Mir Sajjad Hashemi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5042956/publications.pdf

Version: 2024-02-01

76 papers 1,651 citations

218381 26 h-index 37 g-index

78 all docs

78 docs citations

78 times ranked 705 citing authors

#	Article	IF	CITATIONS
1	On new exact solutions of the generalized <scp>Fitzhugh–Nagumo</scp> equation with variable coefficients. Numerical Methods for Partial Differential Equations, 2024, 40, .	2.0	O
2	The (3 + 1)-dimensional Wazwaz–KdV equations: the conservation laws and exact solutions. International Journal of Nonlinear Sciences and Numerical Simulation, 2023, 24, 673-693.	0.4	3
3	New mathematical modelings of the human liver and hearing loss systems with fractional derivatives. International Journal of Biomathematics, 2023, 16 , .	1.5	4
4	A new application of the Legendre reproducing kernel method. AIMS Mathematics, 2022, 7, 10651-10670.	0.7	3
5	New Solutions of Nonlinear Dispersive Equation in Higher-Dimensional Space with Three Types of Local Derivatives. Fractal and Fractional, 2022, 6, 202.	1.6	6
6	Hermite multiwavelets representation for the sparse solution of nonlinear Abel's integral equation. Applied Mathematics and Computation, 2022, 427, 127171.	1.4	22
7	A reduction technique to solve the generalized nonlinear dispersive mK(m,n) equation with new local derivative. Results in Physics, 2022, 38, 105512.	2.0	36
8	Nonâ€classical Lie symmetries for nonlinear timeâ€fractional Heisenberg equations. Mathematical Methods in the Applied Sciences, 2022, 45, 10010-10026.	1.2	5
9	Explicit solutions of higher dimensional Burger's equations. Journal of Ocean Engineering and Science, 2022, , .	1.7	2
10	Boundary value problem of Riemann-Liouville fractional differential equations in the variable exponent Lebesgue spaces L(.). Journal of Geometry and Physics, 2022, 178, 104554.	0.7	2
11	Solitary waves for the generalized nonlinear wave equationÂin (3+1) dimensions with gas bubbles using the Nnucci's reduction, enhanced and modified Kudryashov algorithms. Journal of Ocean Engineering and Science, 2022, , .	1.7	7
12	Numerical Solution of a Nonlinear Fractional Integro-Differential Equation by a Geometric Approach. Differential Equations and Dynamical Systems, 2021, 29, 585-596.	0.5	3
13	Numerical study of the one-dimensional coupled nonlinear sine-Gordon equations by a novel geometric meshless method. Engineering With Computers, 2021, 37, 3397-3407.	3.5	25
14	On the MHD boundary layer flow with diffusion and chemical reaction over a porous flat plate with suction/blowing: two reliable methods. Engineering With Computers, 2021, 37, 1147-1158.	3.5	7
15	A Lie group integrator to solve the hydromagnetic stagnation point flow of a second grade fluid over a stretching sheet. AIMS Mathematics, 2021, 6, 13392-13406.	0.7	16
16	On the solutions of boundary value problems. International Journal of Optimization and Control: Theories and Applications, $2021,11,199$ - $205.$	0.8	0
17	New wave surfaces and bifurcation of nonlinear periodic waves for Gilson-Pickering equation. Results in Physics, 2021, 24, 104192.	2.0	21
18	Non-classical Lie symmetry and conservation laws of the nonlinear time-fractional Kundu–Eckhaus (KE) equation. Pramana - Journal of Physics, 2021, 95, 1.	0.9	6

#	Article	IF	CITATIONS
19	Optical soliton and weierstrass elliptic function management to parabolic law nonlinear directional couplers and modulation instability spectra. Optical and Quantum Electronics, 2021, 53, 1.	1.5	10
20	Explicit solutions to nonlinear Chen–Lee–Liu equation. Modern Physics Letters B, 2021, 35, 2150438.	1.0	15
21	Nonclassical Lie symmetry and conservation laws of the nonlinear time-fractional Korteweg–de Vries equation. Communications in Theoretical Physics, 2021, 73, 095006.	1.1	8
22	A novel approach to find exact solutions of fractional evolution equations with non-singular kernel derivative. Chaos, Solitons and Fractals, 2021, 152, 111367.	2.5	51
23	Generalized squared remainder minimization method for solving multi-term fractional differential equations. Nonlinear Analysis: Modelling and Control, 2021, 26, 57-71.	1.1	10
24	New optical solitons for Biswas–Arshed equation with higher order dispersions and full nonlinearity. Optik, 2020, 206, 163332.	1.4	41
25	A semi-analytical approach to Caputo type time-fractional modified anomalous sub-diffusion equations. Applied Numerical Mathematics, 2020, 158, 103-122.	1.2	10
26	New exact solution of the conformable Gilson–Pickering equation using the new modified Kudryashov's method. International Journal of Modern Physics B, 2020, 34, 2050161.	1.0	14
27	Two reliable methods for solving the forced convection in a porous-saturated duct. European Physical Journal Plus, 2020, 135, 1.	1.2	1
28	On three-dimensional variable order time fractional chaotic system with nonsingular kernel. Chaos, Solitons and Fractals, 2020, 133, 109628.	2.5	54
29	Solving fractional pantograph delay equations by an effective computational method. Mathematics and Computers in Simulation, 2020, 177, 295-305.	2.4	24
30	Exact Solutions, Lie Symmetry Analysis and Conservation Laws of the Time Fractional Diffusion-Absorption Equation. Advances in Dynamics, Patterns, Cognition, 2019, , 97-109.	0.2	3
31	Numerical solution to the telegraph equation via the geometric moving Kriging meshfree method. European Physical Journal Plus, 2019, 134, 1.	1.2	5
32	On numerical solution of the time-fractional diffusion-wave equation with the fictitious time integration method. European Physical Journal Plus, 2019, 134, 1.	1.2	13
33	Numerical treatment on one-dimensional hyperbolic telegraph equation by the method of line-group preserving scheme. European Physical Journal Plus, 2019, 134, 1.	1.2	7
34	Numerical simulation for the space-fractional diffusion equations. Applied Mathematics and Computation, 2019, 348, 57-69.	1.4	11
35	Symmetry properties and exact solutions of the time fractional Kolmogorov-Petrovskii-Piskunov equation. Revista Mexicana De FÃsica, 2019, 65, 529-535.	0.2	33
36	Some new exact solutions of $(2+1)$ -dimensional nonlinear Heisenberg ferromagnetic spin chain with the conformable time fractional derivative. Optical and Quantum Electronics, 2018, 50, 1.	1.5	42

#	Article	IF	Citations
37	Invariant subspaces admitted by fractional differential equations with conformable derivatives. Chaos, Solitons and Fractals, 2018, 107, 161-169.	2.5	96
38	Soliton solutions, stability analysis and conservation laws for the brusselator reaction diffusion model with time- and constant-dependent coefficients. European Physical Journal Plus, 2018, 133, 1.	1.2	31
39	A geometric numerical integration method for solving the Volterra integro-differential equations. International Journal of Computer Mathematics, 2018, 95, 1654-1665.	1.0	6
40	Solitary wave solutions of time–space nonlinear fractional Schrödinger's equation: Two analytical approaches. Journal of Computational and Applied Mathematics, 2018, 339, 147-160.	1.1	60
41	On invariant analysis and conservation laws of the time fractional variant Boussinesq and coupled Boussinesq-Burger's equations. European Physical Journal Plus, 2018, 133, 1.	1.2	17
42	Invariant investigation on the system of Hirota-Satsuma coupled KdV equation. AIP Conference Proceedings, 2018, , .	0.3	0
43	Nonlinear Self-Adjointness and Nonclassical Solutions of a Population Model with Variable Coefficients. Journal of Advanced Physics, 2018, 7, 103-109.	0.4	0
44	A Geometric Approach for Solving Troesch's Problem. Bulletin of the Malaysian Mathematical Sciences Society, 2017, 40, 97-116.	0.4	13
45	Group preserving scheme and reproducing kernel method for the Poisson–Boltzmann equation for semiconductor devices. Nonlinear Dynamics, 2017, 88, 2817-2829.	2.7	32
46	Lie symmetry analysis and soliton solutions of time-fractional K (m, n) equation. Pramana - Journal of Physics, 2017, 88, 1.	0.9	32
47	A novel simple algorithm for solving the magneto-hemodynamic flow in a semi-porous channel. European Journal of Mechanics, B/Fluids, 2017, 65, 359-367.	1.2	14
48	Analytical lie group approach for solving fractional integro-differential equations. Communications in Nonlinear Science and Numerical Simulation, 2017, 51, 66-77.	1.7	29
49	Lie symmetry analysis of steady-state fractional reaction-convection-diffusion equation. Optik, 2017, 138, 240-249.	1.4	26
50	Analytical treatment of the couple stress fluid-filled thin elastic tubes. Optik, 2017, 145, 336-345.	1.4	2
51	On the invariant solutions of space/time-fractional diffusion equations. Indian Journal of Physics, 2017, 91, 1571-1579.	0.9	7
52	Classical and nonclassical Lie symmetry analysis to a class of nonlinear time-fractional differential equations. Nonlinear Dynamics, 2017, 87, 1785-1796.	2.7	40
53	Constructing two powerful methods to solve the Thomas–Fermi equation. Nonlinear Dynamics, 2017, 87, 1435-1444.	2.7	31
54	Analytical Solutions of Nonlinear Time-Space Fractional SchrĶdinger Equation. Journal of Advanced Physics, 2017, 6, 297-302.	0.4	4

#	Article	IF	CITATIONS
55	A Numerical Investigation on Burgers Equation by MOL-GPS Method. Journal of Advanced Physics, 2017, 6, 413-417.	0.4	12
56	Numerical approximation of higher-order time-fractional telegraph equation by using a combination of a geometric approach and method of line. Journal of Computational Physics, 2016, 316, 10-20.	1.9	63
57	A geometric approach for solving the density-dependent diffusion Nagumo equation. Advances in Difference Equations, 2016, 2016, .	3.5	27
58	On the Time Fractional Generalized Fisher Equation: Group Similarities and Analytical Solutions. Communications in Theoretical Physics, 2016, 65, 11-16.	1.1	26
59	On solitons and invariant solutions of the Magneto-electro-elastic circular rod. Waves in Random and Complex Media, 2016, 26, 259-271.	1.6	33
60	Certain Properties of \$\$n\$\$ n -Characters and \$\$n\$\$ n -Homomorphisms on Topological Algebras. Bulletin of the Malaysian Mathematical Sciences Society, 2015, 38, 985-999.	0.4	2
61	Group analysis and exact solutions of the time fractional Fokker–Planck equation. Physica A: Statistical Mechanics and Its Applications, 2015, 417, 141-149.	1.2	47
62	Constructing a new geometric numerical integration method to the nonlinear heat transfer equations. Communications in Nonlinear Science and Numerical Simulation, 2015, 22, 990-1001.	1.7	30
63	Solving the time-fractional diffusion equation using a lie group integrator. Thermal Science, 2015, 19, 77-83.	0.5	37
64	A Fictitious Time Integration Method For A One-dimensional Hyperbolic Boundary Value Problem. Journal of Mathematics and Computer Science, 2015, 14, 87-96.	0.5	0
65	Group Invariant Solutions and Conservation Laws of the Fornberg– Whitham Equation. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2014, 69, 489-496.	0.7	27
66	On convergence of homotopy analysis method and its application to fractional integro-differential equations. Quaestiones Mathematicae, 2013, 36, 93-105.	0.2	135
67	Nonclassical Symmetries for a Class of Reaction-Diffusion Equations: the Method of Heir-Equations. Journal of Nonlinear Mathematical Physics, 2013, 20, 44.	0.8	28
68	Group analysis of the modified generalized Vakhnenko equation. Communications in Nonlinear Science and Numerical Simulation, 2013, 18, 867-877.	1.7	28
69	Series solution of fuzzy wave-like equations with variable coefficients. Journal of Intelligent and Fuzzy Systems, 2013, 25, 415-428.	0.8	8
70	An efficient algorithm to determine M-matrix membership degree of fuzzy matrices. Journal of Intelligent and Fuzzy Systems, 2013, 25, 17-22.	0.8	0
71	Series Solution of the System of Fuzzy Differential Equations. Advances in Fuzzy Systems, 2012, 2012, 1-16.	0.6	11
72	Solving fully fuzzy linear systems using implicit gauss–cholesky algorithm. Computational Mathematics and Modeling, 2012, 23, 368-385.	0.2	1

#	Article	IF	CITATION
73	Solving fully fuzzy linear systems by using implicit Gauss–Cholesky algorithm. Computational Mathematics and Modeling, 2012, 23, 107-124.	0.2	10
74	The Lie-group shooting method for solving the Bratu equation. Communications in Nonlinear Science and Numerical Simulation, 2011 , 16 , 4238 - 4249 .	1.7	84
7 5	Group preserving scheme for the Cauchy problem of the Laplace equation. Engineering Analysis With Boundary Elements, 2011, 35, 1003-1009.	2.0	26
76	New conservation laws and exact solutions of coupled Burgers' equation. Waves in Random and Complex Media, 0, , 1-20.	1.6	6