
Christie M Sayes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5042999/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Differential Cytotoxicity of Water-Soluble Fullerenes. Nano Letters, 2004, 4, 1881-1887.	9.1	985
2	Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicology Letters, 2006, 161, 135-142.	0.8	810
3	Correlating Nanoscale Titania Structure with Toxicity: A Cytotoxicity and Inflammatory Response Study with Human Dermal Fibroblasts and Human Lung Epithelial Cells. Toxicological Sciences, 2006, 92, 174-185.	3.1	757
4	Assessing Toxicity of Fine and Nanoparticles: Comparing In Vitro Measurements to In Vivo Pulmonary Toxicity Profiles. Toxicological Sciences, 2007, 97, 163-180.	3.1	688
5	Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials, 2005, 26, 7587-7595.	11.4	651
6	C60in Water:Â Nanocrystal Formation and Microbial Response. Environmental Science & Technology, 2005, 39, 4307-4316.	10.0	616
7	Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: Differential responses related to surface properties. Toxicology, 2007, 230, 90-104.	4.2	580
8	Forming Biocompatible and Nonaggregated Nanocrystals in Water Using Amphiphilic Polymers. Journal of the American Chemical Society, 2007, 129, 2871-2879.	13.7	489
9	Pulmonary Instillation Studies with Nanoscale TiO2 Rods and Dots in Rats: Toxicity Is not Dependent upon Particle Size and Surface Area. Toxicological Sciences, 2006, 91, 227-236.	3.1	469
10	Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicology Letters, 2007, 171, 99-110.	0.8	459
11	The relationship between pH and zeta potential of â^1⁄4 30 nm metal oxide nanoparticle suspensions relevant to <i>in vitro</i> toxicological evaluations. Nanotoxicology, 2009, 3, 276-283.	3.0	290
12	Pulmonary Bioassay Studies with Nanoscale and Fine-Quartz Particles in Rats: Toxicity is Not Dependent upon Particle Size but on Surface Characteristics. Toxicological Sciences, 2007, 95, 270-280.	3.1	274
13	Comparative Pulmonary Toxicity Assessments of C ₆₀ Water Suspensions in Rats:  Few Differences in Fullerene Toxicity in Vivo in Contrast to in Vitro Profiles. Nano Letters, 2007, 7, 2399-2406.	9.1	261
14	BACTERIAL CELL ASSOCIATION AND ANTIMICROBIAL ACTIVITY OF A C60 WATER SUSPENSION. Environmental Toxicology and Chemistry, 2005, 24, 2757.	4.3	254
15	Health effects related to nanoparticle exposures: Environmental, health and safety considerations for assessing hazards and risks. , 2008, 120, 35-42.		244
16	The potential exposure and hazards of copper nanoparticles: A review. Environmental Toxicology and Pharmacology, 2019, 71, 103220.	4.0	210
17	Aqueous dispersion of monodisperse magnetic iron oxide nanocrystals through phase transfer. Nanotechnology, 2006, 17, 4483-4487.	2.6	195
18	Characterization of nanomaterials for toxicity assessment. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2009, 1, 660-670.	6.1	137

#	Article	IF	CITATIONS
19	Nanoscale and Fine Zinc Oxide Particles: Can in Vitro Assays Accurately Forecast Lung Hazards following Inhalation Exposures?. Environmental Science & Technology, 2009, 43, 7939-7945.	10.0	129
20	Application of fullerenes in nanomedicine: an update. Nanomedicine, 2013, 8, 1191-1208.	3.3	127
21	Interactions between silver nanoparticles and other metal nanoparticles under environmentally relevant conditions: A review. Science of the Total Environment, 2019, 653, 1042-1051.	8.0	108
22	Comparative Study of Predictive Computational Models for Nanoparticle-Induced Cytotoxicity. Risk Analysis, 2010, 30, 1723-1734.	2.7	100
23	Impact of metal ions, metal oxides, and nanoparticles on the formation of disinfection byproducts during chlorination. Chemical Engineering Journal, 2017, 317, 777-792.	12.7	75
24	Synergistic effect of co-exposure to carbon black and Fe2O3 nanoparticles on oxidative stress in cultured lung epithelial cells. Particle and Fibre Toxicology, 2009, 6, 4.	6.2	71
25	Terahertz Vibrational Modes of Inverse Micelles. Journal of Physical Chemistry B, 2002, 106, 6346-6353.	2.6	68
26	Changing the dose metric for inhalation toxicity studies: Short-term study in rats with engineered aerosolized amorphous silica nanoparticles. Inhalation Toxicology, 2010, 22, 348-354.	1.6	67
27	Quantum dots trigger immunomodulation of the NFκB pathway in human skin cells. Molecular Immunology, 2011, 48, 1349-1359.	2.2	57
28	<p>Synthesis and characterization of nanometer-sized liposomes for encapsulation and microRNA transfer to breast cancer cells</p> . International Journal of Nanomedicine, 2019, Volume 14, 5159-5173.	6.7	55
29	A role for nanoparticle surface reactivity in facilitating pulmonary toxicity and development of a base set of hazard assays as a component of nanoparticle risk management. Inhalation Toxicology, 2009, 21, 61-67.	1.6	52
30	Expert consensus on an in vitro approach to assess pulmonary fibrogenic potential of aerosolized nanomaterials. Archives of Toxicology, 2016, 90, 1769-1783.	4.2	52
31	Perspectives on the design of safer nanomaterials and manufacturing processes. Journal of Nanoparticle Research, 2015, 17, 366.	1.9	46
32	Asymmetrical, Water-Soluble Phthalocyanine Dyes for Covalent Labeling of Oligonucleotides. Bioconjugate Chemistry, 2002, 13, 1244-1252.	3.6	45
33	Comparative cytological responses of lung epithelial and pleural mesothelial cells following in vitro exposure to nanoscale SiO2. Toxicology in Vitro, 2013, 27, 24-33.	2.4	42
34	Surface Functionalization of Silver Nanoparticles: Novel Applications for Insect Vector Control. ACS Applied Materials & Interfaces, 2011, 3, 3779-3787.	8.0	39
35	Aerosol generation and characterization of multi-walled carbon nanotubes exposed to cells cultured at the air-liquid interface. Particle and Fibre Toxicology, 2015, 13, 20.	6.2	38
36	Internalization of Carbon Black and Maghemite Iron Oxide Nanoparticle Mixtures Leads to Oxidant Production. Chemical Research in Toxicology, 2010, 23, 1874-1882.	3.3	36

#	Article	IF	CITATIONS
37	Mitigation of Quantum Dot Cytotoxicity by Microencapsulation. PLoS ONE, 2011, 6, e22079.	2.5	35
38	Pulmonary exposures to Sepiolite nanoclay particulates in rats: Resolution following multinucleate giant cell formation. Toxicology Letters, 2010, 192, 286-293.	0.8	33
39	Ferrate(VI) pretreatment before disinfection: An effective approach to controlling unsaturated and aromatic halo-disinfection byproducts in chlorinated and chloraminated drinking waters. Environment International, 2020, 138, 105641.	10.0	33
40	Can inÂvitro assays substitute for inÂvivo studies in assessing the pulmonary hazards of fine and nanoscale materials?. Journal of Nanoparticle Research, 2009, 11, 421-431.	1.9	32
41	A 90-day dietary study with fibrillated cellulose in Sprague-Dawley rats. Toxicology Reports, 2020, 7, 174-182.	3.3	32
42	Synthesis and self-organization of soluble monodisperse palladium nanoclusters. Journal of Colloid and Interface Science, 2005, 287, 146-151.	9.4	31
43	Copper, silver, and titania nanoparticles do not release ions under anoxic conditions and release only minute ion levels under oxic conditions in water: Evidence for the low toxicity of nanoparticles. Environmental Chemistry Letters, 2020, 18, 1319-1328.	16.2	31
44	Surface plasmon resonance: a label-free tool for cellular analysis. Nanomedicine, 2015, 10, 1833-1846.	3.3	30
45	A framework for grouping nanoparticles based on their measurable characteristics. International Journal of Nanomedicine, 2013, 8 Suppl 1, 45.	6.7	29
46	Are Honey Bees at Risk from Microplastics?. Toxics, 2021, 9, 109.	3.7	29
47	Silver and Copper Nanoparticles Induce Oxidative Stress in Bacteria and Mammalian Cells. Nanomaterials, 2022, 12, 2402.	4.1	29
48	Cytotoxicological pathways induced after nanoparticle exposure: studies of oxidative stress at the â€~nano–bio' interface. Toxicology Research, 2017, 6, 580-594.	2.1	26
49	A role for surface reactivity in TiO ₂ and quartz-related nanoparticle pulmonary toxicity. Nanotoxicology, 2009, 3, 181-187.	3.0	25
50	Effects of ascorbate and carbonate on the conversion and developmental toxicity of halogenated disinfection byproducts during boiling of tap water. Chemosphere, 2020, 254, 126890.	8.2	25
51	An in vitro investigation of the differential cytotoxic responses of human and rat lung epithelial cell lines using TiO _{2 nanoparticles. International Journal of Nanotechnology, 2008, 5, 15.}	0.2	24
52	UV light induces Ag nanoparticle formation: roles of natural organic matter, iron, and oxygen. Environmental Chemistry Letters, 2016, 14, 353-357.	16.2	22
53	Nanomaterial Drug Products: Manufacturing and Analytical Perspectives. AAPS Journal, 2017, 19, 18-25.	4.4	22
54	Silver Nanoparticles Agglomerate Intracellularly Depending on the Stabilizing Agent: Implications for Nanomedicine Efficacy. Nanomaterials, 2020, 10, 1953.	4.1	21

#	ARTICLE	IF	CITATIONS
55	Addition of lemon before boiling chlorinated tap water: A strategy to control halogenated disinfection byproducts. Chemosphere, 2021, 263, 127954.	8.2	21
56	Summary Report of PQRI Workshop on Nanomaterial in Drug Products: Current Experience and Management of Potential Risks. AAPS Journal, 2015, 17, 44-64.	4.4	20
57	Distinct immunomodulatory effects of a panel of nanomaterials in human dermal fibroblasts. Toxicology Letters, 2012, 210, 293-301.	0.8	19
58	Particle uptake efficiency is significantly affected by type of capping agent and cell line. Journal of Applied Toxicology, 2015, 35, 1114-1121.	2.8	19
59	Cilostazol blocks pregnancy in naturally cycling mice. Contraception, 2013, 87, 443-448.	1.5	17
60	Refining <i>In Vitro</i> Toxicity Models: Comparing Baseline Characteristics of Lung Cell Types. Toxicological Sciences, 2019, 168, 302-314.	3.1	17
61	The Relationships among Structure, Activity, and Toxicity of Engineered Nanoparticles. KONA Powder and Particle Journal, 2014, 31, 10-21.	1.7	16
62	Physical, chemical, and toxicological characterization of fibrillated forms of cellulose using an in vitro gastrointestinal digestion and co-culture model. Toxicology Research, 2020, 9, 290-301.	2.1	16
63	<i>In vitro</i> effects of cilostazol, a phosphodiesterase 3A inhibitor, on mouse oocyte maturation and morphology. Clinical and Experimental Pharmacology and Physiology, 2014, 41, 147-153.	1.9	14
64	Differences among Unique Nanoparticle Protein Corona Constructs: A Case Study Using Data Analytics and Multi-Variant Visualization to Describe Physicochemical Characteristics. Applied Sciences (Switzerland), 2018, 8, 2669.	2.5	14
65	Physical, chemical, and toxicological characterization of sulfated cellulose nanocrystals for food-related applications using <i>in vivo</i> and <i>in vitro</i> strategies. Toxicology Research, 2021, 9, 808-822.	2.1	14
66	Nanoparticle Toxicology: Measurements of Pulmonary Hazard Effects Following Exposures to Nanoparticles. Methods in Molecular Biology, 2011, 726, 313-324.	0.9	13
67	Fifteen years of nanoEHS research advances science and fosters a vibrant community. Nature Nanotechnology, 2019, 14, 996-998.	31.5	13
68	Fluorescently Labeled Cellulose Nanofibers for Environmental Health and Safety Studies. Nanomaterials, 2021, 11, 1015.	4.1	13
69	Cilostazol administered to female mice induces ovulation of immature oocytes: A contraceptive animal model. Life Sciences, 2014, 96, 46-52.	4.3	12
70	Determining the Biological Mechanisms of Action for Environmental Exposures: Applying CRISPR/Cas9 to Toxicological Assessments. Toxicological Sciences, 2020, 175, 5-18.	3.1	11
71	Ferrate(VI) pretreatment of water containing natural organic matter, bromide, and iodide: A potential strategy to control soluble lead release from PbO2(s). Chemosphere, 2021, 263, 128035.	8.2	11

Routes of Exposure to Nanoparticles. , 2015, , 41-54.

#	Article	IF	CITATIONS
73	Synergistic cytotoxicity of bromoacetic acid and three emerging bromophenolic disinfection byproducts against human intestinal and neuronal cells. Chemosphere, 2022, 287, 131794.	8.2	10
74	Differential Cytotoxicity of Haloaromatic Disinfection Byproducts and Lead Co-exposures against Human Intestinal and Neuronal Cells. Chemical Research in Toxicology, 2020, 33, 2401-2407.	3.3	8
75	Engineered Nanoparticles Induce DNA Damage in Primary Human Skin Cells, Even at Low Doses. Nano LIFE, 2014, 04, 1440001.	0.9	7
76	Nanoliposomal Delivery of MicroRNA-203 Suppresses Migration of Triple-Negative Breast Cancer through Distinct Target Suppression. Non-coding RNA, 2021, 7, 45.	2.6	7
77	Characterization of a Human In Vitro Intestinal Model for the Hazard Assessment of Nanomaterials Used in Cancer Immunotherapy. Applied Sciences (Switzerland), 2021, 11, 2113.	2.5	6
78	Toxicological Studies with Nanoscale Materials. , 2010, , 3-47.		5
79	A physiologically relevant approach to characterize the microbial response to colloidal particles in food matrices within a simulated gastrointestinal tract. Food and Chemical Toxicology, 2012, 50, 2971-2977.	3.6	5
80	Engineered aluminum nanoparticle induces mitochondrial deformation and is predicated on cell phenotype. Nanotoxicology, 2021, 15, 1215-1232.	3.0	5
81	Scale of Health: Indices of Safety and Efficacy in the Evolving Environment of Large Biological Datasets. Pharmaceutical Research, 2014, 31, 2256-2265.	3.5	4
82	Data dialogues: critical connections for designing and implementing future nanomaterial research. Environment Systems and Decisions, 2015, 35, 76-87.	3.4	4
83	Optimizing a Test Bed System to Assess Human Respiratory Safety After Exposure to Chemical and Particle Aerosolization. Applied in Vitro Toxicology, 2018, 4, 193-201.	1.1	4
84	An Adverse Outcome Pathway Linking Organohalogen Exposure to Mitochondrial Disease. Journal of Toxicology, 2019, 2019, 1-24.	3.0	4
85	Nanotoxicology: Developing a Responsible Technology. Women in Engineering and Science, 2020, , 43-55.	0.4	4
86	PM1 Particles at Coal- and Gas-Fired Power Plant Work Areas. Annals of Occupational Hygiene, 2012, 56, 182-193.	1.9	3
87	Nanotoxicology. , 2015, , 85-110.		3
88	Physicochemical Characteristics of Two Prototypical Home-Use Consumer Products Containing Engineered Nanomaterials. , 2015, 05, .		3
89	Toxicological Issues to Consider When Evaluating the Safety of Consumer Products Containing Nanomaterials. , 2014, , 77-115.		2
90	Effects of a novel pesticide-particle conjugate on viability and reactive oxygen species generation in neuronal (PC12) cells. Drug and Chemical Toxicology, 2015, 38, 205-211.	2.3	2

#	Article	IF	CITATIONS
91	The link between delivered aerosol dose and inflammatory responses: Exposing a lung Cell Co-Culture system to selected Allergens and irritants. Journal of Aerosol Science, 2021, 151, 105677.	3.8	2
92	Pseudosymmetry withZ' = 4 in 1,3-propanesultone at 100K. Acta Crystallographica Section C: Crystal Structure Communications, 1999, 55, 2126-2129.	0.4	1
93	Nanotoxicology. , 2010, , 707-715.		1
94	Nasal Dry Powder Vaccine Delivery Technology. , 2014, , 717-726.		1
95	Characterizing the Nanoâ€Bio Interface Using Microscopic Techniques: Imaging the Cell System is Just as Important as Imaging the Nanoparticle System. Current Protocols in Chemical Biology, 2017, 9, 213-231.	1.7	1
96	5. Certification: Validating Workers' Competence in Nano-safety. , 2017, , 108-120.		1
97	Consumer Products Containing Nanomaterials. , 2018, , 351-387.		1
98	Models for Testing the Pulmonary Toxicity of Particles. , 2006, , 317-330.		1
99	Developing Bioassay Methods for Evaluating Pulmonary Hazards from Nanoscale or Fine Quartz/Titanium Dioxide Particulate Materials. , 0, , 161-170.		0
100	Criteria and Implementation of Physical and Chemical Characteristics of Nanomaterials for Human Health Effects and Ecological Toxicity Studies. , 0, , 29-39.		0
101	Grouping of colloidal metal nanoparticles based on their measurable characteristics: A proposed framework. , 2012, , .		0
102	Sample preparation utilizing sputter coating increases contrast of cellulose nanocrystals in the transmission electron microscope. Microscopy (Oxford, England), 2019, 68, 471-474.	1.5	0
103	Mitigation of Quantum Dot Cytotoxicity by Microencapsulation. , 2011, 6, e22079.		0