List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5043150/publications.pdf Version: 2024-02-01

KUANC-LIEH LU

#	Article	IF	CITATIONS
1	Semiconductor Metal–Organic Frameworks: Future Lowâ€Bandgap Materials. Advanced Materials, 2017, 29, 1605071.	21.0	211
2	Crystal Engineering: Toward Intersecting Channels from a Neutral Network with a bcu-Type Topology. Angewandte Chemie - International Edition, 2005, 44, 6063-6067.	13.8	193
3	Integration of a (–Cu–S–)n plane in a metal–organic framework affords high electrical conductivity. Nature Communications, 2019, 10, 1721.	12.8	134
4	Selfâ€Assembled Arrays of Singleâ€Walled Metal–Organic Nanotubes. Angewandte Chemie - International Edition, 2009, 48, 9461-9464.	13.8	118
5	One-Step Orthogonal-Bonding Approach to the Self-Assembly of Neutral Rhenium-Based Metallacycles: Synthesis, Structures, Photophysics, and Sensing Applications. Accounts of Chemical Research, 2012, 45, 1403-1418.	15.6	115
6	First Light-Emitting Neutral Molecular Rectangles. Inorganic Chemistry, 2000, 39, 2016-2017.	4.0	112
7	Luminescence Enhancement Induced by Aggregation of Alkoxy-Bridged Rhenium(I) Molecular Rectangles. Inorganic Chemistry, 2002, 41, 5323-5325.	4.0	102
8	Aggregation-induced phosphorescence enhancement (AIPE) based on transition metal complexes—An overview. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015, 23, 25-44.	11.6	97
9	Electrically Driven White Light Emission from Intrinsic Metal–Organic Framework. ACS Nano, 2016, 10, 8366-8375.	14.6	93
10	Rapid desolvation-triggered domino lattice rearrangement in a metal–organic framework. Nature Chemistry, 2020, 12, 90-97.	13.6	93
11	Highly dispersed silica-supported nanocopper as an efficient heterogeneous catalyst: application in the synthesis of 1,2,3-triazoles and thioethers. Catalysis Science and Technology, 2011, 1, 1512.	4.1	88
12	Functionalized Silica Matrices and Palladium: A Versatile Heterogeneous Catalyst for Suzuki, Heck, and Sonogashira Reactions. ACS Sustainable Chemistry and Engineering, 2017, 5, 6357-6376.	6.7	87
13	Cooperative Effect of Unsheltered Amide Groups on CO ₂ Adsorption Inside Open-Ended Channels of a Zinc(II)–Organic Framework. Inorganic Chemistry, 2013, 52, 3962-3968.	4.0	82
14	A journey in search of single-walled metal–organic nanotubes. Journal of Materials Chemistry, 2011, 21, 13140.	6.7	73
15	Semiconductor Behavior of a Three-Dimensional Strontium-Based Metal–Organic Framework. ACS Applied Materials & Interfaces, 2015, 7, 22767-22774.	8.0	71
16	Intrinsic low dielectric behaviour of a highly thermally stable Sr-based metal–organic framework for interlayer dielectric materials. Journal of Materials Chemistry C, 2014, 2, 3762-3768.	5.5	64
17	Self-Assembly of Fourteen Components into a Soluble, Neutral, Metalloprismatic Cage. European Journal of Inorganic Chemistry, 2001, 2001, 633-636.	2.0	63
18	Gondola-Shaped Luminescent Tetrarhenium Metallacycles with Crown-Ether-like Multiple Recognition Sites. Inorganic Chemistry, 2006, 45, 10052-10054.	4.0	63

KUANG-LIEH LU

#	Article	IF	CITATIONS
19	Development of luminescent sensors based on transition metal complexes for the detection of nitroexplosives. Dalton Transactions, 2017, 46, 16738-16769.	3.3	63
20	Rhenium-based molecular rectangular boxes with large inner cavity and high shape selectivity towards benzene molecule. Chemical Communications, 2008, , 3175.	4.1	61
21	Silica-supported PEI capped nanopalladium as potential catalyst in Suzuki, Heck and Sonogashira coupling reactions. Applied Catalysis A: General, 2013, 455, 247-260.	4.3	59
22	Metal–Organic Frameworks: New Interlayer Dielectric Materials. ChemElectroChem, 2015, 2, 786-788.	3.4	59
23	Trapped Photons Induced Ultrahigh External Quantum Efficiency and Photoresponsivity in Hybrid Graphene/Metalâ€Organic Framework Broadband Wearable Photodetectors. Advanced Functional Materials, 2018, 28, 1804802.	14.9	59
24	Aggregation-Induced Emission Enhancement in Alkoxy-Bridged Binuclear Rhenium(I) Complexes: Application as Sensor for Explosives and Interaction with Microheterogeneous Media. Journal of Physical Chemistry B, 2013, 117, 14358-14366.	2.6	56
25	Novel one-pot synthesis of luminescent neutral rhenium-based molecular rectangles. Dalton Transactions RSC, 2001, , 515-517.	2.3	55
26	Anion-Controlled Dielectric Behavior of Homochiral Tryptophan-Based Metal–Organic Frameworks. Crystal Growth and Design, 2014, 14, 1572-1579.	3.0	54
27	Porous Metal–Organic Frameworks with Multiple Cages Based on Tetrazolate Ligands: Synthesis, Structures, Photoluminescence, and Gas Adsorption Properties. Crystal Growth and Design, 2013, 13, 510-517.	3.0	53
28	A Novel Hybrid Supramolecular Network Assembled from Perfect ??? Stacking of an Anionic Inorganic Layer and a Cationic Hydronium-Ion-Mediated Organic Layer. European Journal of Inorganic Chemistry, 2004, 2004, 4253-4258.	2.0	52
29	Metal–organic frameworks for electronics: emerging second order nonlinear optical and dielectric materials. Science and Technology of Advanced Materials, 2015, 16, 054204.	6.1	51
30	Unusual face-to-face ï€â€"ï€ stacking interactions within an indigo-pillared M3(tpt)-based triangular metalloprism. Dalton Transactions, 2008, , 6110.	3.3	48
31	Expanding the dimensions of metal–organic framework research towards dielectrics. Coordination Chemistry Reviews, 2018, 360, 77-91.	18.8	48
32	Computational Studies of Versatile Heterogeneous Palladium-Catalyzed Suzuki, Heck, and Sonogashira Coupling Reactions. ACS Sustainable Chemistry and Engineering, 2017, 5, 8475-8490.	6.7	46
33	Enhanced photovoltaic performance by synergism of light-cultivation and electronic localization for highly efficient dye-sensitized solar cells. Journal of Materials Chemistry, 2009, 19, 7036.	6.7	42
34	Giant metal–organic frameworks with bulky scaffolds: from microporous to mesoporous functional materials. Dalton Transactions, 2012, 41, 5437.	3.3	42
35	Bottom-Up Crystal Engineering toward Nanoporosity Exemplified by a Zinc Carboxylate Coordination Polymer Adopting a Tenorite Analogue Network Topology. Crystal Growth and Design, 2005, 5, 403-405.	3.0	40
36	Neutral metallacyclic rotors. Chemical Communications, 2009, , 3795.	4.1	40

#	Article	IF	CITATIONS
37	Timeâ€Evolving Selfâ€Organization and Autonomous Structural Adaptation of Cobalt(II)–Organic Framework Materials with scu and pts Nets. Chemistry - A European Journal, 2008, 14, 7136-7139.	3.3	39
38	Alkali Metal Cation (K ⁺ , Cs ⁺) Induced Dissolution/Reorganization of Porous Metal Carboxylate Coordination Networks in Water. Chemistry - A European Journal, 2009, 15, 3604-3614.	3.3	39
39	Toward Optimization of Oligothiophene Antennas: New Ruthenium Sensitizers with Excellent Performance for Dye-Sensitized Solar Cells. Chemistry of Materials, 2010, 22, 4392-4399.	6.7	39
40	Photoswitchable alkoxy-bridged binuclear rhenium(i) complexes – a potential probe for biomolecules and optical cell imaging. RSC Advances, 2013, 3, 18557.	3.6	39
41	An Encapsulation-Rearrangement Strategy to Integrate Superhydrophobicity into Mesoporous Metal-Organic Frameworks. Matter, 2020, 2, 988-999.	10.0	39
42	Zr-MOF/Polyaniline Composite Films with Exceptional Seebeck Coefficient for Thermoelectric Material Applications. ACS Applied Materials & amp; Interfaces, 2019, 11, 3400-3406.	8.0	37
43	A flexible tris-phosphonate for the design of copper and cobalt coordination polymers: unusual cage array topology and magnetic properties. CrystEngComm, 2011, 13, 2678.	2.6	36
44	Organic–Inorganic Hybrid Zinc Phosphate with 28â€Ring Channels. Chemistry - A European Journal, 2015, 21, 1878-1881.	3.3	35
45	Zn(<scp>ii</scp>)-based metal–organic framework: an exceptionally thermally stable, guest-free low dielectric material. Journal of Materials Chemistry C, 2017, 5, 1508-1513.	5.5	35
46	Adaptation toward Restricted Conformational Dynamics: From the Series of Neutral Molecular Rotors. Organometallics, 2011, 30, 3168-3176.	2.3	34
47	Ru/Al2O3 catalyzed N-oxidation of tertiary amines by using H2O2. Catalysis Science and Technology, 2012, 2, 1140.	4.1	34
48	Alkoxy bridged binuclear rhenium (I) complexes as a potential sensor for β-amyloid aggregation. Talanta, 2014, 130, 274-279.	5.5	34
49	Continuous broadband emission from a metal–organic framework as a human-friendly white light source. Journal of Materials Chemistry C, 2016, 4, 4728-4732.	5.5	34
50	Steric effects in the photoinduced electron transfer reactions of ruthenium(II)-polypyridine complexes with 2,6-disubstituted phenolate ions. Physical Chemistry Chemical Physics, 2001, 3, 2063-2069.	2.8	32
51	Control of Lightâ€Promoted [2+2] Cycloaddition Reactions by a Remote Ancillary Regulatory Group That Is Covalently Attached to Rhenium Rectangles. Chemistry - A European Journal, 2012, 18, 15714-15721.	3.3	32
52	Neutral discrete metal–organic cyclic architectures: Opportunities for structural features and properties in confined spaces. Coordination Chemistry Reviews, 2014, 280, 96-175.	18.8	32
53	Activation-Controlled Structure Deformation of Pillared-Bilayer Metal–Organic Framework Membranes for Gas Separations. Chemistry of Materials, 2019, 31, 7666-7677.	6.7	32
54	Aggregate of Alkoxy-Bridged Re(I)-Rectangles as a Probe for Photoluminescence Quenching. Journal of Physical Chemistry A, 2007, 111, 10953-10960.	2.5	30

#	Article	IF	CITATIONS
55	Guest dependent dielectric properties of nickel(<scp>ii</scp>)-based supramolecular networks. CrystEngComm, 2014, 16, 6309-6315.	2.6	30
56	Isorecticular Synthesis of Dissectible Molecular Bamboo Tubes of Hexarhenium(I) Benzeneâ€1,2,3,4,5,6â€hexaolate Complexes. Angewandte Chemie - International Edition, 2016, 55, 8343-8347.	13.8	28
57	Polypseudorotaxane architecture of poly-bis[4-(N-benzyl-) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 667 Td (p polymeric framework. CrystEngComm, 2007, 9, 345.	yridinium) 2.6)]piperazine 26
58	The first zinc phosphite with remarkable structural and functional transformations. Chemical Communications, 2015, 51, 7824-7826.	4.1	25
59	An unusual cobalt(<scp>ii</scp>)-based single-walled metal–organic nanotube. CrystEngComm, 2014, 16, 2626-2633.	2.6	23
60	Suppressing Defect Formation in Metal–Organic Framework Membranes via Plasma-Assisted Synthesis for Gas Separations. ACS Applied Materials & Interfaces, 2021, 13, 41904-41915.	8.0	23
61	Self-assembly of tetrametallic square [Re4(CO)12Br4(µ-pz)4] (pz = pyrazine) from [Re(CO)4Br(pz)]. A mechanistic approach. Dalton Transactions RSC, 2001, , 3346.	2.3	22
62	Weak interactions in conducting metal–organic frameworks. Coordination Chemistry Reviews, 2021, 442, 213987.	18.8	22
63	Monometallic rhenium(I) complexes as sensor for anions. Inorganic Chemistry Communication, 2013, 35, 186-191.	3.9	21
64	Correlation of Mesh Size of Metal–Carboxylate Layer with Degree of Interpenetration in Pillared-Layer Frameworks. Crystal Growth and Design, 2014, 14, 5608-5616.	3.0	21
65	New 3 D Tubular Porous Structure of an Organic–Zincophosphite Framework with Interesting Gas Adsorption and Luminescence Properties. Chemistry - A European Journal, 2016, 22, 16099-16102.	3.3	21
66	High-κ Samarium-Based Metal–Organic Framework for Gate Dielectric Applications. ACS Applied Materials & Interfaces, 2017, 9, 21872-21878.	8.0	21
67	Enhanced light-harvesting capability by phenothiazine in ruthenium sensitizers with superior photovoltaic performance. Journal of Materials Chemistry, 2012, 22, 130-139.	6.7	20
68	Direct Guest Exchange Induced Single-Crystal to Single-Crystal Transformation Accompanying Irreversible Crystal Expansion in Soft Porous Coordination Polymers. Crystal Growth and Design, 2015, 15, 4266-4271.	3.0	20
69	Heteroleptic Ruthenium Sensitizers with Hydrophobic Fusedâ€ThioÂphenes for Use in Efficient Dyeâ€ÂSensitized Solar Cells. European Journal of Inorganic Chemistry, 2016, 2016, 1214-1224.	2.0	20
70	Intrinsic Ultralow-Threshold Laser Action from Rationally Molecular Design of Metal–Organic Framework Materials. ACS Applied Materials & Interfaces, 2020, 12, 36485-36495.	8.0	20
71	An Electroactive Zinc-based Metal–Organic Framework: Bifunctional Fluorescent Quenching Behavior and Direct Observation of Nitrobenzene. Inorganic Chemistry, 2020, 59, 2997-3003.	4.0	20
72	Structural Characteristics and Non-Linear Optical Behaviour of a 2-Hydroxynicotinate-Containing Zinc-Based Metal-Organic Framework. Molecules, 2015, 20, 8941-8951.	3.8	19

#	Article	IF	CITATIONS
73	Low Dielectric Behavior of a Robust, Guestâ€Free Magnesium(II)–Organic Framework: A Potential Application of an Alkalineâ€Earth Metal Compound. European Journal of Inorganic Chemistry, 2015, 2015, 1669-1674.	2.0	19
74	Self-Recognition of 3D Porous Frameworks: Fourfold Diamondoid or Threefold Cuboidal Interpenetrating Nets Formed by Varying Pillar Motifs. Journal of Inorganic and Organometallic Polymers and Materials, 2007, 17, 259-265.	3.7	18
75	Host–guest key–lock hydrogen-bonding interactions: a rare case in the design of a V-shaped polycarboxylate Ni(ii)-based chiral coordination polymer. CrystEngComm, 2013, 15, 9798.	2.6	18
76	A Molecular Triangle as a Precursor Toward the Assembly of a Jar-Shaped Metallasupramolecule. Organometallics, 2014, 33, 40-44.	2.3	17
77	Hydrogen bond-organized two-fold interpenetrating homochiral pcu net. CrystEngComm, 2012, 14, 1189-1192.	2.6	16
78	Pillared-bilayer zinc(<scp>ii</scp>)–organic laminae: pore modification and selective gas adsorption. CrystEngComm, 2015, 17, 6320-6327.	2.6	16
79	Highly hydrophobic metal–organic framework for self-protecting gate dielectrics. Journal of Materials Chemistry A, 2020, 8, 11958-11965.	10.3	16
80	Reactions of 1-Hydroxypyridine-2-thione with Triosmium Clusters. Preparation and Transformation of N-Oxide-Containing Osmium Complexes. Organometallics, 1996, 15, 5605-5612.	2.3	15
81	Crystal Engineering of Three Netâ€ŧoâ€Net Intersecting Metal–Organic Frameworks from Two Comparable Organic Linking Squares. European Journal of Inorganic Chemistry, 2010, 2010, 3750-3755.	2.0	15
82	Presynthesized and In-Situ Generated Tetrazolate Ligand in the Design of Chiral Cadmium Coordination Polymer. Crystal Growth and Design, 2012, 12, 3825-3828.	3.0	15
83	Amide-containing zinc(ii) metal–organic layered networks: a structure–CO2 capture relationship. Inorganic Chemistry Frontiers, 2015, 2, 477-484.	6.0	15
84	Self-triggered conformations of disulfide ensembles in coordination polymers with multiple metal clusters. CrystEngComm, 2015, 17, 2847-2856.	2.6	15
85	Membrane adsorber containing a new Sm(<scp>iii</scp>)–organic framework for dye removal. Environmental Science: Nano, 2019, 6, 1067-1076.	4.3	15
86	Amide-CO ₂ Interaction Induced Gate-Opening Behavior for CO ₂ Adsorption in 2-Fold Interpenetrating Framework. ChemistrySelect, 2016, 1, 2923-2929.	1.5	14
87	Zinc(II)–Organic Framework Films with Thermochromic and Solvatochromic Applications. Chemistry - A European Journal, 2020, 26, 4204-4208.	3.3	14
88	A huge diamondoid metal–organic framework with a neo-mode of tenfold interpenetration. CrystEngComm, 2015, 17, 2935-2939.	2.6	12
89	Flexible "piperazine–pyrazine―building blocks: conformational isomerism of "equatorial–axial―sites toward the constructions of silver(i) coordination chains. CrystEngComm, 2010, 12, 3388.	2.6	11
90	Self-adaptation of manganese–chloride arrangement toward high spin Mn ₅ (μ-Cl) ₄ cluster-based metal–organic framework with S = ¹⁵ / ₂ . Dalton Transactions, 2012, 41, 1448-1450.	3.3	11

#	Article	IF	CITATIONS
91	Anion-induced structural transformation of a sulfate-incorporated 2D Cd(II)–organic framework. Journal of Solid State Chemistry, 2016, 239, 1-7.	2.9	11
92	Design of a Peripheral Building Block for H-Bonded Dendritic Frameworks and Analysis of the Void Space in the Bulk Dendrimers. Scientific Reports, 2017, 7, 3649.	3.3	11
93	A nonlinear optical cadmium(<scp>ii</scp>)-based metal–organic framework with chiral helical chains derived from an achiral bent dicarboxylate ligand. CrystEngComm, 2021, 23, 824-830.	2.6	11
94	Benzene absorption in a protuberant-grid-type zinc(<scp>ii</scp>)–organic framework triggered by the migration of guest water molecules. Dalton Transactions, 2015, 44, 62-65.	3.3	10
95	A Co(<scp>ii</scp>) framework derived from a tris(4-(triazol-1-yl)phenyl)amine redox-active linker: an electrochemical and magnetic study. Dalton Transactions, 2018, 47, 9341-9346.	3.3	10
96	Polar Molecule Confinement Effects on Dielectric Modulations of Sr-Based Metal–Organic Frameworks. ACS Applied Electronic Materials, 2019, 1, 836-844.	4.3	10
97	Single-Molecule-Based Electroluminescent Device as Future White Light Source. ACS Applied Materials & Interfaces, 2019, 11, 4084-4092.	8.0	10
98	Thermally stable indium based metal–organic frameworks with high dielectric permittivity. Journal of Materials Chemistry C, 2020, 8, 9724-9733.	5.5	10
99	A Rigidity-Modulated Approach toward the Construction of Metallacycles from a Flexible Tetratopic Ligand. Organometallics, 2010, 29, 283-285.	2.3	9
100	Spectroelectrochemical studies of the redox active tris[4-(triazol-1-yl)phenyl]amine linker and redox state manipulation of Mn(<scp>ii</scp>)/Cu(<scp>ii</scp>) coordination frameworks. Dalton Transactions, 2019, 48, 10122-10128.	3.3	9
101	Self-adaptation of a conformationally flexible yet restricted "piperazine-pyrazine―building block toward the design of coordination polymers. CrystEngComm, 2011, 13, 2960.	2.6	8
102	Host-guest interaction studies of polycyclic aromatic hydrocarbons (PAHs) in alkoxy bridged binuclear rhenium (I) complexes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 222, 117160.	3.9	8
103	Rhenium-Based Molecular Trap as an Evanescent Wave Infrared Chemical Sensing Medium for the Selective Determination of Amines in Air. ACS Applied Materials & Interfaces, 2016, 8, 35634-35640.	8.0	7
104	Sensing of insulin fibrillation using alkoxy-bridged binuclear rhenium(I) complexes. Inorganic Chemistry Communication, 2016, 73, 49-51.	3.9	7
105	Rare metal-ion metathesis of a tetrahedral Zn(<scp>ii</scp>) core of a noncentrosymmetric (3,4)-connected 3D MOF. Dalton Transactions, 2019, 48, 1950-1954.	3.3	7
106	Optically Encodable and Erasable Multilevel Nonvolatile Flexible Memory Device Based on Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2022, 14, 26895-26903.	8.0	7
107	Synthesis, Structure, and Dynamic Behavior of Discrete Metallacyclic Rotors. Chemistry Letters, 2013, 42, 776-784.	1.3	6
108	Paddlewheel SBU based Zn MOFs: Syntheses, Structural Diversity, and CO2 Adsorption Properties. Polymers, 2018, 10, 1398.	4.5	6

#	Article	IF	CITATIONS
109	Phosphor-Free Electrically Driven White Light Emission from Nanometer-Thick Barium–Organic Framework Films. ACS Applied Nano Materials, 2021, 4, 2395-2403.	5.0	6
110	Title is missing!. Journal of Cluster Science, 1998, 9, 445-463.	3.3	5
111	Highly Thermalâ€Stable Supramolecular Assembly of a Hydrogenâ€Bonded Mononuclear Nickel(II) Histidine Compound. Journal of the Chinese Chemical Society, 2013, 60, 807-812.	1.4	5
112	Isorecticular Synthesis of Dissectible Molecular Bamboo Tubes of Hexarhenium(I) Benzeneâ€1,2,3,4,5,6â€hexaolate Complexes. Angewandte Chemie, 2016, 128, 8483-8487.	2.0	5
113	Exceptional Low Dielectric Behavior of Chemically Robust, Guestâ€Free Co―and Mnâ€Based Coordination Polymers. ChemElectroChem, 2019, 6, 623-626.	3.4	5
114	Water-assisted spin-flop antiferromagnetic behaviour of hydrophobic Cu-based metal–organic frameworks. Dalton Transactions, 2021, 50, 5754-5758.	3.3	5
115	Design of a Metal–Organic Frameworkâ€Derived Co ₉ S ₈ /S Material for Achieving High Durability and High Performance of Lithium–Sulfur Batteries. ChemElectroChem, 2021, 8, 3040-3048.	3.4	4
116	Hydrophobic Metalâ^'Organic Frameworks and Derived Composites for Microelectronics Applications. Chemistry - A European Journal, 2021, 27, 16543-16563.	3.3	4
117	Thin Film Growth of 3D Srâ€based Metalâ€Organic Framework on Conductive Glass via Electrochemical Deposition. ChemistryOpen, 2022, 11, e202100295.	1.9	4
118	Dirac Point Modulated Self-Powered Ultrasensitive Photoresponse and Color-Tunable Electroluminescence from Flexible Graphene/Metal–Organic Frameworks/Graphene Vertical Phototransistor. ACS Applied Electronic Materials, 2022, 4, 2337-2345.	4.3	4
119	Structural Transformations of Amino-Acid-Based Polymers: Syntheses and Structural Characterization. Polymers, 2018, 10, 360.	4.5	2
120	Weak interactions in imidazoleâ€containing zinc(II)â€based metal–organic frameworks. Journal of the Chinese Chemical Society, 2020, 67, 2182-2188.	1.4	2
121	Reversible Electroactive Behavior in a Zn-Based Metal–Organic Framework via Mild Oxidation Potential. Inorganic Chemistry, 2021, 60, 11458-11465.	4.0	2
122	Functional Groups Assisted Tunable Dielectric Permittivity of Guestâ€Free Znâ€Based Coordination Polymers for Gate Dielectrics. Chemistry - A European Journal, 2022, 28, .	3.3	2
123	Molecular mechanics of gloveâ€ike re(I) metallacycles: Toward lightâ€activated molecular catchers. Journal of the Chinese Chemical Society, 0, , .	1.4	2
124	Comparative Study of Nickel Catalysts Supported on <i>X</i> ―and <i>Y</i> â€Zeolites. Journal of the Chinese Chemical Society, 1985, 32, 309-315.	1.4	1
125	Low Dielectric Behavior of a Robust, Guest-Free Magnesium(II)-Organic Framework: A Potential Application of an Alkaline-Earth Metal Compound. European Journal of Inorganic Chemistry, 2015, 2015, 1640-1640.	2.0	1
126	Regimented Charge Transport Phenomena in Semiconductive Self-Assembled Rhenium Nanotubes. ACS Applied Materials & Interfaces, 2022, 14, 12423-12433.	8.0	1

#	Article	IF	CITATIONS
127	New Triruthenium Clusters as Photoinduced DNA-binding and Cleaving Agents¶. Photochemistry and Photobiology, 2002, 75, 457-461.	2.5	0
128	Rücktitelbild: Isorecticular Synthesis of Dissectible Molecular Bamboo Tubes of Hexarhenium(I) Benzeneâ€1,2,3,4,5,6â€hexaolate Complexes (Angew. Chem. 29/2016). Angewandte Chemie, 2016, 128, 8598-	35 3 8.	0
129	Selfâ€assembly: An intriguing relationship between structures of metal complexes and shapes of ancient Chinese characters. Journal of the Chinese Chemical Society, 2019, 66, 1027-1030.	1.4	0
130	DIELECTRIC PROPERTIES OF NANOPOROUS METAL-ORGANIC FRAMEWORK MATERIALS IN THE MILLIMETER-WAVE BAND. , 2013, , .		0
131	Semiconducting Paddle-Wheel Metal–Organic Complex with a Compact Cu–S Cage. Journal of Physical Chemistry C, 2022, 126, 6300-6307.	3.1	0
132	Frontispiece: Hydrophobic Metalâ^'Organic Frameworks and Derived Composites for Microelectronics Applications. Chemistry - A European Journal, 2021, 27, .	3.3	0