Stanislav Yankovsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5043022/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pine nut shells of Siberian cedar as a resource for the high-strength smokeless fuel. Biomass Conversion and Biorefinery, 2024, 14, 6737-6747.	2.9	1
2	Justification of Reducing the Yield of Sulfur Oxides in the Pyrolysis of Coals with the Addition of Logging Waste. Solid Fuel Chemistry, 2022, 56, 45-52.	0.2	1
3	Ignition of particles of finely dispersed fuel mixtures based on coal and fine wood. Energy, 2021, 220, 119697.	4.5	6
4	Experimental study of the processes of reducing the formation of sulfur oxides during the co-combustion of particles of metalignitous coal and wood processing waste. Fuel, 2021, 291, 120233.	3.4	14
5	Pilot Tests of a Fixed-Bed Coal Gasifier. Thermal Engineering (English Translation of Teploenergetika), 2021, 68, 461-472.	0.4	3
6	Justification of the Energy Use of Cedar Husk Waste as an Environmentally Friendly Additive for Co-Combustion with Coal. Energies, 2021, 14, 7027.	1.6	1
7	Analysis of the Physicochemical Characteristics of Biochar Obtained by Slow Pyrolysis of Nut Shells in a Nitrogen Atmosphere. Energies, 2021, 14, 8075.	1.6	7
8	Justification of the Reduction Possibility of Sulfur Oxides and Fly Ash Emissions during Co-Combustion of Coal and Waste from Woodworking Enterprises. Applied Sciences (Switzerland), 2021, 11, 11719.	1.3	3
9	On the Effect of the Distances between Coal and Wood Particles during Their Joint Pyrolysis on Sulfur Oxides Formation. Energies, 2021, 14, 8321.	1.6	1
10	Mechanism of the Suppression of Sulfur Oxides in the Oxidative Thermolysis Products of Coals upon Their Combustion in a Mixture with Dispersed Wood. Solid Fuel Chemistry, 2020, 54, 311-317.	0.2	7
11	Conditions and characteristics of mixed fuel granules ignition based on coal and finely dispersed wood. Energy, 2020, 194, 116896.	4.5	10
12	Production of black carbon by steam pyrolysis (thermolysis) method of rubber waste in the form of worn-out automobile tires. AIP Conference Proceedings, 2020, , .	0.3	2
13	Production of Briquetted Semicoke from Wood Waste by Multistep Low-Temperature Pyrolysis. Coke and Chemistry, 2020, 63, 592-598.	0.0	5
14	Comparison of the ignition characteristics of fuel based on bituminous coal and biomass during combustion in moving bed and entrained flow. AIP Conference Proceedings, 2019, , .	0.3	0
15	Ignition of pelletized mixed fuels based on 3B grade coal and wood waste. AIP Conference Proceedings, 2019, , .	0.3	0
16	Physicochemical Transformations of Mixed Fuels Based on Typical Coals and Wood upon Heating. Solid Fuel Chemistry, 2019, 53, 22-28.	0.2	10
17	Conditions and Characteristics in Ignition of Composite Fuels Based on Coal with the Addition of Wood. Thermal Engineering (English Translation of Teploenergetika), 2019, 66, 133-137.	0.4	19
18	Ignition of granulated mixed fuel based on lignite and wood waste. Journal of Physics: Conference Series, 2019, 1359, 012134.	0.3	1

STANISLAV YANKOVSKY

#	Article	IF	CITATIONS
19	Reasons for tangerine peel utilization in the composition of mixed fuels based on bituminous coal. Journal of Physics: Conference Series, 2019, 1359, 012136.	0.3	3
20	Mechanism of Sulfur and Nitrogen Oxides Suppression in Combustion Products of Mixed Fuels Based on Coal and Wood. Combustion Science and Technology, 2019, 191, 2071-2081.	1.2	10
21	Applying composite fuels based on coal and finely dispersed wood in heat power engineering. Journal of Physics: Conference Series, 2018, 1128, 012064.	0.3	1
22	Influence of wood component on physical and chemical transformations during high temperature heating of composite fuel based on bituminous coal. Journal of Physics: Conference Series, 2018, 1128, 012081.	0.3	0
23	Influence of Cu(СH3COO)2 promoting additive on bituminous coal oxidation process. MATEC Web of Conferences, 2018, 194, 01034.	0.1	0
24	Non-isothermal kinetic study of bituminous coal and lignite conversion in air and in argon/air mixtures. Fuel, 2017, 191, 383-392.	3.4	59
25	Research of Mechanical Treatment Influence on Rheological Properties of Coal-Water Fuel Based on Low-Grade 3B Coal. MATEC Web of Conferences, 2017, 91, 01012.	0.1	1
26	Research of wood waste concentration influence on composite fuel energy characteristics based on low-grade 2b coal from "Borodinskoe―deposit. MATEC Web of Conferences, 2017, 92, 01036.	0.1	6
27	Research of rheological properties improvement methods of coal-water fuel based on low-grade coal. MATEC Web of Conferences, 2017, 141, 01018.	0.1	2
28	Analysis of composite fuel application possibility based on coal and oats husks in industrial power engineering. MATEC Web of Conferences, 2017, 110, 01080.	0.1	3
29	Research of composite fuels thermophysical properties based on low-grade coals with addition of fine sawdust and flour industry wastes. MATEC Web of Conferences, 2017, 110, 01089.	0.1	5
30	Thermophysical properties of composite fuel based on T grade coal (Alardinskoe deposit) and timber industry wastes. Journal of Physics: Conference Series, 2017, 899, 092014.	0.3	0
31	Research of Heat and Mass Transfer Processes in the Nodes of Free-Flow Micro-Hpp With the Use of 3D Technology. MATEC Web of Conferences, 2016, 72, 01129.	0.1	Ο
32	Study of the influence of heating rate on the process of grate gasification of Balakhta and Osinnikovsky coal deposits. , 2016, , .		0
33	Change of coal-water fuel rheological properties by rotary flows modulation. , 2016, , .		2
34	Research of Heat Rates Effect on the Process Of Fuel-Bed Gasification Of "Balakhtinskoeâ€, "Osinnikovskoeâ€, "Krasnogorskoe―and "Borodinskoe―Coal Deposits. MATEC Web of Conferences, 2016, 72, 01131.	0.1	9
35	Increase of Engineering Students Training Level. Procedia, Social and Behavioral Sciences, 2015, 206, 278-283.	0.5	8
36	Research of Heating Rates Influence on Layer Coal Gasification of Krasnogorsky And Borodinsky Coal Deposit. MATEC Web of Conferences, 2015, 37, 01026.	0.1	5

#	Article	IF	CITATIONS
37	Study of Electrophysical Intrastratal Gasification at Different Coal Heating Rate. MATEC Web of Conferences, 2015, 37, 01030.	0.1	7