7	50
1370	Flexible MXene composed triboelectric nanogenerator via facile vacuum-assistant filtration method for self-powered biomechanical sensing. Nano Energy, 2021, 88, 106257.	8.2	50
1371	Electron resonance channeling on crystal surfaces in reflection high energy electron diffraction geometry. Ultramicroscopy, 1987, 23, 205-221.	0.8	49
1372	Liquid-phase synthesis of thiol-derivatized silver nanocrystals. Materials Letters, 1997, 30, 321-325.	1.3	49
1373	Investigations on the formation mechanism of hydroxyapatite synthesized by the solvothermal method. Nanotechnology, 2006, 17, 4405-4412.	1.3	49
1374	Piezopotential Gated Nanowireâ^'Nanotube Hybrid Field-Effect Transistor. Nano Letters, 2010, 10, 3084-3089.	4.5	49
1375	Robust Thin-Film Generator Based on Segmented Contact-Electrification for Harvesting Wind Energy. ACS Applied Materials & Interfaces, 2014, 6, 8011-8016.	4.0	49
1376	Electrical Tuning of Surface Plasmon Polariton Propagation in Graphene–Nanowire Hybrid Structure. ACS Nano, 2014, 8, 2584-2589.	7.3	49
1377	Theory of Tribotronics. Advanced Electronic Materials, 2015, 1, 1500124.	2.6	49
1378	Self-powered seawater desalination and electrolysis using flowing kinetic energy. Nano Energy, 2015, 15, 266-274.	8.2	49
1379	Hugely Enhanced Output Power of Directâ€Current Triboelectric Nanogenerators by Using Electrostatic Breakdown Effect. Advanced Materials Technologies, 2020, 5, 2000289.	3.0	49
1380	Versatile Triboiontronic Transistor <i>via</i> Proton Conductor. ACS Nano, 2020, 14, 8668-8677.	7.3	49
1381	Mechanical Regulation Triboelectric Nanogenerator with Controllable Output Performance for Random Energy Harvesting. Advanced Energy Materials, 2020, 10, 2000627.	10.2	49
1382	Power Backpack for Energy Harvesting and Reduced Load Impact. ACS Nano, 2021, 15, 2611-2623.	7.3	49
1383	A review on emerging biodegradable polymers for environmentally benign transient electronic skins. Journal of Materials Science, 2021, 56, 16765-16789.	1.7	49
1384	Self-Powered Smart Arm Training Band Sensor Based on Extremely Stretchable Hydrogel Conductors. ACS Applied Materials & Interfaces, 2021, 13, 44868-44877.	4.0	49
1385	Cellâ€Tractionâ€Triggered Onâ€Demand Electrical Stimulation for Neuronâ€Like Differentiation. Advanced Materials, 2021, 33, e2106317.	11.1	49
1386	Harvesting Waterâ€Evaporationâ€Induced Electricity Based on Liquid–Solid Triboelectric Nanogenerator. Advanced Science, 2022, 9, e2201586.	5.6	49

#	Article	IF	CITATIONS
1387	Seven-Nanometer Hexagonal Close Packed Cobalt Nanocrystals for High-Temperature Magnetic Applications through a Novel Annealing Process. Journal of Physical Chemistry B, 2005, 109, 15309-15316.	1.2	48
1388	Optical switches based on nanowires synthesized by molten salt solvent method. Solid State Communications, 2009, 149, 1894-1896.	0.9	48
1389	Piezo-phototronic Effect Enhanced Responsivity of Photon Sensor Based on Composition-Tunable Ternary CdS _{<i>x</i>} Se _{1–<i>x</i>} Nanowires. ACS Photonics, 2017, 4, 2495-2503.	3.2	48
1390	High precision epidermal radio frequency antenna via nanofiber network for wireless stretchable multifunction electronics. Nature Communications, 2020, 11, 5629.	5.8	48
1391	Triboelectric nanogenerator for entire stroke energy harvesting with bidirectional gear transmission. Nano Energy, 2020, 72, 104726.	8.2	48
1392	Advances in piezotronic transistors and piezotronics. Nano Today, 2021, 37, 101108.	6.2	48
1393	A Mobile and Selfâ€Powered Microâ€Flow Pump Based on Triboelectricity Driven Electroosmosis. Advanced Materials, 2021, 33, e2102765.	11.1	48
1394	Quantifying Contactâ€Electrification Induced Charge Transfer on a Liquid Droplet after Contacting with a Liquid or Solid. Advanced Materials, 2021, 33, e2102886.	11.1	48
1395	A Selfâ€Powered Dualâ€Type Signal Vector Sensor for Smart Robotics and Automatic Vehicles. Advanced Materials, 2022, 34, e2110363.	11.1	48
1396	Cobalt valence and crystal structure of La _{0.5} Sr _{0.5} CoO _{2.25} . The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1998, 77, 49-65.	0.6	47
1397	Thermal diffuse scattering in sub-angstrom quantitative electron microscopy—phenomenon, effects and approaches. Micron, 2003, 34, 141-155.	1.1	47
1398	Growth of Large-Area Aligned Molybdenum Nanowires by High Temperature Chemical Vapor Deposition:Â Synthesis, Growth Mechanism, and Device Application. Journal of Physical Chemistry B, 2006, 110, 10296-10302.	1.2	47
1399	Structural colors from <i>Morpho peleides</i> butterfly wing scales. Journal of Applied Physics, 2009, 106, .	1.1	47
1400	Selfâ€Powered Ultrasensitive Nanowire Photodetector Driven by a Hybridized Microbial Fuel Cell. Angewandte Chemie - International Edition, 2012, 51, 6443-6446.	7.2	47
1401	Robust design of unearthed single-electrode TENG from three-dimensionally hybridized copper/polydimethylsiloxane film. Nano Energy, 2016, 30, 155-161.	8.2	47
1402	Tuning carrier lifetime in InGaN/GaN LEDs via strain compensation for high-speed visible light communication. Scientific Reports, 2016, 6, 37132.	1.6	47
1403	Progress in piezo-phototronic effect enhanced photodetectors. Journal of Materials Chemistry C, 2016, 4, 11341-11354.	2.7	47
1404	Magneticâ€Inducedâ€Piezopotential Gated MoS ₂ Fieldâ€Effect Transistor at Room Temperature. Advanced Materials, 2018, 30, 1704524.	11.1	47

#	Article	IF	CITATIONS
1405	Energy Harvestingâ€Storage Bracelet Incorporating Electrochemical Microsupercapacitors Selfâ€Charged from a Single Hand Gesture. Advanced Energy Materials, 2019, 9, 1900152.	10.2	47
1406	Flexible triboelectric nanogenerator for human motion tracking and gesture recognition. Nano Energy, 2022, 91, 106601.	8.2	47
1407	Smart Pillow Based on Flexible and Breathable Triboelectric Nanogenerator Arrays for Head Movement Monitoring during Sleep. ACS Applied Materials & Interfaces, 2022, 14, 23998-24007.	4.0	47
1408	Bulk nanocomposite magnets produced by dynamic shock compaction. Journal of Applied Physics, 2004, 96, 1276-1278.	1.1	46
1409	Electricity generation based on vertically aligned PbZr0.2Ti0.8O3 nanowire arrays. Nano Energy, 2012, 1, 424-428.	8.2	46
1410	Piezoâ€phototronic Boolean Logic and Computation Using Photon and Strain Dualâ€Gated Nanowire Transistors. Advanced Materials, 2015, 27, 940-947.	11.1	46
1411	CoS NWs/Au Hybridized Networks as Efficient Counter Electrodes for Flexible Sensitized Solar Cells. Advanced Energy Materials, 2015, 5, 1500141.	10.2	46
1412	Bionicâ€Finâ€Structured Triboelectric Nanogenerators for Undersea Energy Harvesting. Advanced Materials Technologies, 2020, 5, 2000531.	3.0	46
1413	Giant energy storage density in lead-free dielectric thin films deposited on Si wafers with an artificial dead-layer. Nano Energy, 2020, 78, 105390.	8.2	46
1414	Freeâ€Fixed Rotational Triboelectric Nanogenerator for Selfâ€Powered Realâ€Time Wheel Monitoring. Advanced Materials Technologies, 2021, 6, 2000918.	3.0	46
1415	A Universal Power Management Strategy Based on Novel Soundâ€Driven Triboelectric Nanogenerator and Its Fully Selfâ€Powered Wireless System Applications. Advanced Functional Materials, 2021, 31, 2103081.	7.8	46
1416	A stretchable, harsh condition-resistant and ambient-stable hydrogel and its applications in triboelectric nanogenerator. Nano Energy, 2021, 86, 106086.	8.2	46
1417	Optimization strategy of wind energy harvesting via triboelectric-electromagnetic flexible cooperation. Applied Energy, 2022, 307, 118311.	5.1	46
1418	The crystal structure and growth direction of Cu2S nanowire arrays fabricated on a copper surface. Physical Chemistry Chemical Physics, 2001, 3, 3750-3753.	1.3	45
1419	Profile imaging of reconstructed polar and non-polar surfaces of ZnO. Surface Science, 2007, 601, 425-433.	0.8	45
1420	Crystalline ZnO thin film by hydrothermal growth. Chemical Communications, 2011, 47, 7776.	2.2	45
1421	Toward Robust Nanogenerators Using Aluminum Substrate. Advanced Materials, 2012, 24, 4398-4402.	11.1	45
1422	First principle simulations of piezotronic transistors. Nano Energy, 2015, 14, 355-363.	8.2	45

#	Article	IF	CITATIONS
1423	Solution processed flexible hybrid cell for concurrently scavenging solar and mechanical energies. Nano Energy, 2015, 16, 301-309.	8.2	45
1424	Biocideâ€Free Antifouling on Insulating Surface by Waveâ€Driven Triboelectrificationâ€Induced Potential Oscillation. Advanced Materials Interfaces, 2016, 3, 1600187.	1.9	45
1425	Ultrasensitive Vertical Piezotronic Transistor Based on ZnO Twin Nanoplatelet. ACS Nano, 2017, 11, 4859-4865.	7.3	45
1426	Self-powered versatile shoes based on hybrid nanogenerators. Nano Research, 2018, 11, 3972-3978.	5.8	45
1427	Enhancing the Output Performance of Triboelectric Nanogenerator via Gratingâ€Electrodeâ€Enabled Surface Plasmon Excitation. Advanced Energy Materials, 2019, 9, 1902725.	10.2	45
1428	A flexible triboelectric nanogenerator based on a super-stretchable and self-healable hydrogel as the electrode. Nanoscale, 2020, 12, 12753-12759.	2.8	45
1429	Three-dimensional modeling of alternating current triboelectric nanogenerator in the linear sliding mode. Applied Physics Reviews, 2020, 7, .	5.5	45
1430	Swing‧tructured Triboelectric–Electromagnetic Hybridized Nanogenerator for Breeze Wind Energy Harvesting. Advanced Materials Technologies, 2021, 6, 2100496.	3.0	45
1431	Design Optimization of Soft ontact Freestanding Rotary Triboelectric Nanogenerator for Highâ€Output Performance. Advanced Energy Materials, 2021, 11, 2102106.	10.2	45
1432	p-n Junction Based Direct-Current Triboelectric Nanogenerator by Conjunction of Tribovoltaic Effect and Photovoltaic Effect. Nano Letters, 2021, 21, 10099-10106.	4.5	45
1433	High Space Efficiency Hybrid Nanogenerators for Effective Water Wave Energy Harvesting. Advanced Functional Materials, 2022, 32, .	7.8	45
1434	Toward a New Era of Sustainable Energy: Advanced Triboelectric Nanogenerator for Harvesting High Entropy Energy. Small, 2022, 18, e2107034.	5.2	45
1435	Wireless, power-free and implantable nanosystem for resistance-based biodetection. Nano Energy, 2015, 15, 598-606.	8.2	44
1436	A ball-bearing structured triboelectric nanogenerator for nondestructive damage and rotating speed measurement. Nanotechnology, 2016, 27, 085401.	1.3	44
1437	Field Emission of Electrons Powered by a Triboelectric Nanogenerator. Advanced Functional Materials, 2018, 28, 1800610.	7.8	44
1438	Integrative square-grid triboelectric nanogenerator as a vibrational energy harvester and impulsive force sensor. Nano Research, 2018, 11, 1157-1164.	5.8	44
1439	Ultra-robust triboelectric nanogenerator for harvesting rotary mechanical energy. Nano Research, 2018, 11, 2862-2871.	5.8	44
1440	Boost the Performance of Triboelectric Nanogenerators through Circuit Oscillation. Advanced Energy Materials, 2019, 9, 1900772.	10.2	44

#	Article	IF	CITATIONS
1441	Piezotronic Effect Modulated Flexible AlGaN/GaN High-Electron-Mobility Transistors. ACS Nano, 2019, 13, 13161-13168.	7.3	44
1442	Magnetic Flap-Type Difunctional Sensor for Detecting Pneumatic Flow and Liquid Level Based on Triboelectric Nanogenerator. ACS Nano, 2020, 14, 5981-5987.	7.3	44
1443	Nanowires and Nanobelts. , 2003, , .		44
1444	Piezoelectric Nanogenerator for Highly Sensitive and Synchronous Multi-Stimuli Sensing. ACS Nano, 2021, 15, 19783-19792.	7.3	44
1445	<scp>Largeâ€scale</scp> fabrication of <scp>coreâ€shell</scp> triboelectric braided fibers and power textiles for energy harvesting and plantar pressure monitoring. EcoMat, 2022, 4, .	6.8	44
1446	Local texture and percolative paths for longâ€ r ange conduction in high critical current density TlBa2Ca2Cu3O8+xdeposits. Applied Physics Letters, 1994, 64, 106-108.	1.5	43
1447	Tunable electric and magnetic properties of CoxZn1â^xS nanowires. Applied Physics Letters, 2008, 93, .	1.5	43
1448	Enhanced electrocatalytic activity on gold nanocrystals enclosed by high-index facets for oxygen reduction. Nano Energy, 2014, 7, 179-188.	8.2	43
1449	Piezotronic Effect in Strain-Gated Transistor of <i>a</i> -Axis GaN Nanobelt. ACS Nano, 2015, 9, 9822-9829.	7.3	43
1450	Anomalous Growth and Coalescence Dynamics of Hybrid Perovskite Nanoparticles Observed by Liquid-Cell Transmission Electron Microscopy. ACS Nano, 2016, 10, 9787-9793.	7.3	43
1451	Resist-Dyed Textile Alkaline Zn Microbatteries with Significantly Suppressed Zn Dendrite Growth. ACS Applied Materials & Interfaces, 2019, 11, 5095-5106.	4.0	43
1452	Triboelectric rotational speed sensor integrated into a bearing: A solid step to industrial application. Extreme Mechanics Letters, 2020, 34, 100595.	2.0	43
1453	Largeâ€Area Integrated Triboelectric Sensor Array for Wireless Static and Dynamic Pressure Detection and Mapping. Small, 2020, 16, e1906352.	5.2	43
1454	Distributed mobile ultraviolet light sources driven by ambient mechanical stimuli. Nano Energy, 2020, 74, 104910.	8.2	43
1455	lon Gel Capacitively Coupled Tribotronic Gating for Multiparameter Distance Sensing. ACS Nano, 2020, 14, 3461-3468.	7.3	43
1456	High-Electrification Performance and Mechanism of a Water–Solid Mode Triboelectric Nanogenerator. ACS Nano, 2021, 15, 8706-8714.	7.3	43
1457	Multifunctional meta-tribomaterial nanogenerators for energy harvesting and active sensing. Nano Energy, 2021, 86, 106074.	8.2	43
1458	A high humidity-resistive triboelectric nanogenerator <i>via</i> coupling of dielectric material selection and surface-charge engineering. Journal of Materials Chemistry A, 2021, 9, 21357-21365.	5.2	43

#	Article	IF	CITATIONS
1459	Ultrathin Eardrumâ€Inspired Selfâ€Powered Acoustic Sensor for Vocal Synchronization Recognition with the Assistance of Machine Learning. Small, 2022, 18, e2106960.	5.2	43
1460	Chemical activities of graphitic carbon spheres. Journal of Molecular Catalysis A, 1997, 118, 215-222.	4.8	42
1461	Graphitic structure and surface chemical activity of nanosize carbon spheres. Carbon, 1997, 35, 419-426.	5.4	42
1462	Nanowire as pico-gram balance at workplace atmosphere. Solid State Communications, 2006, 139, 222-226.	0.9	42
1463	Misfit dislocations in multimetallic core-shelled nanoparticles. Applied Physics Letters, 2012, 100, .	1.5	42
1464	Characterizing individual SnO2 nanobelt field-effect transistors and their intrinsic responses to hydrogen and ambient gases. Materials Chemistry and Physics, 2012, 137, 372-380.	2.0	42
1465	Enhanced performance of GaN nanobelt-based photodetectors by means of piezotronic effects. Nano Research, 2013, 6, 758-766.	5.8	42
1466	Optoelectronic Properties of Solution Grown ZnO n-p or p-n Core–Shell Nanowire Arrays. ACS Applied Materials & Interfaces, 2016, 8, 4287-4291.	4.0	42
1467	<i>In Situ</i> Active Poling of Nanofiber Networks for Gigantically Enhanced Particulate Filtration. ACS Applied Materials & amp; Interfaces, 2018, 10, 24332-24338.	4.0	42
1468	Thermo-photoelectric coupled effect induced electricity in N-type SnSe:Br single crystals for enhanced self-powered photodetectors. Nano Energy, 2019, 66, 104111.	8.2	42
1469	Mechanically Asymmetrical Triboelectric Nanogenerator for Selfâ€Powered Monitoring of In Vivo Microscale Weak Movement. Advanced Energy Materials, 2020, 10, 2000827.	10.2	42
1470	Unraveling Temperatureâ€Dependent Contact Electrification between Slidingâ€Mode Triboelectric Pairs. Advanced Functional Materials, 2020, 30, 1909384.	7.8	42
1471	Achieving Ultrarobust and Humidityâ€Resistant Triboelectric Nanogenerator by Dual apacitor Enhancement System. Advanced Energy Materials, 0, , 2101958.	10.2	42
1472	Interface inter-atomic electron-transition induced photon emission in contact-electrification. Science Advances, 2021, 7, eabj0349.	4.7	42
1473	Electron resonance reflections from perfect crystal surfaces and surfaces with steps. Ultramicroscopy, 1989, 27, 101-112.	0.8	41
1474	Studies of LaAlO3"100―surfaces using RHEED and REM. I: twins, steps and dislocations. Surface Science, 1995, 328, 141-158.	0.8	41
1475	Multiwall Carbon Nanotubes Made of Monochirality Graphite Shells. Journal of the American Chemical Society, 2006, 128, 1052-1053.	6.6	41
1476	Facets and surface relaxation of tetrahexahedral platinum nanocrystals. Applied Physics Letters, 2007, 91, .	1.5	41

#	Article	IF	CITATIONS
1477	Catalyst-free MOCVD growth of aligned ZnO nanotip arrays on silicon substrate with controlled tip shape. Solid State Communications, 2007, 141, 464-466.	0.9	41
1478	Nanowireâ^'Quantum Dot Hybridized Cell for Harvesting Sound and Solar Energies. Journal of Physical Chemistry Letters, 2010, 1, 2929-2935.	2.1	41
1479	Triboelectric nanogenerators with simultaneous outputs in both single-electrode mode and freestanding-triboelectric-layer mode. Nano Energy, 2019, 66, 104169.	8.2	41
1480	High-Throughput and Self-Powered Electroporation System for Drug Delivery Assisted by Microfoam Electrode. ACS Nano, 2020, 14, 15458-15467.	7.3	41
1481	Real-Time Monitoring System of Automobile Driver Status and Intelligent Fatigue Warning Based on Triboelectric Nanogenerator. ACS Nano, 2021, 15, 7271-7278.	7.3	41
1482	Mechanical Manipulation of Silicon-based Schottky Diodes via Flexoelectricity. Nano Energy, 2021, 83, 105855.	8.2	41
1483	Bionic Ultraâ€Sensitive Selfâ€Powered Electromechanical Sensor for Muscleâ€Triggered Communication Application. Advanced Science, 2021, 8, e2101020.	5.6	41
1484	Knitted self-powered sensing textiles for machine learning-assisted sitting posture monitoring and correction. Nano Research, 2022, 15, 8389-8397.	5.8	41
1485	Plasmon excitations in graphitic carbon spheres. Physical Review B, 1998, 57, 15599-15612.	1.1	40
1486	Novel Oxides for Cycled Hydrogen Production from Methane and Water Using a Temperature Swing. Advanced Materials, 2003, 15, 521-526.	11.1	40
1487	Interface structures in FePt/Fe3Pt hard-soft exchange-coupled magnetic nanocomposites. Applied Physics Letters, 2003, 82, 3743-3745.	1.5	40
1488	Vertically aligned ZnO nanowire arrays on GaN and SiC substrates. Chemical Physics Letters, 2008, 460, 253-256.	1.2	40
1489	Vertically integrated nanogenerator based on ZnO nanowire arrays. Physica Status Solidi - Rapid Research Letters, 2011, 5, 162-164.	1.2	40
1490	Triboelectric Nanogenerator: Vertical Contact-Separation Mode. Green Energy and Technology, 2016, , 23-47.	0.4	40
1491	Highly Efficient Storage of Pulse Energy Produced by Triboelectric Nanogenerator in Li ₃ V ₂ (PO ₄) ₃ /C Cathode Li-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 862-870.	4.0	40
1492	Integrated flywheel and spiral spring triboelectric nanogenerator for improving energy harvesting of intermittent excitations/triggering. Nano Energy, 2019, 66, 104104.	8.2	40
1493	Self-Powered Inhomogeneous Strain Sensor Enabled Joint Motion and Three-Dimensional Muscle Sensing. ACS Applied Materials & Interfaces, 2019, 11, 34251-34257.	4.0	40
1494	Quantum Theory of Contact Electrification for Fluids and Solids. Advanced Functional Materials, 2020, 30, 1910461.	7.8	40

#	Article	IF	CITATIONS
1495	A bidirectional direct current triboelectric nanogenerator with the mechanical rectifier. Nano Energy, 2021, 79, 105408.	8.2	40
1496	Detection of driving actions on steering wheel using triboelectric nanogenerator via machine learning. Nano Energy, 2021, 79, 105455.	8.2	40
1497	Advances of High-Performance Triboelectric Nanogenerators for Blue Energy Harvesting. Nanoenergy Advances, 2021, 1, 32-57.	3.6	40
1498	Macro-superlubric triboelectric nanogenerator based on tribovoltaic effect. Matter, 2022, 5, 1532-1546.	5.0	40
1499	Characterization of interfaces in C fiber-reinforced laminated C–SiC matrix composites. Carbon, 2000, 38, 831-838.	5.4	39
1500	Interparticle interactions in annealed FePt nanoparticle assemblies. IEEE Transactions on Magnetics, 2002, 38, 2598-2600.	1.2	39
1501	Synthesis and characterization of Zn1â [~] 'xMnxO nanowires. Applied Physics Letters, 2008, 92, .	1.5	39
1502	Triboelectrification induced UV emission from plasmon discharge. Nano Research, 2015, 8, 219-226.	5.8	39
1503	Sensing body motions based on charges generated on the body. Nano Energy, 2019, 63, 103842.	8.2	39
1504	Effects of pulse charging on the performances of lithium-ion batteries. Nano Energy, 2019, 56, 555-562.	8.2	39
1505	Sub-nanoliter metabolomics via mass spectrometry to characterize volume-limited samples. Nature Communications, 2020, 11, 5625.	5.8	39
1506	Electricity Generation and Self-Powered Sensing Enabled by Dynamic Electric Double Layer at Hydrogel–Dielectric Elastomer Interfaces. ACS Nano, 2021, 15, 19651-19660.	7.3	39
1507	SiC-Shell Nanostructures Fabricated by Replicating ZnO Nano-objects: A Technique for Producing Hollow Nanostructures of Desired Shape. Small, 2006, 2, 1344-1347.	5.2	38
1508	Morphological tuning and conductivity of organic conductor nanowires. Nanotechnology, 2007, 18, 495704.	1.3	38
1509	Nondestructive <i>In Situ</i> Identification of Crystal Orientation of Anisotropic ZnO Nanostructures. ACS Nano, 2009, 3, 2593-2600.	7.3	38
1510	Growth and Transfer of Monolithic Horizontal ZnO Nanowire Superstructures onto Flexible Substrates. Advanced Functional Materials, 2010, 20, 1493-1497.	7.8	38
1511	Catalyst-Free Heteroepitaxial MOCVD Growth of InAs Nanowires on Si Substrates. Journal of Physical Chemistry C, 2014, 118, 1696-1705.	1.5	38
1512	Piezoâ€Phototronic Effect Controlled Dualâ€Channel Visible light Communication (PVLC) Using InGaN/GaN Multiquantum Well Nanopillars. Small, 2015, 11, 6071-6077.	5.2	38

#	Article	IF	CITATIONS
1513	Flexible Porous Polydimethylsiloxane/Lead Zirconate Titanate-Based Nanogenerator Enabled by the Dual Effect of Ferroelectricity and Piezoelectricity. ACS Applied Materials & Interfaces, 2018, 10, 33105-33111.	4.0	38
1514	Ionogel infiltrated paper as flexible electrode for wearable all-paper based sensors in active and passive modes. Nano Energy, 2019, 66, 104161.	8.2	38
1515	Static and Dynamic Piezopotential Modulation in Piezo-Electret Gated MoS ₂ Field-Effect Transistor. ACS Nano, 2019, 13, 582-590.	7.3	38
1516	Designing Rules and Optimization of Triboelectric Nanogenerator Arrays. Advanced Energy Materials, 2021, 11, 2100065.	10.2	38
1517	Textile Triboelectric Nanogenerators Simultaneously Harvesting Multiple "High-Entropy―Kinetic Energies. ACS Applied Materials & Interfaces, 2021, 13, 20145-20152.	4.0	38
1518	Charge Pumping for Slidingâ€node Triboelectric Nanogenerator with Voltage Stabilization and Boosted Current. Advanced Energy Materials, 2021, 11, 2101147.	10.2	38
1519	Intelligent systems using triboelectric, piezoelectric, and pyroelectric nanogenerators. Materials Today, 2022, 52, 188-206.	8.3	38
1520	Self-powered sensing systems with learning capability. Joule, 2022, 6, 1475-1500.	11.7	38
1521	A Way To Control the Gold Nanocrystals Size: Using Seeds with Different Sizes and Subjecting Them to Mild Annealing. ACS Nano, 2009, 3, 3622-3628.	7.3	37
1522	Piezopotential-Programmed Multilevel Nonvolatile Memory As Triggered by Mechanical Stimuli. ACS Nano, 2016, 10, 11037-11043.	7.3	37
1523	Triboelectric nanogenerator as a new technology for effective PM2.5 removing with zero ozone emission. Progress in Natural Science: Materials International, 2018, 28, 99-112.	1.8	37
1524	Self-powered electrochromic devices with tunable infrared intensity. Science Bulletin, 2018, 63, 795-801.	4.3	37
1525	Understanding the dynamic response in ferroelectret nanogenerators to enable self-powered tactile systems and human-controlled micro-robots. Nano Energy, 2019, 63, 103852.	8.2	37
1526	Electron transfer in nano-scale contact electrification: Atmosphere effect on the surface states of dielectrics. Nano Energy, 2019, 65, 103956.	8.2	37
1527	Enhancing output performance of direct-current triboelectric nanogenerator under controlled atmosphere. Nano Energy, 2021, 84, 105864.	8.2	37
1528	Nondestructive Dimension Sorting by Soft Robotic Grippers Integrated with Triboelectric Sensor. ACS Nano, 2022, 16, 3008-3016.	7.3	37
1529	Mixed-valent oxide-catalytic carbonization for synthesis of monodispersed nano sized carbon spheres. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1996, 73, 905-929.	0.6	36
1530	Plasmon excitations in graphitic carbon spheres measured by EELS. Physical Review B, 2000, 61, 5751-5759.	1.1	36

#	Article	IF	CITATIONS
1531	Formation of Fe3Pt phase in FePt-based nanocomposite magnets. Journal Physics D: Applied Physics, 2007, 40, 712-716.	1.3	36
1532	Cobalt Silicide Nanostructures: Synthesis, Electron Transport, and Field Emission Properties. Crystal Growth and Design, 2009, 9, 4514-4518.	1.4	36
1533	Preparation and Periodic Emission of Superlattice CdS/CdS:SnS2 Microwires. Journal of the American Chemical Society, 2010, 132, 12174-12175.	6.6	36
1534	Ultrathin self-powered artificial skin. Energy and Environmental Science, 2014, 7, 3994-3999.	15.6	36
1535	Theoretical Study of Triboelectric-Potential Gated/Driven Metal–Oxide–Semiconductor Field-Effect Transistor. ACS Nano, 2016, 10, 4395-4402.	7.3	36
1536	Boosting Photoelectrochemical Water Splitting by TENGâ€Charged Liâ€ion Battery. Advanced Energy Materials, 2017, 7, 1700124.	10.2	36
1537	Rapid Capillaryâ€Assisted Solution Printing of Perovskite Nanowire Arrays Enables Scalable Production of Photodetectors. Angewandte Chemie - International Edition, 2020, 59, 14942-14949.	7.2	36
1538	Bioinspired Triboelectric Soft Robot Driven by Mechanical Energy. Advanced Functional Materials, 2021, 31, 2104770.	7.8	36
1539	Regulating zinc electroplating chemistry to achieve high energy coaxial fiber Zn ion supercapacitor for self-powered textile-based monitoring system. Nano Energy, 2022, 93, 106893.	8.2	36
1540	Fishâ€Wearable Data Snooping Platform for Underwater Energy Harvesting and Fish Behavior Monitoring. Small, 2022, 18, e2107232.	5.2	36
1541	Vibration-Driven Triboelectric Nanogenerator for Vibration Attenuation and Condition Monitoring for Transmission Lines. Nano Letters, 2022, 22, 5584-5591.	4.5	36
1542	Encapsulation of Iron Carbide in Carbon Nanocapsules. Chemistry of Materials, 1995, 7, 1419-1421.	3.2	35
1543	Measuring the Young's modulus of solid nanowires byin situTEM. Journal of Electron Microscopy, 2002, 51, S79-S85.	0.9	35
1544	Rectangular Single-Crystal Mullite Microtubes. Advanced Materials, 2003, 15, 1445-1449.	11.1	35
1545	High-density uniformly aligned silicon nanotip arrays and their enhanced field emission characteristics. Solid State Communications, 2003, 125, 185-188.	0.9	35
1546	Interpenetrative and transverse growth process of self-catalyzed ZnO nanorods. Solid State Communications, 2005, 134, 741-745.	0.9	35
1547	Microstructure analysis of a SmCo/Fe exchange spring bilayer. Applied Physics Letters, 2008, 93, .	1.5	35
1548	Growth of Vertically Aligned ZnO Nanobelt Arrays on GaN Substrate. Journal of Physical Chemistry C, 2008, 112, 18935-18937.	1.5	35

#	Article	IF	CITATIONS
1549	Hybridized Nanogenerators for Harvesting Vibrational Energy by Triboelectric–Piezoelectric–Electromagnetic Effects. Advanced Materials Technologies, 2018, 3, 1800019.	3.0	35
1550	Configuration design of BiFeO3 photovoltaic devices for self-powered electronic watch. Nano Energy, 2019, 64, 103909.	8.2	35
1551	Self-powered electrochemical system by combining Fenton reaction and active chlorine generation for organic contaminant treatment. Nano Research, 2019, 12, 2729-2735.	5.8	35
1552	Tribotronics for Active Mechanosensation and Selfâ€Powered Microsystems. Advanced Functional Materials, 2019, 29, 1808114.	7.8	35
1553	Studying of contact electrification and electron transfer at liquid-liquid interface. Nano Energy, 2021, 87, 106191.	8.2	35
1554	Mechanical Effects of Galvanic Corrosion on Structural Polysilicon. Journal of Microelectromechanical Systems, 2007, 16, 87-101.	1.7	34
1555	Identifying individual n- and p-type ZnO nanowires by the output voltage sign of piezoelectric nanogenerator. Nanotechnology, 2009, 20, 365703.	1.3	34
1556	Transparent and flexible barcode based on sliding electrification for self-powered identification systems. Nano Energy, 2015, 12, 278-286.	8.2	34
1557	Figuresâ€ofâ€Merit for Rollingâ€Frictionâ€Based Triboelectric Nanogenerators. Advanced Materials Technologies, 2016, 1, 1600017.	3.0	34
1558	Hourglass Triboelectric Nanogenerator as a "Direct Current―Power Source. Advanced Energy Materials, 2017, 7, 1700644.	10.2	34
1559	Unconventional Route to Oxygenâ€Vacancyâ€Enabled Highly Efficient Electron Extraction and Transport in Perovskite Solar Cells. Angewandte Chemie, 2020, 132, 1628-1635.	1.6	34
1560	Artificial tactile peripheral nervous system supported by self-powered transducers. Nano Energy, 2021, 82, 105680.	8.2	34
1561	A robust rolling-mode direct-current triboelectric nanogenerator arising from electrostatic breakdown effect. Nano Energy, 2021, 85, 106014.	8.2	34
1562	Dual-mode thermal-regulating and self-powered pressure sensing hybrid smart fibers. Chemical Engineering Journal, 2021, 420, 129650.	6.6	34
1563	Reliable mechatronic indicator for self-powered liquid sensing toward smart manufacture and safe transportation. Materials Today, 2020, 41, 10-20.	8.3	34
1564	Continuously harvesting energy from water and wind by pulsed triboelectric nanogenerator for self-powered seawater electrolysis. Nano Energy, 2022, 93, 106776.	8.2	34
1565	Activeâ€Matrix Sensing Array Assisted with Machineâ€Learning Approach for Lumbar Degenerative Disease Diagnosis and Postoperative Assessment. Advanced Functional Materials, 2022, 32, .	7.8	34
1566	A droplet-based electricity generator for large-scale raindrop energy harvesting. Nano Energy, 2022, 100, 107443.	8.2	34

#	Article	IF	CITATIONS
1567	Durability Improvement of Breezeâ€Driven Triboelectricâ€Electromagnetic Hybrid Nanogenerator by a Travelâ€Controlled Approach. Advanced Functional Materials, 2022, 32, .	7.8	34
1568	Study of Microstructure in SrTiO ₃ /Si by High-resolution Transmission Electron Microscopy. Journal of Materials Research, 2002, 17, 204-213.	1.2	33
1569	Bridged ZnO nanowires across trenched electrodes. Applied Physics Letters, 2007, 91, 142108.	1.5	33
1570	<i>In vitro</i> Biomimetic Construction of Hydroxyapatite–Porcine Acellular Dermal Matrix Composite Scaffold for MC3T3-E1 Preosteoblast Culture. Tissue Engineering - Part A, 2011, 17, 765-776.	1.6	33
1571	Piezoresistive effect in MoO3 nanobelts and its application in strain-enhanced oxygen sensors. Nano Research, 2014, 7, 180-189.	5.8	33
1572	Clear Experimental Demonstration of Hole Gas Accumulation in Ge/Si Core–Shell Nanowires. ACS Nano, 2015, 9, 12182-12188.	7.3	33
1573	Influence of external electric field on piezotronic effect in ZnO nanowires. Nano Research, 2015, 8, 2390-2399.	5.8	33
1574	Effect of contact- and sliding-mode electrification on nanoscale charge transfer for energy harvesting. Nano Research, 2016, 9, 3705-3713.	5.8	33
1575	Double-Channel Piezotronic Transistors for Highly Sensitive Pressure Sensing. ACS Nano, 2018, 12, 1732-1738.	7.3	33
1576	Nanowire-array-based gene electro-transfection system driven by human-motion operated triboelectric nanogenerator. Nano Energy, 2019, 64, 103901.	8.2	33
1577	Ferroelectricityâ€Enhanced Piezoâ€Phototronic Effect in 2D Vâ€Doped ZnO Nanosheets. Advanced Science, 2019, 6, 1900314.	5.6	33
1578	Triboelectric-polarization-enhanced high sensitive ZnO UV sensor. Nano Today, 2020, 33, 100873.	6.2	33
1579	Sandwich as a triboelectric nanogenerator. Nano Energy, 2021, 79, 105411.	8.2	33
1580	Flexible Piezoelectric Nanogenerators Based on P(VDF-TrFE)/CsPbBr ₃ Quantum Dot Composite Films. ACS Applied Electronic Materials, 2021, 3, 2136-2144.	2.0	33
1581	Triboelectric Nanogenerator Based on a Rotational Magnetic Ball for Harvesting Transmission Line Magnetic Energy. Advanced Functional Materials, 2022, 32, 2108827.	7.8	33
1582	Raindrop energy-powered autonomous wireless hyetometer based on liquid–solid contact electrification. Microsystems and Nanoengineering, 2022, 8, 30.	3.4	33
1583	Ultrastretchable Organogel/Silicone Fiber-Helical Sensors for Self-Powered Implantable Ligament Strain Monitoring. ACS Nano, 2022, 16, 10958-10967.	7.3	33
1584	Dislocation contrast in high-angle hollow-cone dark-field TEM. Ultramicroscopy, 1994, 53, 73-90.	0.8	32

#	Article	IF	CITATIONS
1585	EXPERIMENTAL NANOMECHANICS OF ONE-DIMENSIONAL NANOMATERIALS BY <i>IN SITU</i> MICROSCOPY. Nano, 2007, 02, 249-271.	0.5	32
1586	Structure stability, fracture, and tuning mechanism of CdSe nanobelts. Applied Physics Letters, 2007, 90, 113115.	1.5	32
1587	In ₂ O ₃ Nanowire Field-Effect Transistors with Sub-60 mV/dec Subthreshold Swing Stemming from Negative Capacitance and Their Logic Applications. ACS Nano, 2018, 12, 9608-9616.	7.3	32
1588	Integration of Electrochemical Microsupercapacitors with Thin Film Electronics for Onâ€Chip Energy Storage. Advanced Materials, 2019, 31, e1807450.	11.1	32
1589	Dynamic regulating of single-mode lasing in ZnO microcavity by piezoelectric effect. Materials Today, 2019, 24, 33-40.	8.3	32
1590	Seawater Degradable Triboelectric Nanogenerators for Blue Energy. Advanced Materials Technologies, 2020, 5, 2000455.	3.0	32
1591	Piezotronic and piezo-phototronic effects of atomically-thin ZnO nanosheets. Nano Energy, 2021, 82, 105653.	8.2	32
1592	Comparison of applied torque and energy conversion efficiency between rotational triboelectric nanogenerator and electromagnetic generator. IScience, 2021, 24, 102318.	1.9	32
1593	Self-powered technology for next-generation biosensor. Science Bulletin, 2021, 66, 1709-1712.	4.3	32
1594	Triboelectric-optical responsive cholesteric liquid crystals for self-powered smart window, E-paper display and optical switch. Science Bulletin, 2021, 66, 1986-1993.	4.3	32
1595	Tribovoltaic Nanogenerators Based on MXene–Silicon Heterojunctions for Highly Stable Selfâ€Powered Speed, Displacement, Tension, Oscillation Angle, and Vibration Sensors. Advanced Functional Materials, 2022, 32, .	7.8	32
1596	Plasmon excitations in carbon nanotubes. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1999, 79, 1531-1548.	0.6	31
1597	Statistical Modeling and Analysis for Robust Synthesis of Nanostructures. Journal of the American Statistical Association, 2008, 103, 594-603.	1.8	31
1598	Growth of Crossed ZnO Nanorod Networks Induced by Polar Substrate Surface. Crystal Growth and Design, 2009, 9, 17-19.	1.4	31
1599	Controlled synthesis of monodispersed hematite microcubes and their properties. CrystEngComm, 2011, 13, 7114.	1.3	31
1600	Selfâ€Powered Electrochemistry for the Oxidation of Organic Molecules by a Cross‣inked Triboelectric Nanogenerator. Advanced Materials, 2016, 28, 5188-5194.	11.1	31
1601	Piezotronic graphene barristor: Efficient and interactive modulation of Schottky barrier. Nano Energy, 2018, 50, 598-605.	8.2	31
1602	Self-Powered Intelligent Water Meter for Electrostatic Scale Preventing, Rust Protection, and Flow Sensor in a Solar Heater System. ACS Applied Materials & Interfaces, 2019, 11, 6396-6403.	4.0	31

#	Article	IF	CITATIONS
1603	Dual-Stimulus Smart Actuator and Robot Hand Based on a Vapor-Responsive PDMS Film and Triboelectric Nanogenerator. ACS Applied Materials & Interfaces, 2019, 11, 42504-42511.	4.0	31
1604	Enhanced High-Resolution Triboelectrification-Induced Electroluminescence for Self-Powered Visualized Interactive Sensing. ACS Applied Materials & amp; Interfaces, 2019, 11, 13796-13802.	4.0	31
1605	Piezo-phototronic effect in InGaN/GaN semi-floating micro-disk LED arrays. Nano Energy, 2020, 67, 104218.	8.2	31
1606	Triboelectric Nanogenerator Powered Electrowetting-on-Dielectric Actuator for Concealed Aquatic Microbots. ACS Nano, 2020, 14, 15394-15402.	7.3	31
1607	Largeâ€Grained Perovskite Films Enabled by Oneâ€Step Meniscusâ€Assisted Solution Printing of Crossâ€Aligned Conductive Nanowires for Biodegradable Flexible Solar Cells. Advanced Energy Materials, 2020, 10, 2001185.	10.2	31
1608	A Flexible and Ultra-Highly Sensitive Tactile Sensor through a Parallel Circuit by a Magnetic Aligned Conductive Composite. ACS Nano, 2022, 16, 746-754.	7.3	31
1609	Industrial Fabrication of 3D Braided Stretchable Hierarchical Interlocked Fancy‥arn Triboelectric Nanogenerator for Selfâ€Powered Smart Fitness System. Advanced Energy Materials, 2022, 12, .	10.2	31
1610	In-situ formation of MgO2 thin films on MgO single-crystal surfaces at high temperatures. Surface Science, 1992, 273, 88-108.	0.8	30
1611	Plasmon energy shift in mesoporous and double length-scale ordered nanoporous silica. Applied Physics Letters, 1999, 74, 2629-2631.	1.5	30
1612	Dynamic fatigue studies of ZnO nanowires by inâ€situ transmission electron microscopy. Physica Status Solidi - Rapid Research Letters, 2009, 3, 260-262.	1.2	30
1613	Growth direction and morphology of ZnO nanobelts revealed by combining <i>in situ</i> atomic force microscopy and polarized Raman spectroscopy. Physical Review B, 2010, 81, .	1.1	30
1614	In Situ Observation of Hematite Nanoparticle Aggregates Using Liquid Cell Transmission Electron Microscopy. Environmental Science & Technology, 2016, 50, 5606-5613.	4.6	30
1615	Piezotronic and piezo-phototronic logic computations using Au decorated ZnO microwires. Nano Energy, 2016, 27, 587-594.	8.2	30
1616	Design guidelines of triboelectric nanogenerator for water wave energy harvesters. Nanotechnology, 2017, 28, 185403.	1.3	30
1617	Tribotronic Tuning Diode for Active Analog Signal Modulation. ACS Nano, 2017, 11, 882-888.	7.3	30
1618	Directly Visualizing Tactile Perception and Ultrasensitive Tactile Sensors by Utilizing Bodyâ€Enhanced Induction of Ambient Electromagnetic Waves. Advanced Functional Materials, 2018, 28, 1805277.	7.8	30
1619	Triboelectrification-enabled thin-film tactile matrix for self-powered high-resolution imaging. Nano Energy, 2018, 50, 497-503.	8.2	30
1620	Stretchable multi-luminescent fibers with AIEgens. Journal of Materials Chemistry C, 2019, 7, 10769-10776.	2.7	30

#	Article	IF	CITATIONS
1621	Long Distance Transport of Microdroplets and Precise Microfluidic Patterning Based on Triboelectric Nanogenerator. Advanced Materials Technologies, 2019, 4, 1800300.	3.0	30
1622	Bladelessâ€Turbineâ€Based Triboelectric Nanogenerator for Fluid Energy Harvesting and Selfâ€Powered Fluid Gauge. Advanced Materials Technologies, 2019, 4, 1800560.	3.0	30
1623	Effect of Photo-Excitation on Contact Electrification at Liquid–Solid Interface. ACS Nano, 2021, 15, 10609-10617.	7.3	30
1624	Universal equivalent circuit model and verification of current source for triboelectric nanogenerator. Nano Energy, 2021, 89, 106335.	8.2	30
1625	Intrinsically Stretchable Organic-Tribotronic-Transistor for Tactile Sensing. Research, 2020, 2020, 1398903.	2.8	30
1626	Wearable, Breathable and Waterproof Triboelectric Nanogenerators for Harvesting Human Motion and Raindrop Energy. Advanced Materials Technologies, 2022, 7, .	3.0	30
1627	Understanding Contact Electrification at Water/Polymer Interface. Research, 2022, 2022, 9861463.	2.8	30
1628	Anti-freezing and stretchable triboelectric nanogenerator based on liquid electrode for biomechanical sensing in extreme environment. Nano Energy, 2022, 96, 107067.	8.2	30
1629	Investigations on the contact-electro-catalysis under various ultrasonic conditions and using different electrification particles. Nano Energy, 2022, 99, 107346.	8.2	30
1630	Generation of surface plasmon excitation of supported metal particles by an external electron beam. Ultramicroscopy, 1987, 21, 347-365.	0.8	29
1631	REM and REELS identifications of atomic terminations at α-alumina (01Ì,,1) surface. Surface Science, 1989, 208, 533-549.	0.8	29
1632	Preparation of self-assembled cobalt nanocrystal arrays. Scripta Materialia, 1999, 11, 845-852.	0.5	29
1633	Taper PbZr _{0.2} Ti _{0.8} O ₃ Nanowire Arrays: From Controlled Growth by Pulsed Laser Deposition to Piezopotential Measurements. ACS Nano, 2012, 6, 2826-2832.	7.3	29
1634	Self-Powered Random Number Generator Based on Coupled Triboelectric and Electrostatic Induction Effects at the Liquid–Dielectric Interface. ACS Nano, 2016, 10, 11434-11441.	7.3	29
1635	Piezotronic effect tuned AlGaN/GaN high electron mobility transistor. Nanotechnology, 2017, 28, 455203.	1.3	29
1636	Convenient and Robust Route to Photoswitchable Hierarchical Liquid Crystal Polymer Stripes via Flow-Enabled Self-Assembly. ACS Applied Materials & Interfaces, 2018, 10, 4961-4970.	4.0	29
1637	Highâ€Intensity Triboelectrificationâ€Induced Electroluminescence by Microsized Contacts for Selfâ€Powered Display and Illumination. Advanced Materials Interfaces, 2018, 5, 1701063.	1.9	29
1638	Highly-sensitive and highly-correlative flexible motion sensors based on asymmetric piezotronic effect. Nano Energy, 2018, 51, 185-191.	8.2	29

#	Article	IF	CITATIONS
1639	A Monocharged Electret Nanogeneratorâ€Based Selfâ€Powered Device for Pressure and Tactile Sensor Applications. Advanced Functional Materials, 2019, 29, 1807618.	7.8	29
1640	Recent progress in piezotronics and tribotronics. Nanotechnology, 2019, 30, 042001.	1.3	29
1641	Flexible Li-doped ZnO piezotronic transistor array for in-plane strain mapping. Nano Energy, 2019, 55, 341-347.	8.2	29
1642	Enhanced photocurrent in InGaN/GaN MQWs solar cells by coupling plasmonic with piezo-phototronic effect. Nano Energy, 2019, 57, 300-306.	8.2	29
1643	Ultrafast lithium-ion capacitors for efficient storage of energy generated by triboelectric nanogenerators. Energy Storage Materials, 2020, 24, 297-303.	9.5	29
1644	Towards smart cities powered by nanogenerators: Bibliometric and machine learning–based analysis. Nano Energy, 2021, 83, 105844.	8.2	29
1645	Enabling the Unconstrained Epidermal Pulse Wave Monitoring via Fingerâ€Touching. Advanced Functional Materials, 2021, 31, 2102378.	7.8	29
1646	Energy conversion system based on Curie effect and triboelectric nanogenerator for low-grade heat energy harvesting. Nano Energy, 2022, 91, 106652.	8.2	29
1647	Improving Degradation Efficiency of Organic Pollutants through a Self-Powered Alternating Current Electrocoagulation System. ACS Nano, 2021, 15, 19684-19691.	7.3	29
1648	Stretchable graded multichannel self-powered respiratory sensor inspired by shark gill. Fundamental Research, 2022, 2, 619-628.	1.6	29
1649	Low-grade heat energy harvesting system based on the shape memory effect and hybrid triboelectric-electromagnetic nanogenerator. Nano Energy, 2022, 96, 107106.	8.2	29
1650	Towards a sustainable monitoring: A self-powered smart transportation infrastructure skin. Nano Energy, 2022, 98, 107245.	8.2	29
1651	Excitation of the supported metal particle surface plasmon with external electron beam. Ultramicroscopy, 1987, 21, 335-345.	0.8	28
1652	Mapping the Valence States of Transition-Metal Elements Using Energy-Filtered Transmission Electron Microscopy. Journal of Physical Chemistry B, 1999, 103, 751-753.	1.2	28
1653	Structures of Oxide Nanobelts and Nanowires. Microscopy and Microanalysis, 2002, 8, 467-474.	0.2	28
1654	Field-ball milling induced anisotropy in magnetic particles. Journal Physics D: Applied Physics, 2004, 37, L45-L48.	1.3	28
1655	Electron energy-loss spectroscopy study of ZnO nanobelts. Microscopy (Oxford, England), 2005, 54, 287-291.	0.7	28
1656	Combined polarized Raman and atomic force microscopy: In situ study of point defects and mechanical properties in individual ZnO nanobelts. Applied Physics Letters, 2009, 95, 051904.	1.5	28

#	Article	IF	CITATIONS
1657	Co-doped Y-shape ZnO nanostructures: Synthesis, structure and properties. Solid State Communications, 2009, 149, 293-296.	0.9	28
1658	Fabrication of Patterned Polymer Nanowire Arrays. ACS Nano, 2011, 5, 1476-1482.	7.3	28
1659	Features of the piezo-phototronic effect on optoelectronic devices based on wurtzite semiconductor nanowires. Physical Chemistry Chemical Physics, 2014, 16, 2790.	1.3	28
1660	Triboelectric filtering for air purification. Nanotechnology, 2019, 30, 292001.	1.3	28
1661	Enhanced Power Generation from the Interaction between Sweat and Electrodes for Human Health Monitoring. ACS Energy Letters, 2020, 5, 3708-3717.	8.8	28
1662	Piezo-phototronic effect enhanced polarization-sensitive photodetectors based on cation-mixed organic–inorganic perovskite nanowires. Materials Today, 2020, 37, 56-63.	8.3	28
1663	Theoretical investigation and experimental verification of the self-powered acceleration sensor based on triboelectric nanogenerators (TENGs). Extreme Mechanics Letters, 2021, 42, 101021.	2.0	28
1664	Piezophototronic Effect in Nanosensors. Small Science, 2021, 1, 2000060.	5.8	28
1665	A Selfâ€Healing Triboelectric Nanogenerator Based on Feathers for Sensing and Energy Harvesting. Advanced Functional Materials, 2021, 31, 2100039.	7.8	28
1666	Rehabilitation of Total Knee Arthroplasty by Integrating Conjoint Isometric Myodynamia and Realâ€īime Rotation Sensing System. Advanced Science, 2022, 9, e2105219.	5.6	28
1667	Achieving Ultrahigh Effective Surface Charge Density of Directâ€Current Triboelectric Nanogenerator in High Humidity. Small, 2022, 18, e2201402.	5.2	28
1668	Modeling of liquid-solid hydrodynamic water wave energy harvesting system based on triboelectric nanogenerator. Nano Energy, 2022, 99, 107362.	8.2	28
1669	Driving-torque self-adjusted triboelectric nanogenerator for effective harvesting of random wind energy. Nano Energy, 2022, 99, 107389.	8.2	28
1670	Microstructural effects on surface mechanical properties of ion-implanted polymers. Journal of Materials Research, 1993, 8, 927-933.	1.2	27
1671	Linkâ€up of 90° domain boundaries with interface dislocations in BaTiO3/LaAlO3. Applied Physics Letters, 1996, 68, 3093-3095.	1.5	27
1672	Thin films of thiol-derivatized gold nanocrystals. Philosophical Magazine Letters, 1997, 75, 321-328.	0.5	27
1673	A General Approach for Fabricating Arcâ€Shaped Composite Nanowire Arrays by Pulsed Laser Deposition. Advanced Functional Materials, 2010, 20, 703-707.	7.8	27
1674	Ag nanoparticle–ZnO nanowire hybrid nanostructures as enhanced and robust antimicrobial textiles via a green chemical approach. Nanotechnology, 2014, 25, 145702.	1.3	27

#	Article	IF	CITATIONS
1675	Triboelectricâ€Based Transparent Secret Code. Advanced Science, 2018, 5, 1700881.	5.6	27
1676	Motion behavior of water droplets driven by triboelectric nanogenerator. Applied Physics Letters, 2018, 112, .	1.5	27
1677	Recent Progress on Piezotronic and Piezoâ€Phototronic Effects in Illâ€Group Nitride Devices and Applications. Advanced Engineering Materials, 2018, 20, 1700760.	1.6	27
1678	Pop-Up Conducting Large-Area Biographene Kirigami. ACS Nano, 2018, 12, 9714-9720.	7.3	27
1679	Nanocomposite electret with surface potential self-recovery from water dipping for environmentally stable energy harvesting. Nano Energy, 2019, 64, 103913.	8.2	27
1680	Tiltingâ€Sensitive Triboelectric Nanogenerators for Energy Harvesting from Unstable/Fluctuating Surfaces. Advanced Functional Materials, 2019, 29, 1905319.	7.8	27
1681	Selfâ€Powered Optical Switch Based on Triboelectrificationâ€Triggered Liquid Crystal Alignment for Wireless Sensing. Advanced Functional Materials, 2019, 29, 1808633.	7.8	27
1682	Flexible Ferroelectret Polymer for Self-Powering Devices and Energy Storage Systems. ACS Applied Materials & Interfaces, 2019, 11, 17400-17409.	4.0	27
1683	Coupled Ionâ€Gel Channelâ€Width Gating and Piezotronic Interface Gating in ZnO Nanowire Devices. Advanced Functional Materials, 2019, 29, 1807837.	7.8	27
1684	Low-temperature-poling awakened high dielectric breakdown strength and outstanding improvement of discharge energy density of (Pb,La)(Zr,Sn,Ti)O3 relaxor thin film. Nano Energy, 2020, 77, 105132.	8.2	27
1685	Paper-based triboelectric nanogenerators and their applications: a review. Beilstein Journal of Nanotechnology, 2021, 12, 151-171.	1.5	27
1686	Recent Advances in Self-Powered Electrochemical Systems. Research, 2021, 2021, 4673028.	2.8	27
1687	Ultralight Iontronic Triboelectric Mechanoreceptor with High Specific Outputs for Epidermal Electronics. Nano-Micro Letters, 2022, 14, 86.	14.4	27
1688	Electron reflection, diffraction and imaging of bulk crystal surfaces in TEM and STEM. Reports on Progress in Physics, 1993, 56, 997-1065.	8.1	26
1689	Measuring the transport property of ZnO tetrapod using in situ nanoprobes. Chemical Physics Letters, 2010, 484, 96-99.	1.2	26
1690	Radialâ€Grating Pendulumâ€6tructured Triboelectric Nanogenerator for Energy Harvesting and Tiltingâ€Angle Sensing. Advanced Materials Technologies, 2018, 3, 1700251.	3.0	26
1691	Capsule Triboelectric Nanogenerators: Toward Optional 3D Integration for High Output and Efficient Energy Harvesting from Broadband-Amplitude Vibrations. ACS Nano, 2018, 12, 9947-9957.	7.3	26
1692	Highly conductive, stretchable, and breathable epidermal electrode based on hierarchically interactive nano-network. Nanoscale, 2020, 12, 16053-16062.	2.8	26

#	Article	IF	CITATIONS
1693	Piezotronic Synapse Based on a Single GaN Microwire for Artificial Sensory Systems. Nano Letters, 2020, 20, 3761-3768.	4.5	26
1694	On the understanding of dielectric elastomer and its application for all-soft artificial heart. Science Bulletin, 2021, 66, 981-990.	4.3	26
1695	Multifunctional Triboelectric Nanogeneratorâ€Enabled Structural Elements for Next Generation Civil Infrastructure Monitoring Systems. Advanced Functional Materials, 2021, 31, 2105825.	7.8	26
1696	High-Efficiency Wastewater Purification System Based on Coupled Photoelectric–Catalytic Action Provided by Triboelectric Nanogenerator. Nano-Micro Letters, 2021, 13, 194.	14.4	26
1697	Electricityâ °free electroluminescence excited by droplet impact driven triboelectric field on Solidâ °Liquid interface. Nano Energy, 2020, 75, 104823.	8.2	26
1698	Irregular Wind Energy Harvesting by a Turbine Vent Triboelectric Nanogenerator and Its Application in a Self-Powered On-Site Industrial Monitoring System. ACS Applied Materials & Interfaces, 2021, 13, 55136-55144.	4.0	26
1699	Tactile tribotronic reconfigurable p-n junctions for artificial synapses. Science Bulletin, 2022, 67, 803-812.	4.3	26
1700	Silica-based nanospheres, nanowires, nanosubstrates, nanotubes, and nanofiber arrays. Colloid and Polymer Science, 2003, 281, 673-685.	1.0	25
1701	<i>In situ</i> growth kinetics of ZnO nanobelts. Nanotechnology, 2008, 19, 445708.	1.3	25
1702	Depth resolved luminescence from oriented ZnO nanowires. Applied Physics Letters, 2009, 95, .	1.5	25
1703	Output of an ultrasonic wave-driven nanogenerator in a confined tube. Nano Research, 2009, 2, 177-182.	5.8	25
1704	Friction and Shear Strength at the Nanowire–Substrate Interfaces. Nanoscale Research Letters, 2010, 5, 291-5.	3.1	25
1705	Growth of GaN films with controlled out-of-plane texture on Si wafers. Thin Solid Films, 2011, 519, 3608-3611.	0.8	25
1706	Selfâ€Powered Electrowetting Valve for Instantaneous and Simultaneous Actuation of Paperâ€Based Microfluidic Assays. Advanced Functional Materials, 2019, 29, 1808974.	7.8	25
1707	Robust Triboelectric Nanogenerator with Ratchetâ€ŀike Wheelâ€Based Design for Harvesting of Environmental Energy. Advanced Materials Technologies, 2020, 5, 1900801.	3.0	25
1708	Flexible Piezoelectric Nanogenerators Based on P(VDF–TrFE)/GeSe Nanocomposite Films. ACS Applied Electronic Materials, 2020, 2, 2369-2374.	2.0	25
1709	Improved Degradation Efficiency of Levofloxacin by a Self-Powered Electrochemical System with Pulsed Direct-Current. ACS Nano, 2021, 15, 5478-5485.	7.3	25
1710	Triboelectric Rotary Motion Sensor for Industrial-Grade Speed and Angle Monitoring. Sensors, 2021, 21, 1713.	2.1	25

#	Article	IF	CITATIONS
1711	Vibration behavior and excitation mechanism of ultra-stretchable triboelectric nanogenerator for wind energy harvesting. Extreme Mechanics Letters, 2021, 45, 101285.	2.0	25
1712	Self-Powered Persistent Phosphorescence for Reliable Optical Display. ACS Energy Letters, 2021, 6, 3132-3140.	8.8	25
1713	Sliding mode direct current triboelectric nanogenerators. Nano Energy, 2021, 90, 106531.	8.2	25
1714	Self-powered mobile sterilization and infection control system. Nano Energy, 2021, 88, 106313.	8.2	25
1715	Triboelectric potential tuned dual-gate IGZO transistor for versatile sensory device. Nano Energy, 2021, 90, 106617.	8.2	25
1716	Seawater-Based Triboelectric Nanogenerators for Marine Anticorrosion. ACS Applied Materials & Interfaces, 2022, 14, 8605-8612.	4.0	25
1717	Crystallization-Induced Shift in a Triboelectric Series and Even Polarity Reversal for Elastic Triboelectric Materials. Nano Letters, 2022, 22, 4074-4082.	4.5	25
1718	Bio-inspired soft actuator with contact feedback based on photothermal effect and triboelectric nanogenerator. Nano Energy, 2022, 99, 107366.	8.2	25
1719	Energy-filtering and composition-sensitive imaging in surface and interface studies using HREM. Ultramicroscopy, 1995, 60, 115-135.	0.8	24
1720	Studies of LaAlO3"100―surfaces using RHEED and REM. II: 5 × 5 surface reconstruction. Surface Science, 1995, 328, 159-169.	0.8	24
1721	Sonochemical synthesis of ferromagnetic core–shell Fe3O4–FeP nanoparticles and FeP nanoshells. Chemical Physics Letters, 2006, 428, 343-347.	1.2	24
1722	<i>In Situ</i> High-Resolution Transmission Electron Microscopy in the Study of Nanomaterials and Properties. MRS Bulletin, 2008, 33, 115-121.	1.7	24
1723	Statistical approach to quantifying the elastic deformation of nanomaterials. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11845-11850.	3.3	24
1724	Piezotronic-Effect Enhanced Drug Metabolism and Sensing on a Single ZnO Nanowire Surface with the Presence of Human Cytochrome P450. ACS Nano, 2015, 9, 3159-3168.	7.3	24
1725	Light-transformable and -healable triboelectric nanogenerators. Nano Energy, 2017, 38, 412-418.	8.2	24
1726	Self-powered ammonia synthesis under ambient conditions via N2 discharge driven by Tesla turbine triboelectric nanogenerators. Microsystems and Nanoengineering, 2021, 7, 7.	3.4	24
1727	Current Progress on Power Management Systems for Triboelectric Nanogenerators. IEEE Transactions on Power Electronics, 2022, 37, 9850-9864.	5.4	24
1728	Effects of Temperature on the Tribovoltaic Effect at Liquidâ€Solid Interfaces. Advanced Materials Interfaces, 2022, 9, .	1.9	24

#	Article	IF	CITATIONS
1729	Direct correlation of microtwin distribution with growth face morphology of CVD diamond films by a novel TEM technique. Journal of Materials Research, 1994, 9, 1552-1561.	1.2	23
1730	Self-assembly of shape-controlled nanocrystals and their in-situ thermodynamic properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 286, 39-47.	2.6	23
1731	Bismuth Spheres Grown in Self-Nested Cavities in a Silicon Wafer. Journal of the American Chemical Society, 2005, 127, 15322-15326.	6.6	23
1732	Effects of piezopotential spatial distribution on local contact dictated transport property of ZnO micro/nanowires. Applied Physics Letters, 2010, 97, 033509.	1.5	23
1733	In Situ Observation of Dehydration-Induced Phase Transformation from Na ₂ Nb ₂ O ₆ –H ₂ O to NaNbO ₃ . Journal of Physical Chemistry C, 2012, 116, 22261-22265.	1.5	23
1734	Selfâ€Powered Nanosensors: Selfâ€Powered Nanosensors and Nanosystems (Adv. Mater. 2/2012). Advanced Materials, 2012, 24, 279-279.	11.1	23
1735	Modeling a dielectric elastomer as driven by triboelectric nanogenerator. Applied Physics Letters, 2017, 110, .	1.5	23
1736	Effects of Environmental Atmosphere on the Performance of Contact–Separation Mode TENG. Advanced Materials Technologies, 2019, 4, 1800569.	3.0	23
1737	Photo-carrier extraction by triboelectricity for carrier transport layer-free photodetectors. Nano Energy, 2019, 65, 103958.	8.2	23
1738	Multi-plate structured triboelectric nanogenerator based on cycloidal displacement for harvesting hydroenergy. Extreme Mechanics Letters, 2019, 33, 100576.	2.0	23
1739	Progress in piezotronics and piezo-phototronics of quantum materials. Journal Physics D: Applied Physics, 2019, 52, 343001.	1.3	23
1740	Triboelectric and Electromagnetic Hybrid Nanogenerator Based on a Crankshaft Piston System as a Multifunctional Energy Harvesting Device. Advanced Materials Technologies, 2019, 4, 1800278.	3.0	23
1741	Revealing Electricalâ€Polingâ€Induced Polarization Potential in Hybrid Perovskite Photodetectors. Advanced Materials, 2020, 32, e2005481.	11.1	23
1742	Theoretical investigation of air breakdown direct current triboelectric nanogenerator. Applied Physics Letters, 2020, 116, .	1.5	23
1743	Thermochromic triboelectric nanogenerator enabling direct visualization of temperature change during operation. Chemical Engineering Journal, 2020, 388, 124369.	6.6	23
1744	Quantitative nanoscale tracking of oxygen vacancy diffusion inside single ceria grains by in situ transmission electron microscopy. Materials Today, 2020, 38, 24-34.	8.3	23
1745	Triboelectric nanogenerator with double rocker structure design for ultra-low-frequency wave full-stroke energy harvesting. Extreme Mechanics Letters, 2021, 46, 101338.	2.0	23
1746	Moisture induced electricity for self-powered microrobots. Nano Energy, 2021, 90, 106499.	8.2	23

#	Article	IF	CITATIONS
1747	Enhanced Output of Onâ€Body Directâ€Current Power Textiles by Efficient Energy Management for Sustainable Working of Mobile Electronics. Advanced Energy Materials, 2022, 12, .	10.2	23
1748	Selfâ€Powered Intelligent Buoy Based on Triboelectric Nanogenerator for Water Level Alarming. Advanced Functional Materials, 2022, 32, .	7.8	23
1749	Grain boundary studies of high-temperature superconducting materials using electron backscatter Kikuchi diffraction. Ultramicroscopy, 1997, 67, 35-57.	0.8	22
1750	Disket-Nanorings of K ₂ Ti ₆ O ₁₃ Formed by Self-Spiraling of a Nanobelt. Journal of Physical Chemistry C, 2008, 112, 7547-7551.	1.5	22
1751	Controllable Nanocage Structure Derived from Cyclodextrin-Intercalated Layered Double Hydroxides and Its Inclusion Properties for Dodecylbenzene. Journal of Physical Chemistry C, 2008, 112, 17517-17524.	1.5	22
1752	Converse Piezoelectric Effect Induced Transverse Deflection of a Free-Standing ZnO Microbelt. Nano Letters, 2009, 9, 2661-2665.	4.5	22
1753	Titanium dioxide nanoswords with highly reactive, photocatalytic facets. Nanotechnology, 2010, 21, 485601.	1.3	22
1754	Cylindrical spiral triboelectric nanogenerator. Nano Research, 2015, 8, 3197-3204.	5.8	22
1755	High-performance wearable supercapacitors fabricated with surface activated continuous filament graphite fibers. Journal of Power Sources, 2017, 358, 13-21.	4.0	22
1756	Characteristics of triboelectrification on dielectric surfaces contacted with a liquid metal in different gases. Applied Physics Letters, 2017, 110, .	1.5	22
1757	Piezotronics and piezo-phototronics based on <i>a</i> -axis nano/microwires: fundamentals and applications. Semiconductor Science and Technology, 2017, 32, 043005.	1.0	22
1758	Recent progress in piezo-phototronics with extended materials, application areas and understanding. Semiconductor Science and Technology, 2017, 32, 053002.	1.0	22
1759	Embedded Triboelectric Active Sensors for Real-Time Pneumatic Monitoring. ACS Applied Materials & Interfaces, 2017, 9, 32352-32358.	4.0	22
1760	A titanium dioxide nanorod array as a high-affinity nano-bio interface of a microfluidic device for efficient capture of circulating tumor cells. Nano Research, 2017, 10, 776-784.	5.8	22
1761	Piezo-phototronic and pyro-phototronic effects to enhance Cu(In, Ga)Se2 thin film solar cells. Nano Research, 2018, 11, 3877-3885.	5.8	22
1762	Stretchable shape-adaptive liquid-solid interface nanogenerator enabled by in-situ charged nanocomposite membrane. Nano Energy, 2020, 69, 104414.	8.2	22
1763	Travel switch integrated mechanical regulation triboelectric nanogenerator with linear–rotational motion transformation mechanism. Extreme Mechanics Letters, 2020, 37, 100718.	2.0	22
1764	Defect states contributed nanoscale contact electrification at ZnO nanowires packed film surfaces. Nano Energy, 2021, 79, 105406.	8.2	22

#	Article	IF	CITATIONS
1765	Contribution of Ferromagnetic Medium to the Output of Triboelectric Nanogenerators Derived from Maxwell's Equations. Advanced Energy Materials, 2021, 11, 2003921.	10.2	22
1766	Power Management and Reaction Optimization for a Self-Powered Electrochemical System Driven by a Triboelectric Nanogenerator. Nano Letters, 2021, 21, 5633-5640.	4.5	22
1767	Detecting the Liquid–Solid Contact Electrification Charges in a Liquid Environment. Journal of Physical Chemistry C, 2021, 125, 14098-14104.	1.5	22
1768	Highly Stable and Eco-friendly Marine Self-Charging Power Systems Composed of Conductive Polymer Supercapacitors with Seawater as an Electrolyte. ACS Applied Materials & Interfaces, 2022, 14, 9046-9056.	4.0	22
1769	Scavenging breeze wind energy (1–8.1Âmsâ~'1) by minimalist triboelectric nanogenerator based on the wake galloping phenomenon. Nano Energy, 2022, 100, 107465.	8.2	22
1770	Electron beam radiation damages of α-alumina (0,1Ì,,,1) surfaces with different atomic terminations. Surface Science, 1990, 226, 293-306.	0.8	21
1771	Growth of spiral carbon tubes by a mixed-valent oxide-catalytic carbonization process. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1996, 74, 51-69.	0.6	21
1772	Synthesis of cobalt oxide nanocrystal self-assembled materials. Journal of Materials Research, 1999, 14, 503-508.	1.2	21
1773	Synthesis and Thermoelectric Power of Nitrogen-Doped Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2003, 3, 99-103.	0.9	21
1774	Controlling the crystallization and magnetic properties of melt-spun Pr2Fe14B/α-Fe nanocomposites by Joule heating. Applied Physics Letters, 2004, 84, 4382-4384.	1.5	21
1775	Unusual properties and reactivity at the nanoscale. Journal of Physics and Chemistry of Solids, 2005, 66, 546-550.	1.9	21
1776	Robust optimization of the output voltage of nanogenerators by statistical design of experiments. Nano Research, 2010, 3, 613-619.	5.8	21
1777	Directional Transport of Polymer Sheet and a Microsphere by a Rationally Aligned Nanowire Array. Advanced Materials, 2012, 24, 817-821.	11.1	21
1778	Enhanced Luminescence Performance of Quantum Wells by Coupling Piezo-Phototronic with Plasmonic Effects. ACS Nano, 2016, 10, 11420-11427.	7.3	21
1779	Triboelectric Nanogenerator: Single-Electrode Mode. Green Energy and Technology, 2016, , 91-107.	0.4	21
1780	Inductively-coupled-plasma-induced electret enhancement for triboelectric nanogenerators. Nanotechnology, 2017, 28, 035405.	1.3	21
1781	Suppressing Lithium Dendrite Growth via Sinusoidal Ripple Current Produced by Triboelectric Nanogenerators. Advanced Energy Materials, 2019, 9, 1900487.	10.2	21
1782	A Contactâ€Slidingâ€Triboelectrificationâ€Driven Dynamic Optical Transmittance Modulator for Selfâ€Powered Information Covering and Selective Visualization. Advanced Materials, 2020, 32, e1904988.	11.1	21

#	Article	IF	CITATIONS
1783	Sweep-type triboelectric linear motion sensor with staggered electrode. Extreme Mechanics Letters, 2020, 37, 100713.	2.0	21
1784	Multibit tribotronic nonvolatile memory based on van der Waals heterostructures. Nano Energy, 2021, 83, 105785.	8.2	21
1785	Energy from greenhouse plastic films. Nano Energy, 2021, 89, 106328.	8.2	21
1786	Dual-liquid-gated electrochemical transistor and its neuromorphic behaviors. Nano Energy, 2021, 87, 106116.	8.2	21
1787	Tetrahedral DNA mediated direct quantification of exosomes by contact-electrification effect. Nano Energy, 2022, 92, 106781.	8.2	21
1788	Self-Powered Sensing for Non-Full Pipe Fluidic Flow Based on Triboelectric Nanogenerators. ACS Applied Materials & Interfaces, 2022, 14, 2825-2832.	4.0	21
1789	Patientâ€5pecific Selfâ€Powered Metamaterial Implants for Detecting Bone Healing Progress. Advanced Functional Materials, 2022, 32, .	7.8	21
1790	A contextual framework development toward triboelectric nanogenerator commercialization. Nano Energy, 2022, 101, 107572.	8.2	21
1791	An optical potential approach to incoherent multiple thermal diffuse scattering in quantitative HRTEM. Ultramicroscopy, 1998, 74, 7-26.	0.8	20
1792	Reshaping the tips of ZnO nanowires by pulsed laser irradiation. Nano Research, 2012, 5, 412-420.	5.8	20
1793	Self-powered electrochemical anodic oxidation: A new method for preparation of mesoporous Al2O3 without applying electricity. Nano Research, 2015, 8, 3604-3611.	5.8	20
1794	Density functional studies on edge-contacted single-layer MoS2 piezotronic transistors. Applied Physics Letters, 2015, 107, .	1.5	20
1795	Triboelectricâ€Potentialâ€Regulated Charge Transport Through p–n Junctions for Areaâ€Scalable Conversion of Mechanical Energy. Advanced Materials, 2016, 28, 668-676.	11.1	20
1796	Triboelectric Nanogenerator: Lateral Sliding Mode. Green Energy and Technology, 2016, , 49-90.	0.4	20
1797	Solution derived p-ZnO/n-Si nanowire heterojunctions for photodetection. Chemical Physics Letters, 2016, 658, 158-161.	1.2	20
1798	Triboelectrificationâ€Enabled Selfâ€Powered Data Storage. Advanced Science, 2018, 5, 1700658.	5.6	20
1799	Impact-activated programming of electro-mechanical resonators through ferroelectret nanogenerator (FENG) and vanadium dioxide. Nano Energy, 2018, 43, 278-284.	8.2	20
1800	Dynamic Electronic Doping for Correlated Oxides by a Triboelectric Nanogenerator. Advanced Materials, 2018, 30, e1803580.	11.1	20

#	Article	IF	CITATIONS
1801	Triboelectric Nanogenerators. Micro/Nano Technologies, 2018, , 1335-1376.	0.1	20
1802	Defect repair for enhanced piezo-phototronic MoS ₂ flexible phototransistors. Journal of Materials Chemistry C, 2019, 7, 14731-14738.	2.7	20
1803	Electron transfer in the contact-electrification between corrugated 2D materials: A first-principles study. Nano Energy, 2021, 79, 105386.	8.2	20
1804	Mechanoplastic tribotronic two-dimensional multibit nonvolatile optoelectronic memory. Nano Energy, 2021, 82, 105692.	8.2	20
1805	2D Materials as Effective Cantilever Piezoelectric Nano Energy Harvesters. ACS Energy Letters, 2021, 6, 2313-2319.	8.8	20
1806	Enhancing Output Performance of Triboelectric Nanogenerator via Charge Clamping. Advanced Energy Materials, 2021, 11, 2101356.	10.2	20
1807	SPIN (Self-powered Paper Interfaces). , 2020, , .		20
1808	High-voltage output triboelectric nanogenerator with DC/AC optimal combination method. Nano Research, 2022, 15, 3239-3245.	5.8	20
1809	Underwater Energy Harvesting and Sensing by Sweeping Out the Charges in an Electric Double Layer using an Oil Droplet. Advanced Functional Materials, 2022, 32, .	7.8	20
1810	3D fully-enclosed triboelectric nanogenerator with bionic fish-like structure for harvesting hydrokinetic energy. Nano Research, 2022, 15, 5098-5104.	5.8	20
1811	Interaction between Water Wave and Geometrical Structures of Floating Triboelectric Nanogenerators. Advanced Energy Materials, 2022, 12, .	10.2	20
1812	Triboelectric–electromagnetic hybridized module for energy harvesting of power transmission lines galloping and self-powered galloping state monitoring. Nano Energy, 2022, 101, 107530.	8.2	20
1813	Electron microscopy characterization of lanthanum-cobalt intermetallic catalysts. Journal of Catalysis, 1987, 105, 120-143.	3.1	19
1814	Growth-induced columnar defects in YBa2Cu3O7â^'x thin films grown on miscut. Physica C: Superconductivity and Its Applications, 1995, 252, 125-137.	0.6	19
1815	Synthesis and properties of green phosphor SrGa2S4:Eu2+ for field emission displays by an environmentally clean technique. Solid State Communications, 2000, 113, 475-478.	0.9	19
1816	Grain size dependence of magnetic properties in shock synthesized bulk Pr2Fe14Bâ^•α-Fe nanocomposites. Journal of Applied Physics, 2004, 96, 3452-3457.	1.1	19
1817	Synthesis and Characterization of Ferroferriborate (Fe ₃ BO ₅) Nanorods. Advanced Functional Materials, 2009, 19, 3146-3150.	7.8	19
1818	Ac Dielectrophoresis of Tin Oxide Nanobelts Suspended in Ethanol: Manipulation and Visualization. Analytical Chemistry, 2010, 82, 2204-2212.	3.2	19

#	Article	IF	CITATIONS
1819	Deriving the three-dimensional structure of ZnO nanowires/nanobelts by scanning transmission electron microscope tomography. Nano Research, 2013, 6, 253-262.	5.8	19
1820	Single-excitation dual-color coherent lasing by tuning resonance energy transfer processes in porous structured nanowires. Nanoscale, 2015, 7, 15091-15098.	2.8	19
1821	Nanoporous-Gold-Based Hybrid Cantilevered Actuator Dealloyed and Driven by A Modified Rotary Triboelectric Nanogenerator. Scientific Reports, 2016, 6, 24092.	1.6	19
1822	Tribotronic triggers and sequential logic circuits. Nano Research, 2017, 10, 3534-3542.	5.8	19
1823	Triboelectric nanogenerator (TENG) mass spectrometry of falsified antimalarials. Rapid Communications in Mass Spectrometry, 2018, 32, 1585-1590.	0.7	19
1824	Motion recognition by a liquid filled tubular triboelectric nanogenerator. Nanoscale, 2019, 11, 495-503.	2.8	19
1825	Enhanced Spin–Orbit Coupled Photoluminescence of Perovskite CsPbBr ₃ Quantum Dots by Piezo-Phototronic Effect. Nano Letters, 2020, 20, 8298-8304.	4.5	19
1826	Highly Durable and Easily Integrable Triboelectric Foam for Active Sensing and Energy Harvesting Applications. Advanced Materials Technologies, 2021, 6, .	3.0	19
1827	Scanning triboelectric nanogenerator as a nanoscale probe for measuring local surface charge density on a dielectric film. Applied Physics Letters, 2021, 118, .	1.5	19
1828	Improved Output Performance of Direct urrent Triboelectric Nanogenerator through Field Enhancing Breakdown Effect. Advanced Materials Technologies, 2021, 6, 2100195.	3.0	19
1829	Unraveling the anomalous mechanoluminescence intensity change and pressure-induced red-shift for manganese-doped zinc sulfide. Nano Energy, 2021, 85, 106005.	8.2	19
1830	A turbine disk-type triboelectric nanogenerator for wind energy harvesting and self-powered wildfire pre-warning. Materials Today Energy, 2021, 22, 100867.	2.5	19
1831	Theoretical model and optimal output of a cylindrical triboelectric nanogenerator. Nano Energy, 2022, 92, 106762.	8.2	19
1832	Flexible Filmâ€Dischargeâ€&witch Assisted Universal Power Management System for the Four Operation Modes of Triboelectric Nanogenerators. Advanced Energy Materials, 2022, 12, .	10.2	19
1833	Advances in MEMS and Microfluidicsâ€Based Energy Harvesting Technologies. Advanced Materials Technologies, 2022, 7, .	3.0	19
1834	Barycenter Selfâ€Adapting Triboelectric Nanogenerator for Sea Water Wave Highâ€Entropy Energy Harvesting and Selfâ€Powered Forecasting in Marine Meteorology. Advanced Functional Materials, 2022, 32, .	7.8	19
1835	Recent advances on biomechanical motion-driven triboelectric nanogenerators for drug delivery. Nano Today, 2022, 45, 101513.	6.2	19
1836	Dynamics of thermal diffuse scattering in high-energy electron diffraction and imaging: Theory and experiments. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1992, 65, 559-587.	0.6	18

#	Article	IF	CITATIONS
1837	Thermal stability and annealing of columnar defects in Bi2Sr2Ca1Cu2O8/Ag superconductor. Applied Physics Letters, 1995, 67, 1007-1009.	1.5	18
1838	SnOx Nanocrystallites Supported by Silica Nanostructures. Nano Letters, 2001, 1, 449-451.	4.5	18
1839	Etching silicon wafer without hydrofluoric acid. Applied Physics Letters, 2005, 87, 261913.	1.5	18
1840	Preface to the Special Section on Piezotronics. Advanced Materials, 2012, 24, 4630-4631.	11.1	18
1841	Interface-Free Area-Scalable Self-Powered Electroluminescent System Driven by Triboelectric Generator. Scientific Reports, 2015, 5, 13658.	1.6	18
1842	Triboelectric Effect-Driven Liquid Metal Actuators. Soft Robotics, 2019, 6, 664-670.	4.6	18
1843	Application of Displacement-Current-Governed Triboelectric Nanogenerator in an Electrostatic Discharge Protection System for the Next-Generation Green Tire. ACS Nano, 2019, 13, 8202-8212.	7.3	18
1844	In Situ Observations of Shell Growth and Oxidative Etching Behaviors of Pd Nanoparticles in Solutions by Liquid Cell Transmission Electron Microscopy. Small, 2019, 15, 1900050.	5.2	18
1845	High performance piezotronic devices based on non-uniform strain. Nano Energy, 2019, 60, 649-655.	8.2	18
1846	Enhanced performances of AlGaN/GaN HEMTs with dielectric engineering of HfZrOx. Nano Energy, 2020, 68, 104361.	8.2	18
1847	Outâ€ofâ€Plane Polarization in Bent Grapheneâ€Like Zinc Oxide and Nanogenerator Applications. Advanced Functional Materials, 2020, 30, 1907885.	7.8	18
1848	Photonâ€Memristive System for Logic Calculation and Nonvolatile Photonic Storage. Advanced Functional Materials, 2020, 30, 2002945.	7.8	18
1849	Epitaxial Lift-Off of Flexible GaN-Based HEMT Arrays with Performances Optimization by the Piezotronic Effect. Nano-Micro Letters, 2021, 13, 67.	14.4	18
1850	Arcâ€Shaped Triboelectric Nanogenerator Based on Rolling Structure for Harvesting Lowâ€Frequency Water Wave Energy. Advanced Materials Technologies, 2021, 6, 2100359.	3.0	18
1851	Timing strategy for boosting energy extraction from triboelectric nanogenerators. Nano Energy, 2021, 85, 105956.	8.2	18
1852	P-GaN-substrate sprouted giant pure negative electrocaloric effect in Mn-doped Pb(Zr0.3Ti0.7)O3 thin film with a super-broad operational temperature range. Nano Energy, 2021, 86, 106059.	8.2	18
1853	Regulating random mechanical motion using the principle of auto-winding mechanical watch for driving TENG with constant AC output – An approach for efficient usage of high entropy energy. Nano Energy, 2021, 87, 106195.	8.2	18
1854	Magnetic energy harvesting of transmission lines by the swinging triboelectric nanogenerator. Materials Today Energy, 2021, 22, 100848.	2.5	18

#	Article	IF	CITATIONS
1855	Self-powered electronic paper with energy supplies and information inputs solely from mechanical motions. Photonics Research, 2020, 8, 1496.	3.4	18
1856	Self-Rebound Cambered Triboelectric Nanogenerator Array for Self-Powered Sensing in Kinematic Analytics. ACS Nano, 2022, 16, 1271-1279.	7.3	18
1857	Pendular-Translational Hybrid Nanogenerator Harvesting Water Wave Energy. ACS Applied Materials & Interfaces, 2022, 14, 15187-15194.	4.0	18
1858	Flexoelectricity-Enhanced Photovoltaic Effect in Self-Polarized Flexible PZT Nanowire Array Devices. ACS Nano, 2022, 16, 7834-7847.	7.3	18
1859	Atomic step structures on cleaved α-alumina (012) surfaces. Surface Science, 1992, 271, 477-492.	0.8	17
1860	Grain-boundary chemistry and weak-link behavior of polycrystallineYBa2Cu4O8. Physical Review B, 1993, 48, 9726-9734.	1.1	17
1861	High-Temperature Stability of Passivated Silver Nanocrystal Superlattices. Journal of Physical Chemistry B, 1999, 103, 4342-4345.	1.2	17
1862	Properties of Nanobelts and Nanotubes Measured byIn SituTEM. Microscopy and Microanalysis, 2004, 10, 158-166.	0.2	17
1863	Patterned aluminum nanowires produced by electron beam at the surfaces of AIF3 single crystals. Solid State Communications, 2004, 129, 681-685.	0.9	17
1864	Wireless Joule nanoheaters. Sensors and Actuators B: Chemical, 2007, 127, 54-62.	4.0	17
1865	Ballistic transport in single-layer MoS2 piezotronic transistors. Nano Research, 2016, 9, 282-290.	5.8	17
1866	A Selfâ€Powered Early Warning Glove with Integrated Elasticâ€Arched Triboelectric Nanogenerator and Flexible Printed Circuit for Realâ€Time Safety Protection. Advanced Materials Technologies, 2022, 7, 2100787.	3.0	17
1867	Study of Contact Electrification at Liquid-Gas Interface. ACS Nano, 2021, 15, 18206-18213.	7.3	17
1868	Flexible Alternating urrent Electroluminescence Plunging to Below 1ÂHz Frequency by Triboelectrification. Advanced Optical Materials, 2022, 10, .	3.6	17
1869	Aerodynamicsâ€Based Triboelectric Nanogenerator for Enhancing Multiâ€Operating Robustness via Mode Automatic Switching. Advanced Functional Materials, 2022, 32, .	7.8	17
1870	NANOBELTS OF SEMICONDUCTIVE OXIDES: A STRUCTURALLY AND MORPHOLOGICALLY CONTROLLED NANOMATERIALS SYSTEM. International Journal of Nanoscience, 2002, 01, 41-51.	0.4	16
1871	Novel Zinc Oxide Nanostructures Discovery by Electron Microscopy. Journal of Physics: Conference Series, 2006, 26, 1-6.	0.3	16
1872	Multicolored ZnO Nanowire Architectures on Trenched Silicon Substrates. Journal of Physical Chemistry C, 2007, 111, 13763-13769.	1.5	16

#	Article	IF	CITATIONS
1873	Theoretical study of piezotronic heterojunction. Science China Technological Sciences, 2013, 56, 2615-2621.	2.0	16
1874	A self-powered AC magnetic sensor based on piezoelectric nanogenerator. Nanotechnology, 2014, 25, 455503.	1.3	16
1875	Pyroelectric-field driven defects diffusion along <i>c</i> -axis in ZnO nanobelts under high-energy electron beam irradiation. Journal of Applied Physics, 2014, 116, .	1.1	16
1876	Direct probing of contact electrification by using optical second harmonic generation technique. Scientific Reports, 2015, 5, 13019.	1.6	16
1877	<i>In situ</i> transmission electron microscopy observation of ZnO polar and non-polar surfaces structure evolution under electron beam irradiation. Journal of Applied Physics, 2016, 119, .	1.1	16
1878	CuS nanotrough-networks for highly stable transparent conducting electrodes. Journal of Materials Chemistry C, 2016, 4, 4733-4739.	2.7	16
1879	Piezotronically enhanced detection of protein kinases at ZnO micro/nanowire heterojunctions. Nano Energy, 2020, 69, 104330.	8.2	16
1880	Differentiation of Multiple Mechanical Stimuli by a Flexible Sensor Using a Dual-Interdigital-Electrode Layout for Bodily Kinesthetic Identification. ACS Applied Materials & Interfaces, 2021, 13, 26394-26403.	4.0	16
1881	Tribo-electrophoresis preconcentration enhanced ultra-sensitive SERS detection. Nano Energy, 2022, 98, 107239.	8.2	16
1882	Electromagnetic Shielding Triboelectric Yarns for Human–Machine Interacting. Advanced Electronic Materials, 2022, 8, .	2.6	16
1883	Theory of phase correlations in localized inelastic electron diffraction and imaging. Ultramicroscopy, 1991, 38, 181-213.	0.8	15
1884	Steps and facets on annealed LaAlO3{100} and {110} surfaces. Surface Science, 1996, 360, 180-186.	0.8	15
1885	Nanocomposite (Nd,Dy)(Fe,Co,Nb,B)5.5/Â-Fe multilayer magnets with high performance. Journal Physics D: Applied Physics, 2003, 36, L63-L66.	1.3	15
1886	Amorphization and ultrafine-scale recrystallization in shear bands formed in shock-consolidated Pr2Fe14Bâ^•αâ€Fe nanocomposite magnets. Applied Physics Letters, 2004, 85, 2223-2225.	1.5	15
1887	Ferromagnetic cobalt nanocrystals achieved by soft annealing approach—From individual behavior to mesoscopic organized properties. Journal of Magnetism and Magnetic Materials, 2007, 312, 390-399.	1.0	15
1888	Triboelectric sensor as self-powered signal reader for scanning probe surface topography imaging. Nanotechnology, 2015, 26, 165501.	1.3	15
1889	<i>In-situ</i> transmission electron microscopy study of oxygen vacancy ordering and dislocation annihilation in undoped and Sm-doped CeO2 ceramics during redox processes. Journal of Applied Physics, 2016, 120, .	1.1	15
1890	Triboelectric Nanogenerator: Freestanding Triboelectric-Layer Mode. Green Energy and Technology, 2016, , 109-153.	0.4	15

#	Article	IF	CITATIONS
1891	Flutter Phenomenon in Flow Driven Energy Harvester–A Unified Theoretical Model for "Stiff―and "Flexible―Materials. Scientific Reports, 2016, 6, 35180.	1.6	15
1892	A Selfâ€Powered Portable Power Bank Based on a Hybridized Nanogenerator. Advanced Materials Technologies, 2018, 3, 1700209.	3.0	15
1893	Triboelectrification-Induced Self-Assembly of Macro-Sized Polymer Beads on a Nanostructured Surface for Self-Powered Patterning. ACS Nano, 2018, 12, 441-447.	7.3	15
1894	Sunlightâ€Triggerable Transient Energy Harvester and Sensors Based on Triboelectric Nanogenerator Using Acidâ€5ensitive Poly(phthalaldehyde). Advanced Electronic Materials, 2019, 5, 1900725.	2.6	15
1895	Triboelectric Flow Sensor with Float–Cone Structure for Industrial Pneumatic System Monitoring. Advanced Materials Technologies, 2019, 4, 1900704.	3.0	15
1896	An Elastic Triboelectric Nanogenerator for Harvesting Random Mechanical Energy with Multiple Working Modes. Advanced Materials Technologies, 2019, 4, 1900075.	3.0	15
1897	Shape- and size dependent piezoelectric properties of monolayer hexagonal boron nitride nanosheets. Nanoscale Advances, 2020, 2, 470-477.	2.2	15
1898	Effect of Redox Atmosphere on Contact Electrification of Polymers. ACS Nano, 2020, 14, 17354-17364.	7.3	15
1899	Electromagnetic Pulse Powered by a Triboelectric Nanogenerator with Applications in Accurate Selfâ€Powered Sensing and Security. Advanced Materials Technologies, 2020, 5, 2000368.	3.0	15
1900	Nanoscale triboelectrification gated transistor. Nature Communications, 2020, 11, 1054.	5.8	15
1901	Flexophotovoltaic Effect in Potassium Sodium Niobate/Poly(Vinylidene Fluorideâ€Trifluoroethylene) Nanocomposite. Advanced Science, 2021, 8, 2004554.	5.6	15
1902	A universal managing circuit with stabilized voltage for maintaining safe operation of self-powered electronics system. IScience, 2021, 24, 102502.	1.9	15
1903	Paper triboelectric nanogenerator designed for continuous reuse and quick construction. Nano Research, 2022, 15, 1109-1114.	5.8	15
1904	Contact Electrification by Quantum-Mechanical Tunneling. Research, 2019, 2019, 6528689.	2.8	15
1905	Methods for correctly characterizing the output performance of nanogenerators. Nano Energy, 2022, 93, 106884.	8.2	15
1906	Triboelectric Leakage-Field-Induced Electroluminescence Based on ZnS:Cu. ACS Applied Materials & Interfaces, 2022, 14, 4775-4782.	4.0	15
1907	Triboelectric-nanogenerator-enabled mechanical modulation for infrared wireless communications. Energy and Environmental Science, 2022, 15, 2983-2991.	15.6	15
1908	Bioinspired butterfly wings triboelectric nanogenerator with drag amplification for multidirectional underwater-wave energy harvesting. Applied Energy, 2022, 323, 119648.	5.1	15

#	Article	IF	CITATIONS
1909	Thermal diffuse scattering in high-resolution electron holography. Ultramicroscopy, 1993, 52, 504-511.	0.8	14
1910	Configurations of misfit dislocations at interfaces of lattice-matched Ga0.5In0.5P/GaAs heterostructures. Applied Physics Letters, 2000, 77, 223-225.	1.5	14
1911	A nanogenerator as a self-powered sensor for measuring the vibration spectrum of a drum membrane. Nanotechnology, 2013, 24, 055501.	1.3	14
1912	Piezoâ€Phototronic Matrix via a Nanowire Array. Small, 2017, 13, 1702377.	5.2	14
1913	Lightâ€Driven Shapeâ€Memory Porous Films with Precisely Controlled Dimensions. Angewandte Chemie, 2018, 130, 2161-2165.	1.6	14
1914	Piezotronic Tunneling Junction Gated by Mechanical Stimuli. Advanced Materials, 2019, 31, e1905436.	11.1	14
1915	Electret-induced electric field assisted luminescence modulation for interactive visualized sensing in a non-contact mode. Materials Horizons, 2020, 7, 1144-1149.	6.4	14
1916	Wherever there is a dynamic touch, there is electromagnetic field——a discovery for power generation. Nano Energy, 2020, 78, 105314.	8.2	14
1917	Novel wireless power transmission based on Maxwell displacement current. Nano Energy, 2020, 76, 105051.	8.2	14
1918	Triboelectric Nanogenerator Ion Mobility–Mass Spectrometry for In-Depth Lipid Annotation. Analytical Chemistry, 2021, 93, 5468-5475.	3.2	14
1919	Flexible and wearable piezoelectric nanogenerators based on P(VDF-TrFE)/SnS nanocomposite micropillar array. Journal of Applied Physics, 2021, 129, .	1.1	14
1920	Skinâ€Inspired Highâ€Performance Activeâ€Matrix Circuitry for Multimodal Userâ€Interaction. Advanced Functional Materials, 2021, 31, 2105480.	7.8	14
1921	Enhancing Output Performance of Triboelectric Nanogenerator via Charge Clamping (Adv. Energy) Tj ETQq1 1 0.	784314 rg 10.2	gBT /Overlock
1922	Hydrogels with highly concentrated salt solution as electrolytes for solid-state supercapacitors with a suppressed self-discharge rate. Journal of Materials Chemistry A, 2022, 10, 2966-2972.	5.2	14
1923	In Situ Nanofluid Dispersion Monitoring by Liquid–Solid Triboelectric Nanogenerator Based on Tuning the Structure of the Electric Double Layer. Advanced Functional Materials, 2022, 32, .	7.8	14
1924	Utilising the triboelectricity of the human body for human-computer interactions. Nano Energy, 2022, 100, 107503.	8.2	14
1925	Scavenging low-speed breeze wind energy using a triboelectric nanogenerator installed inside a square variable diameter channel. Nano Energy, 2022, 100, 107453.	8.2	14
1926	Hybrid Triboelectricâ€Electromagnetic Magnetic Energy Harvesterâ€Based Sensing for Wireless Monitoring of Transmission Lines. Small, 2022, 18, .	5.2	14

#	Article	IF	CITATIONS
1927	Imaging and spectroscopy of α-Al2O3, diamond, Ni and Fe bulk crystal surfaces. Ultramicroscopy, 1991, 37, 103-115.	0.8	13
1928	Engineering vertically aligned InAs/GaAs quantum dot structures via anion exchange. Solid State Communications, 2002, 122, 553-556.	0.9	13
1929	Explosive shock processing of Pr2Fe14B/α–Fe exchange-coupled nanocomposite bulk magnets. Journal of Materials Research, 2005, 20, 599-609.	1.2	13
1930	Diameter-dependent voltammetric properties of carbon nanotubes. Chemical Physics Letters, 2006, 418, 524-529.	1.2	13
1931	Electric field drives the nonlinear resonance of a piezoelectric nanowire. Solid State Communications, 2007, 144, 118-123.	0.9	13
1932	Rapid photoresponse of single-crystalline selenium nanobelts. Solid State Communications, 2008, 148, 145-147.	0.9	13
1933	High-index facets bound ripple-like ZnO nanobelts grown by chemical vapor deposition. CrystEngComm, 2011, 13, 5052.	1.3	13
1934	Particle Transport–Based Triboelectric Nanogenerator for Selfâ€Powered Massâ€Flow Detection and Explosion Early Warning. Advanced Materials Technologies, 2018, 3, 1800009.	3.0	13
1935	Flexible GaN microwire-based piezotronic sensory memory device. Nano Energy, 2020, 78, 105312.	8.2	13
1936	Enhanced Heat Dissipation in Gallium Nitride-Based Light-Emitting Diodes by Piezo-phototronic Effect. Nano Letters, 2021, 21, 4062-4070.	4.5	13
1937	Nonintrusion Monitoring of Droplet Motion State <i>via</i> Liquid–Solid Contact Electrification. ACS Nano, 2021, 15, 18557-18565.	7.3	13
1938	Triboelectric Nanogenerator with Low Crest Factor via Precise Phase Difference Design Realized by 3D Printing. Small Methods, 2021, 5, e2100936.	4.6	13
1939	Piezo-phototronic effect boosted catalysis in plasmonic bimetallic ZnO heterostructure with guided fermi level alignment. Materials Today Nano, 2022, 18, 100177.	2.3	13
1940	High-performance triboelectric nanogenerator with synchronization mechanism by charge handling. Energy Conversion and Management, 2022, 263, 115655.	4.4	13
1941	An easy and efficient power generator with ultrahigh voltage for lighting, charging and self-powered systems. Nano Energy, 2022, 100, 107409.	8.2	13
1942	Dependence of critical current density on microstructure and processing of high-Tc superconductors. Journal of Electronic Materials, 1994, 23, 1191-1197.	1.0	12
1943	Lattice imaging using plasmon energy-loss electrons in an energy-filtered transmission electron microscope. Ultramicroscopy, 1997, 67, 105-111.	0.8	12
1944	Valence excitations in individual single-wall carbon nanotubes. Applied Physics Letters, 2002, 80, 2982-2984.	1.5	12

#	Article	IF	CITATIONS
1945	Dynamicin situfield emission of a nanotube at electromechanical resonance. Journal of Physics Condensed Matter, 2005, 17, L507-L512.	0.7	12
1946	Ordered zinc-vacancy induced Zn0.75Ox nanophase structure. Solid State Communications, 2006, 138, 390-394.	0.9	12
1947	Theme issue: inorganic nanotubes and nanowires. Journal of Materials Chemistry, 2009, 19, 826.	6.7	12
1948	Coplanar Induction Enabled by Asymmetric Permittivity of Dielectric Materials for Mechanical Energy Conversion. ACS Applied Materials & Interfaces, 2015, 7, 6025-6029.	4.0	12
1949	Density functional studies on wurtzite piezotronic transistors: influence of different semiconductors and metals on piezoelectric charge distribution and Schottky barrier. Nanotechnology, 2016, 27, 205204.	1.3	12
1950	Triboelectrification. Green Energy and Technology, 2016, , 1-19.	0.4	12
1951	Tribotronic transistor sensor for enhanced hydrogen detection. Nano Research, 2017, 10, 3857-3864.	5.8	12
1952	Theoretical Study of Slidingâ€Electrificationâ€Gated Tribotronic Transistors and Logic Device. Advanced Electronic Materials, 2018, 4, 1700337.	2.6	12
1953	Magnesium Anodes with Extended Cycling Stability for Lithiumâ€ŀon Batteries. Advanced Functional Materials, 2019, 29, 1806400.	7.8	12
1954	Layerâ€byâ€Layer Assembly of Nanofiber/Nanoparticle Artificial Skin for Strainâ€Insensitive UV Shielding and Visualized UV Detection. Advanced Materials Technologies, 2020, 5, 1900976.	3.0	12
1955	Double-spring-piece structured triboelectric sensor for broadband vibration monitoring and warning. Mechanical Systems and Signal Processing, 2022, 166, 108429.	4.4	12
1956	Transient physical modeling and comprehensive optimal design of air-breakdown direct-current triboelectric nanogenerators. Nano Energy, 2022, 92, 106742.	8.2	12
1957	Mechanical Modulation of 2D Electronic Devices at Attoâ€Joule Energy via Flexotronic Effect. Advanced Functional Materials, 2022, 32, .	7.8	12
1958	Elastic Kernmantle Eâ€Braids for Highâ€Impact Sports Monitoring. Advanced Science, 2022, 9, .	5.6	12
1959	Dynamical inelastic scattering in high-energy electron diffraction and imaging: A new theoretical approach. Physical Review B, 1990, 41, 12818-12837.	1.1	11
1960	Novel Nanostructures and Nanodevices of ZnO. , 2006, , 339-370.		11
1961	A Photocatalytic Reduction Method for the Preparation of TiO ₂ Nanobelt Supported Noble Metals (Ag, Au). Journal of Nanoscience and Nanotechnology, 2009, 9, 2119-2123.	0.9	11
1962	Theoretical study on the top- and enclosed-contacted single-layer MoS2 piezotronic transistors. Applied Physics Letters, 2016, 108, 181603.	1.5	11

#	Article	IF	CITATIONS
1963	Dramatically Enhanced Broadband Photodetection by Dual Inversion Layers and Fowler–Nordheim Tunneling. ACS Nano, 2019, 13, 2289-2297.	7.3	11
1964	KAUSTat: A Wireless, Wearable, Open-Source Potentiostat for Electrochemical Measurements. , 2019, , .		11
1965	Influences of surface charges and gap width between p-type and n-type semiconductors on charge pumping. Nano Energy, 2020, 78, 105287.	8.2	11
1966	Sugar-based triboelectric nanogenerators for effectively harvesting vibration energy and sugar quality assessment. Nano Energy, 2021, 88, 106196.	8.2	11
1967	Anisotropic Carrier Mobility from 2H WSe ₂ . Advanced Materials, 2022, 34, e2108615.	11.1	11
1968	Highâ€Performance Dielectric Elastomer Nanogenerator for Efficient Energy Harvesting and Sensing via Alternative Current Method. Advanced Science, 2022, 9, e2201098.	5.6	11
1969	Self-powered sensors driven by Maxwell's displacement current wirelessly provided by TENG. Applied Materials Today, 2022, 27, 101375.	2.3	11
1970	Intelligent self-powered sensor based on triboelectric nanogenerator for take-off status monitoring in the sport of triple-jumping. Nano Research, 2022, 15, 6483-6489.	5.8	11
1971	Effect of Surface Pre-Charging and Electric Field on the Contact Electrification between Liquid and Solid. Journal of Physical Chemistry C, 2022, 126, 8897-8905.	1.5	11
1972	Kirigami interactive triboelectric mechanologic. Nano Energy, 2022, 99, 107345.	8.2	11
1973	Three-dimensional mathematical modelling and dynamic analysis of freestanding triboelectric nanogenerators. Journal Physics D: Applied Physics, 2022, 55, 345501.	1.3	11
1974	Dynamical calculations for rheed and rem including the plasmon inelastic scattering. Surface Science, 1989, 215, 201-216.	0.8	10
1975	Statistical multiple diffuse scattering from rough surfaces in RHEED — beyond the distorted-wave Born approximation. Surface Science, 1996, 366, 377-393.	0.8	10
1976	Sticky but not messy. Nature Nanotechnology, 2009, 4, 407-408.	15.6	10
1977	Piezotronics and Piezo-phototronics. , 2013, , .		10
1978	Preface for Special Topic: Nanogenerators. APL Materials, 2017, 5, .	2.2	10
1979	Improving the Performance of the Mini 2000 Mass Spectrometer with a Triboelectric Nanogenerator Electrospray Ionization Source. ACS Omega, 2018, 3, 12229-12234.	1.6	10
1980	Domain structures and Prco antisite point defects in double-perovskite PrBaCo2O5+δ and PrBa0.8Ca0.2Co2O5+δ. Ultramicroscopy, 2018, 193, 64-70.	0.8	10

#	Article	IF	CITATIONS
1981	Acoustic Gain in Solids due to Piezoelectricity, Flexoelectricity, and Electrostriction. Advanced Functional Materials, 2020, 30, 2003503.	7.8	10
1982	Electro-blown spinning driven by cylindrical rotating triboelectric nanogenerator and its applications for fabricating nanofibers. Applied Materials Today, 2020, 19, 100631.	2.3	10
1983	Multi-Layer Extreme Learning Machine-Based Keystroke Dynamics Identification for Intelligent Keyboard. IEEE Sensors Journal, 2021, 21, 2324-2333.	2.4	10
1984	A Windâ€Driven Poly(tetrafluoroethylene) Electret and Polylactide Polymerâ€Based Hybrid Nanogenerator for Selfâ€Powered Temperature Detection System. Advanced Sustainable Systems, 2021, 5,	2.7	10
1985	Emerging nanogenerators: Powering the Internet of Things by high entropy energy. IScience, 2021, 24, 102358.	1.9	10
1986	Detrapping Current Measurement System Driven by Triboelectric Nanogenerators for Mapping Electron Trap States in Dielectrics. Advanced Functional Materials, 2021, 31, 2103463.	7.8	10
1987	Triboelectric nanogenerator with mechanical switch and clamp circuit for low ripple output. Nano Research, 2022, 15, 2077-2082.	5.8	10
1988	Hybridized triboelectric-electromagnetic nanogenerators and solar cell for energy harvesting and wireless power transmission. Nano Research, 2022, 15, 2069-2076.	5.8	10
1989	Noninvasive manipulation of cell adhesion for cell harvesting with piezoelectric composite film. Applied Materials Today, 2021, 25, 101218.	2.3	10
1990	3D-printed bearing structural triboelectric nanogenerator for intelligent vehicle monitoring. Cell Reports Physical Science, 2021, 2, 100666.	2.8	10
1991	Windmillâ€Like Nanogenerator for Harvesting Lowâ€Speed Wind Energy and Wind Speed Measuring. Advanced Materials Technologies, 2022, 7, .	3.0	10
1992	Electrostatic Charges Regulate Chemiluminescence by Electron Transfer at the Liquid–Solid Interface. Journal of Physical Chemistry B, 2022, 126, 2754-2760.	1.2	10
1993	Thousandfold boosting instantaneous current of triboelectric nanogenerator based on decoupled charge pump and discharge tube. Nano Energy, 2022, 98, 107264.	8.2	10
1994	Reducing the Self-Discharge Rate of Supercapacitors by Suppressing Electron Transfer in the Electric Double Layer. Journal of the Electrochemical Society, 2021, 168, 120548.	1.3	10
1995	Defocussed dark-field images of crystal surfaces. Ultramicroscopy, 1986, 19, 217-223.	0.8	9
1996	Sensitivity of the ELNES in reels to the beam reductions at the TiO2(110) surfaces. Surface Science, 1989, 216, 528-538.	0.8	9
1997	Dynamical calculations for RHEED and REM including the plasmon inelastic scattering. Surface Science, 1989, 215, 217-231.	0.8	9
1998	Studies of surface resonance waves in RHEED. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1989, 60, 617-626.	0.6	9

#	Article	IF	CITATIONS
1999	Reflection electron energy-loss spectroscopy and imaging for surface studies in transmission electron microscopes. Microscopy Research and Technique, 1992, 20, 390-405.	1.2	9
2000	Lateral compositional modulation in lattice-matched GaInP/GaAs heterostructures. Journal of Electronic Materials, 2000, 29, 1372-1379.	1.0	9
2001	Layered microdomains and columnar grains in epitaxial La _{0.7} Ca _{0.3} MnO ₃ films and Y _{0.7} Ca _{0.3} MnO ₃ /La _{0.7} Ca _{0.3} /La _{0.3} /La _{0.7} Ca _{0.3} /La _{0.3} /La _{0.7} Ca _{0.3} /La _{0.3} /La _{0.7} /La _{0.3} /La <sub la<="" la_{<td>1.2</td><td>9</td>}	1.2	9
2002	Nanogenerators and Nanopiezotronics. , 2007, , .		9
2003	Tracking the catalyzed growth process of nanowires by in situ x-ray diffraction. Journal of Applied Physics, 2010, 108, 014304.	1.1	9
2004	Tuning the Shape and Strain in Micro/Nanowires by a Sideways Physical Deposition Process. Journal of Physical Chemistry C, 2010, 114, 21277-21280.	1.5	9
2005	Nanogenerators: Highlyâ€Efficient, Flexible Piezoelectric PZT Thin Film Nanogenerator on Plastic Substrates (Adv. Mater. 16/2014). Advanced Materials, 2014, 26, 2450-2450.	11.1	9
2006	Assessment of extracellular matrix modulation of cell traction force by using silicon nanowire array. Nano Energy, 2018, 50, 504-512.	8.2	9
2007	Two Photon–Pumped Whisperingâ€Gallery Mode Lasing and Dynamic Regulation. Advanced Science, 2019, 6, 1900916.	5.6	9
2008	Serpentine. , 2019, , .		9
2009	Temperature-dependent study on AlGaN-based deep ultraviolet light-emitting diode for the origin of high ideality factor. AlP Advances, 2021, 11, .	0.6	9
2010	Energy Optimization of a Mirror‧ymmetric Spherical Triboelectric Nanogenerator. Advanced Functional Materials, 2022, 32, .	7.8	9
2011	A self-powered and concealed sensor based on triboelectric nanogenerators for cultural-relic anti-theft systems. Nano Research, 2022, 15, 8435-8441.	5.8	9
2012	Plastic film based lightweight thruster driven by triboelectric nanogenerator for multi-purpose propulsion applications. Nano Energy, 2022, 101, 107558.	8.2	9
2013	Intensity enhancement and plasmon inelastic scattering in RHEED. Surface Science, 1989, 214, 44-56.	0.8	8
2014	In-situ dynamic processes on cleaved α-alumina bulk crystal surfaces imaged by reflection electron microscopy. Ultramicroscopy, 1993, 51, 64-80.	0.8	8
2015	Electron energy-loss spectroscopy of high-angle thermal-diffuse-scattered electrons in TEM. Ultramicroscopy, 1993, 48, 183-196.	0.8	8
2016	Bi-axial texture in Ca0.1Y0.9Ba2Cu4O8 composite wires made by metallic precursors. Physica C: Superconductivity and Its Applications, 1994, 230, 274-282.	0.6	8

#	Article	IF	CITATIONS
2017	High-spatial resolution compositionally-sensitive imaging of metallic particles using plasmon energy-loss electrons in TEM. Micron, 1998, 29, 191-199.	1.1	8
2018	Nanodevice, Nanosensors and Nanocantilevers Based on Semiconducting Oxide Nanobelts. , 2003, , 3-19.		8
2019	Assembly at the Nanoscale – Toward Functional Nanostructured Materials. Small, 2006, 2, 1322-1323.	5.2	8
2020	Mechanical and magnetic properties of Ni-doped metallic TaSi2nanowires. Nanotechnology, 2007, 18, 145604.	1.3	8
2021	<i>A Conversation with</i> Prof. Zhong Lin Wang, Energy Harvester. ACS Nano, 2015, 9, 2221-2226.	7.3	8
2022	Quantifying mean inner potential of ZnO nanowires by off-axis electron holography. Micron, 2015, 78, 67-72.	1.1	8
2023	Piezoelectric and deformation potential effects of strain-dependent luminescence in semiconductor quantum well structures. Nano Research, 2017, 10, 134-144.	5.8	8
2024	Compositional characterization of complex protopeptide libraries via triboelectric nanogenerator Orbitrap mass spectrometry. Rapid Communications in Mass Spectrometry, 2019, 33, 1293-1300.	0.7	8
2025	Integrated Energy Devices: 3D Heteroatomâ€Doped Carbon Nanomaterials as Multifunctional Metalâ€Free Catalysts for Integrated Energy Devices (Adv. Mater. 13/2019). Advanced Materials, 2019, 31, 1970094.	11.1	8
2026	Bioinspired Triboelectric Nanogenerators: Bioinspired Triboelectric Nanogenerators as Selfâ€Powered Electronic Skin for Robotic Tactile Sensing (Adv. Funct. Mater. 6/2020). Advanced Functional Materials, 2020, 30, 2070035.	7.8	8
2027	Energy-filtered HREM images of valence-loss electrons. Microscopy Microanalysis Microstructures, 1991, 2, 569-588.	0.4	8
2028	Hybrid Energyâ€Harvesting System by a Coupling of Triboelectric and Thermoelectric Generator. Energy Technology, 2022, 10, .	1.8	8
2029	Z-contrast imaging of bulk crystal surfaces in scanning reflection electron microscopy. Ultramicroscopy, 1991, 37, 39-49.	0.8	7
2030	Texture and transport in spray pyrolyzed TlBa2Ca2Cu3O9 thick films. Journal of Materials Research, 1995, 10, 2203-2210.	1.2	7
2031	Interfacial roughening in lattice-matched GaInP/GaAs heterostructures. Thin Solid Films, 2001, 397, 162-169.	0.8	7
2032	Label-Free Protein Detection by ZnO Nanowire Based Bio-Sensors. , 2007, , .		7
2033	Unified treatment of coupled optical and acoustic phonons in piezoelectric cubic materials. Physical Review B, 2015, 92, .	1.1	7
2034	<i>In situ</i> tuning of crystallization pathways by electron beam irradiation and heating in amorphous bismuth ferrite films. RSC Advances, 2018, 8, 23522-23528.	1.7	7

#	Article	IF	CITATIONS
2035	Piezotronic effect on Rashba spin–orbit coupling based on MAPbI3/ZnO heterostructures. Applied Physics Letters, 2020, 117, 071601.	1.5	7
2036	Small-Scale Energy Harvesting from Environment by Triboelectric Nanogenerators. , 0, , .		7
2037	A Selfâ€Powered and Efficient Triboelectric Dehydrator for Separating Waterâ€inâ€Oil Emulsions with Ultrahigh Moisture Content. Advanced Materials Technologies, 2022, 7, .	3.0	7
2038	Highly sensitive three-dimensional scanning triboelectric sensor for digital twin applications. Nano Energy, 2022, 97, 107198.	8.2	7
2039	Maxwell's equations for a mechano-driven varying-speed motion media system under slow motion and nonrelativistic approximations. Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2022, 52, 1198-1211.	0.3	7
2040	Modeling and optimization of a rotational symmetric spherical triboelectric generator. Nano Energy, 2022, 100, 107491.	8.2	7
2041	Selfâ€Powered Intelligent Voice Navigation Tactile Pavement Based on Highâ€Output Hybrid Nanogenerator. Advanced Materials Technologies, 2022, 7, .	3.0	7
2042	High spatial resolution analytical electron microscopy studies on the Co/CeO2 system. Surface and Interface Analysis, 1988, 12, 3-10.	0.8	6
2043	Surface microanalysis by reflection electron energy-loss spectroscopy. Journal of Electron Microscopy Technique, 1990, 14, 13-20.	1.1	6
2044	Magnetic constrast in reflection electron microscopy. Surface Science, 1990, 234, 98-107.	0.8	6
2045	A single electric relaxation time in Ba1â^'xSrxTiO3nanoparticles at low temperatures. Nanotechnology, 2007, 18, 135707.	1.3	6
2046	Fabrication of ZnO Nanowire Devices via Selective Electrodeposition. Electrochemical and Solid-State Letters, 2008, 11, D69.	2.2	6
2047	Growth of Highly Oriented ZnO Nanowires on GaN Substrates for Electronic and Optical Sensor Applications. Journal of Nanoscience and Nanotechnology, 2010, 10, 1839-1841.	0.9	6
2048	Top emerging technologies for self-powered nanosystems: nanogenerators and nanopiezotronics. , 2010, , .		6
2049	Nanogenerators for self-powering nanosystems and piezotronics for smart MEMS/NEMS. , 2011, , .		6
2050	Temperature driven in-situ phase transformation of PbWO4 nanobelts. Journal of Applied Physics, 2011, 109, .	1.1	6
2051	Theoretical Modeling of Triboelectric Nanogenerators. Green Energy and Technology, 2016, , 155-183.	0.4	6
2052	Phase Separation Prior to Alloying Observed in Vacuum Heating of Hybrid Au/Cu ₂ 0 Core–Shell Nanoparticles, Journal of Physical Chemistry C, 2017, 121, 1387-1392	1.5	6

#	Article	IF	CITATIONS
2053	A Multifunctional Triboelectric Nanogenerator Based on Conveyor Belt Structure for Highâ€Precision Vortex Detection. Advanced Materials Technologies, 2020, 5, 2000377.	3.0	6
2054	From light powered by knocking on the door to the investigation on three types of collision. Nano Energy, 2021, 81, 105652.	8.2	6
2055	Active-Sensing Epidermal Stretchable Bioelectronic Patch for Noninvasive, Conformal, and Wireless Tendon Monitoring. Research, 2021, 2021, 9783432.	2.8	6
2056	Effects of Oxygen Vacancies and Cation Valence States on the Triboelectric Property of Substoichiometric Oxide Films. ACS Applied Materials & Interfaces, 2021, 13, 35795-35803.	4.0	6
2057	Autogenic electrolysis of water powered by solar and mechanical energy. Nano Energy, 2022, 91, 106648.	8.2	6
2058	Influence of mechanical motions on the output characteristics of triboelectric nanogenerators. Materials Today Physics, 2022, 25, 100701.	2.9	6
2059	REELS and RHEED characterizations of electron resonance channeling in crystal surfaces. Ultramicroscopy, 1988, 26, 233-237.	0.8	5
2060	Imaging friction tracks at diamond surfaces using reflection electron microscopy. Journal of Electron Microscopy Technique, 1991, 17, 231-240.	1.1	5
2061	Synthesis of Si-Ge Oxide Nanowires via the Transformation of Si-Ge Thin Films with Self-Assembled Au Catalysts. Electrochemical and Solid-State Letters, 2005, 8, G254.	2.2	5
2062	Oxide nanowire arrays for light-emitting diodes and piezoelectric energy harvesters. Pure and Applied Chemistry, 2011, 83, 2171-2198.	0.9	5
2063	Endocardial Pressure Sensors: Transcatheter Self-Powered Ultrasensitive Endocardial Pressure Sensor (Adv. Funct. Mater. 3/2019). Advanced Functional Materials, 2019, 29, 1970017.	7.8	5
2064	A Triboelectric Closed‣oop Sensing System for Authenticity Identification of Paperâ€Based Artworks. Advanced Materials Technologies, 2020, 5, 2000194.	3.0	5
2065	Sliding Triboelectric Circular Motion Sensor with Realâ€Time Hardware Processing. Advanced Materials Technologies, 2021, 6, 2100655.	3.0	5
2066	A Tuningâ€Fork Triboelectric Nanogenerator with Frequency Multiplication for Efficient Mechanical Energy Harvesting. Small Methods, 2022, 6, e2200066.	4.6	5
2067	Electron transfer driven by tip-induced flexoelectricity in contact electrification. Journal Physics D: Applied Physics, 2022, 55, 315502.	1.3	5
2068	A New Molecular Mechanism for Understanding the Actuated Strain of Dielectric Elastomers and Their Impacts. Macromolecular Rapid Communications, 2023, 44, .	2.0	5
2069	Statistical multiple diffuse scattering in a distorted crystal system: An exact theory. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1996, 74, 733-749.	0.6	4
2070	Oxidation and diffusion of Cu in SrS: Cu grown by MBE for blue phosphors. Displays, 2000, 21, 89-92.	2.0	4

#	Article	IF	CITATIONS
2071	Current Chemistry: Nanocrystal Self-Assembled Superlattices. Australian Journal of Chemistry, 2001, 54, 153.	0.5	4
2072	Zinc Oxide Nanowire Arrays on Flexible Substrates. , 2010, , 197-226.		4
2073	Piezotronics for smart CMOS and nanogenerators for self-powered sensors. Procedia Engineering, 2011, 25, 4-7.	1.2	4
2074	Hybrid resonant energy harvester integrating ZnO NWs with MEMS for enabling zero-power wireless sensor nodes. Nano Communication Networks, 2011, 2, 235-241.	1.6	4
2075	Applications in Self-powered Systems and Processes. Green Energy and Technology, 2016, , 351-398.	0.4	4
2076	Revealing Electron–Phonon Interactions and Lattice Dynamics in Nanocrystal Films by Combining <i>in Situ</i> Thermal Heating and Femtosecond Laser Excitations in 4D Transmission Electron Microscopy. Journal of Physical Chemistry Letters, 2018, 9, 6795-6800.	2.1	4
2077	Nanogenerators and piezo/tribo-tronics. Nano Energy, 2019, 61, 637-638.	8.2	4
2078	Quantum-mechanical model for optical transitions between solids. Nano Energy, 2019, 61, 311-317.	8.2	4
2079	Triboelectric Nanogenerators: Enhancing the Output Performance of Triboelectric Nanogenerator via Gratingâ€Electrodeâ€Enabled Surface Plasmon Excitation (Adv. Energy Mater. 44/2019). Advanced Energy Materials, 2019, 9, 1970177.	10.2	4
2080	Self-Powered Miniaturized Acceleration Sensor Based on Rationally Patterned Electrodes. IEEE Open Journal of Nanotechnology, 2021, 2, 78-85.	0.9	4
2081	Statistical Piezotronic Effect in Nanocrystal Bulk by Anisotropic Geometry Control. Advanced Functional Materials, 2021, 31, 2010339.	7.8	4
2082	Electronic View of Triboelectric Nanogenerator for Energy Harvesting: Mechanisms and Applications. Advanced Energy and Sustainability Research, 2021, 2, 2000087.	2.8	4
2083	Piezoelectric Effect at Nanoscale. , 2016, , 3213-3230.		4
2084	Rubikâ€Cubeâ€Based Selfâ€Powered Sensors and System: An Approach toward Smart Toys. Advanced Functional Materials, 2022, 32, .	7.8	4
2085	Contact electrification through interfacial charge transfer: a mechanistic viewpoint on solid–liquid interfaces. Nanoscale Advances, 2022, 4, 884-893.	2.2	4
2086	Underwater Monitoring Networks Based on Cable-Structured Triboelectric Nanogenerators. Research, 2022, 2022, 9809406.	2.8	4
2087	Dynamical diffraction of double-inelastically scattered electrons. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1995, 71, 201-219.	0.6	3
2088	Green's function for electron scattering and its applications in low-voltage point-projection microscopy and optical potential. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1998, 77, 787-803.	0.6	3

#	Article	IF	CITATIONS
2089	Texturing of polycrystalline SiC films on graphitic carbon in laminated composites grown by forced-flow chemical vapor infiltration. Thin Solid Films, 2000, 371, 114-118.	0.8	3
2090	The growth of GaN on lithium gallate (LiGaO2) substrates for material integration. Journal of Electronic Materials, 2000, 29, 894-896.	1.0	3
2091	Characterization of AlGaN/GaN structures on various substrates grown by radio frequency-plasma assisted molecular beam epitaxy. Journal of Electronic Materials, 2001, 30, 156-161.	1.0	3
2092	ZnO nanowire arrays with and without cavity tops. Materials Chemistry and Physics, 2011, 129, 905-909.	2.0	3
2093	Picoscale science and nanoscale engineering by electron microscopy. Microscopy (Oxford, England), 2011, 60, S269-S278.	0.7	3
2094	Piezotronic transistors in nonlinear circuit: Model and simulation. Science China Technological Sciences, 2015, 58, 1348-1354.	2.0	3
2095	Harvesting Large-Scale Blue Energy. Green Energy and Technology, 2016, , 283-306.	0.4	3
2096	Monocharged Electret Nanogenerators: A Monocharged Electret Nanogeneratorâ€Based Selfâ€Powered Device for Pressure and Tactile Sensor Applications (Adv. Funct. Mater. 41/2019). Advanced Functional Materials, 2019, 29, 1970284.	7.8	3
2097	Sensors: Conjuncted Pyroâ€Piezoelectric Effect for Selfâ€Powered Simultaneous Temperature and Pressure Sensing (Adv. Mater. 36/2019). Advanced Materials, 2019, 31, 1970257.	11.1	3
2098	An AIE-based Fluorescent Probe for Detection of Picric Acid in Water. Chemistry Letters, 2021, 50, 103-105.	0.7	3
2099	Reversal of triboelectric charges on sol–gel oxide films annealed at different temperatures. Applied Physics Letters, 2021, 118, .	1.5	3
2100	Triboelectric Nanogenerators: Contribution of Ferromagnetic Medium to the Output of Triboelectric Nanogenerators Derived from Maxwell's Equations (Adv. Energy Mater. 21/2021). Advanced Energy Materials, 2021, 11, 2170081.	10.2	3
2101	Modulating the photoresponse performance of the flexible Si/ZnO film heterojunction photodetectors by piezo-phototronic effect. Applied Physics Letters, 2021, 119, 121104.	1.5	3
2102	Introduction of Piezotronics and Piezo-Phototronics. Microtechnology and MEMS, 2012, , 1-17.	0.2	3
2103	Piezo-Phototronic Effect on Solar Cells. Microtechnology and MEMS, 2012, , 153-178.	0.2	3
2104	Incoherence effects in reflection electron microscopy. Microscopy Microanalysis Microstructures, 1992, 3, 233-241.	0.4	3
2105	NANOMECHANICS OF INDIVIDUAL ZINC OXIDE NANOBELTS MEASURED BY IN SITU TRANSMISSION ELECTRON MICROSCOPY. International Journal of Nanoscience, 2006, 05, 951-958.	0.4	2
2106	Electron Microscopy Techniques for Imaging and Analysis of Nanoparticles. , 2008, , 531-584.		2

#	Article	IF	CITATIONS
2107	Potential distribution in deformed ZnO nanowires. Procedia Chemistry, 2009, 1, 1403-1406.	0.7	2
2108	Piezo-phototronic effect and its applications in flexible optoelectronic and energy technologies. , 2011, , .		2
2109	Piezotronics and piezo-phototronics. , 2012, , .		2
2110	Piezoelectric Effect at Nanoscale. , 2012, , 2085-2099.		2
2111	Self-powered Sensing for Vibration and Biomedical Monitoring. Green Energy and Technology, 2016, , 431-454.	0.4	2
2112	Figure-of-Merits for Quantifying Triboelectric Nanogenerators. Green Energy and Technology, 2016, , 185-204.	0.4	2
2113	Biotactile Sensors: Selfâ€Powered Electronic Skin with Biotactile Selectivity (Adv. Mater. 18/2016). Advanced Materials, 2016, 28, 3414-3414.	11.1	2
2114	Investigating fold structures of 2D materials by quantitative transmission electron microscopy. Micron, 2017, 95, 16-22.	1.1	2
2115	Bioabsorbable Capacitors: Fully Bioabsorbable Capacitor as an Energy Storage Unit for Implantable Medical Electronics (Adv. Sci. 6/2019). Advanced Science, 2019, 6, 1970035.	5.6	2
2116	Charge Distribution and Stability of SiO 2 Nanoarray Electret. ChemNanoMat, 2020, 6, 212-217.	1.5	2
2117	Bandgap Modulation in BP Field Effect Transistor and Its Applications. Advanced Electronic Materials, 2021, 7, 2100228.	2.6	2
2118	Piezopotential in Wurtzite Semiconductors. Microtechnology and MEMS, 2012, , 19-50.	0.2	2
2119	Scattering processes of high energy electrons in crystals surfaces. Micron and Microscopica Acta, 1988, 19, 201-207.	0.2	1
2120	Determination of effective ionization cross-sections for quantitative surface chemical microanalysis using REELS. Ultramicroscopy, 1993, 48, 465-473.	0.8	1
2121	Nanomechanical Characterization on Zinc and Tin Oxides Nanobelts. Materials Research Society Symposia Proceedings, 2002, 740, 1.	0.1	1
2122	Scanning Probe Microscopy in TEM : an In-situ Approach for Nano-scale Property Measurements. Microscopy and Microanalysis, 2002, 8, 300-301.	0.2	1
2123	Spontaneous polarization induced growth of ZnO nanostructures. , 0, , .		1
2124	Single-Crystal Dendritic Micro-Pines of Magnetic α-Fe2O3: Large-Scale Synthesis, Formation Mechanism, and Properties ChemInform, 2005, 36, no.	0.1	1

#	Article	IF	CITATIONS
2125	Packaging of ZnO nanobelts as nanosensors: Synthesis, Alignment and Characterization. , 0, , .		1
2126	Dielectrophoretic Characterization of SnO2 Nanobelts. , 2007, , .		1
2127	Characterization of Heat Propagation along Single Tin Dioxide Nanobelt Using the Thermoreflectance Method. Materials Research Society Symposia Proceedings, 2007, 1022, 1.	0.1	1
2128	Electron Microscopy Techniques for Imaging and Analysis of Nanoparticles. , 2008, , 395-443.		1
2129	Self-powered nanosystem: From nanogenerators to piezotronics. , 2010, , .		1
2130	Nanophotonic Devices Based on ZnO Nanowires. , 2011, , 317-362.		1
2131	Special Section On Piezotronics: Preface to the Special Section on Piezotronics (Adv. Mater. 34/2012). Advanced Materials, 2012, 24, 4629-4629.	11.1	1
2132	Nanopiezotronics and Nanogenerators. , 2012, , 115-147.		1
2133	Basic Theory of Piezotronics. Microtechnology and MEMS, 2012, , 51-72.	0.2	1
2134	Polymer Coatings. , 2012, , 2167-2174.		1
2135	A transparent flexible thin-film triboelectric nanogenerator for scalable electricity generation. International Journal of Nanomanufacturing, 2016, 12, 396.	0.3	1
2136	Wind Energy: Robust Thin Filmsâ€Based Triboelectric Nanogenerator Arrays for Harvesting Bidirectional Wind Energy (Adv. Energy Mater. 5/2016). Advanced Energy Materials, 2016, 6, .	10.2	1
2137	Hybrid Cell Composed of Triboelectric Nanogenerator. Green Energy and Technology, 2016, , 307-350.	0.4	1
2138	Self-powered SensingSelf-Powered Sensing for Human-Machine InterfaceHuman-Machine Interface. Green Energy and Technology, 2016, , 401-429.	0.4	1
2139	Self-powered Sensing for Tracking Moving Objects. Green Energy and Technology, 2016, , 455-467.	0.4	1
2140	Nanogenerators from Electrical Discharge. , 0, , .		1
2141	Rapid Capillaryâ€Assisted Solution Printing of Perovskite Nanowire Arrays Enables Scalable Production of Photodetectors. Angewandte Chemie, 2020, 132, 15052-15059.	1.6	1
2142	Frontispiece: Unconventional Route to Oxygenâ€Vacancyâ€Enabled Highly Efficient Electron Extraction and Transport in Perovskite Solar Cells. Angewandte Chemie - International Edition, 2020, 59, .	7.2	1

#	Article	IF	CITATIONS
2143	Piezoelectric tunability and topological insulator transition in a GaN/InN/GaN quantum-well device. JPhys Materials, 2021, 4, 034008.	1.8	1
2144	Triboelectric Nanogenerators: Charge Pumping for Slidingâ€mode Triboelectric Nanogenerator with Voltage Stabilization and Boosted Current (Adv. Energy Mater. 28/2021). Advanced Energy Materials, 2021, 11, 2170113.	10.2	1
2145	Nanobelts and Nanostructures of Transparent Conducting Oxides. , 2003, , 47-71.		1
2146	Nanowires and Nanobelts. , 2008, , 3146-3158.		1
2147	Fishâ€Wearable Data Snooping Platform for Underwater Energy Harvesting and Fish Behavior Monitoring (Small 10/2022). Small, 2022, 18, .	5.2	1
2148	The effect of post-acquisition data misalignments on the performance of STEM tomography. Ultramicroscopy, 2022, 235, 113498.	0.8	1
2149	Probing Polymer Contact Electrification by Gamma-Ray Radiation. Frontiers in Materials, 0, 9, .	1.2	1
2150	Studies on superplastically deformed 123/Ag composites. IEEE Transactions on Applied Superconductivity, 1995, 5, 1452-1455.	1.1	0
2151	Self-assembled Nanostructures: from Nanocrystals to Mesopores and to Nanobelts. Microscopy and Microanalysis, 2002, 8, 328-329.	0.2	0
2152	Metallic Magnetic Nanocrystals – Shapes, Self-assembly and Phase Transformation. Microscopy and Microanalysis, 2002, 8, 364-365.	0.2	0
2153	Phonon Scattering in Quantitative High-Resolution Electron Microscopy – effects, problems and approaches. Microscopy and Microanalysis, 2002, 8, 1602-1603.	0.2	0
2154	Bismuth Telluride Hexagonal Nanoplatelets and Their Two-Step Epitaxial Growth ChemInform, 2005, 36, no.	0.1	0
2155	Conversion of Zinc Oxide Nanobelts into Superlattice-Structured Nanohelices ChemInform, 2005, 36, no.	0.1	0
2156	In-Situ Electron Microscopy for Nanomeasurements. , 2005, , 493-530.		0
2157	ZnO Nanobelts/wire for Electronic Detection of Enzymatic Hydrolysis of Starch. , 0, , .		0
2158	Photonic Crystals and Devices. , 2006, , 281-305.		0
2159	One-dimensional Wurtzite Semiconducting Nanostructures. , 2006, , 384-426.		0
2160	Color-Tunable Photoluminescence of Alloyed CdSxSe1-x Nanobelts ChemInform, 2006, 37, no.	0.1	0

#	Article	IF	CITATIONS
2161	Visible light response of tin oxide nanobelts. , 2007, , .		0
2162	Solution growth of HgTe Nanoweires at lowtemperature. , 2009, , .		0
2163	Large area laser interference patterning for periodic growth of individual ZnO nanowires. , 2010, , .		0
2164	Mechanical Energy Harvesting Using Wurtzite Nanowires. , 2010, , 185-216.		0
2165	Nanogenerator and nano-piezotronics. , 2010, , .		0
2166	Piezotronic Electromechanical Memories. Microtechnology and MEMS, 2012, , 111-126.	0.2	0
2167	Piezo-Phototronic Effect on Electrochemical Processes and Energy Storage. Microtechnology and MEMS, 2012, , 223-236.	0.2	0
2168	Plasmon Resonance Energy Transfer from Metallic Nanoparticles to Biomolecules. , 2012, , 2126-2126.		0
2169	Propylene Glycol Methyl Ether Acetate (PGMEA). , 2012, , 2180-2180.		0
2170	Flexible Triboelectric Nanogenerator for Energy Harvesting and Pressure Sensor. , 2013, , .		0
2171	STUDYING THE MECHANISM OF PIEZOELECTRIC NANOGENERATORS. World Scientific Series in Nanoscience and Nanotechnology, 2013, , 557-590.	0.1	0
2172	Scientific sales. Materials Express, 2013, 3, 97-98.	0.2	0
2173	Nanowires for Piezoelectric Nanogenerators. RSC Smart Materials, 2014, , 200-276.	0.1	0
2174	Defects Generation and Surface Evolution of ZnO Nanobelts/Nanowires Under High-energy Electron Beam Irradiation. Microscopy and Microanalysis, 2016, 22, 1486-1487.	0.2	0
2175	Harvesting Vibration Energy. Green Energy and Technology, 2016, , 237-257.	0.4	0
2176	Growth and doping control of Ge/Si and Si/Ge core-shell nanowires. , 2016, , .		0
2177	Self-powered Sensing for Chemical and Environmental Detection. Green Energy and Technology, 2016, , 469-489.	0.4	0
2178	Sensors: Full Dynamicâ€Range Pressure Sensor Matrix Based on Optical and Electrical Dualâ€Mode Sensing (Adv. Mater. 15/2017). Advanced Materials, 2017, 29, .	11.1	0

#	Article	IF	CITATIONS
2179	In-situ Transmission Electron Microscopy Study of Oxygen Vacancy Ordering and Dislocation Annihilation in Undoped and Sm-doped CeO2 Ceramics During Redox Processes. Microscopy and Microanalysis, 2017, 23, 1626-1627.	0.2	0
2180	Domain Structures and PrCo Antisite Point Defects in Double-perovskite PrBaCo2O5+δ. Microscopy and Microanalysis, 2019, 25, 2016-2017.	0.2	0
2181	Research Highlights in the Beijing Institute of Nanoenergy and Nanosystems. Advanced Functional Materials, 2019, 29, 1906059.	7.8	0
2182	Frontispiz: Unconventional Route to Oxygenâ€Vacancyâ€Enabled Highly Efficient Electron Extraction and Transport in Perovskite Solar Cells. Angewandte Chemie, 2020, 132, .	1.6	0
2183	Mechanical Energy Harvesting Using Wurtzite Nanowires. , 2021, , 437-457.		0
2184	Electron Energy-Loss Spectroscopy and Energy-Filtered Electron Imaging. , 2002, , .		0
2185	A Single SnO2 Nanowire-Based Microelectrode. Methods in Molecular Biology, 2011, 726, 111-117.	0.4	0
2186	Piezotronic Transistors. Microtechnology and MEMS, 2012, , 73-95.	0.2	0
2187	Theory of Piezo-Phototronics. Microtechnology and MEMS, 2012, , 127-152.	0.2	0
2188	Piezotronic Logic Circuits and Operations. Microtechnology and MEMS, 2012, , 97-109.	0.2	0
2189	Piezo-Phototronic Effect on Light-Emitting Diode. Microtechnology and MEMS, 2012, , 195-222.	0.2	0
2190	Piezo-Phototronic Effect on Photodetector. Microtechnology and MEMS, 2012, , 179-193.	0.2	0
2191	Enhanced Cu2S/CdS Coaxial Nanowire Solar Cells by Piezo-Phototronic Effect. , 2013, , .		0
2192	Mapping strain/pressure with nanowire light- emitting-diode arrays by piezo-phototronic effect. , 2015, , .		0
2193	Piezoelectric Effect at Nanoscale. , 2015, , 1-18.		0
2194	First principle simulations of piezotronic transistors. , 2015, , .		0
2195	Triboelectric Nanogenerators. Toxinology, 2017, , 1-42.	0.2	0
2196	Continuum Model for Coupled Acousto-Optical Phonons in Piezoelectric Materials. Springer Proceedings in Mathematics and Statistics, 2018, , 75-93.	0.1	0

#	Article	IF	CITATIONS
2197	Synthesis of Oxide Nanostructures. , 2008, , 11-36.		Ο