Arcelina Marques

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5042801/publications.pdf

Version: 2024-02-01

1684188 940533 53 471 5 16 citations g-index h-index papers 56 56 56 227 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	Preliminary Tests with Screen-Printed Piezoresistive Pressure Sensors on PET and Textile Substrates. , 2022, , .		2
2	A comprehensive VISIR bibliographical reference. , 2021, , .		5
3	Students' perception about using VISIR. , 2021, , .		1
4	Engineering Education: Professional Demands. , 2020, , .		2
5	Brainstorming Students' Needs versus Engineering Demands. , 2020, , .		1
6	Engineering Education and Technological/Professional Learning. Education Sciences, 2019, 9, 277.	2.6	4
7	Engineering Education addressing Professional Challenges. , 2019, , .		4
8	A sustainable approach to laboratory experimentation. , 2019, , .		8
9	The VISIR+ÂProject – Preliminary Results of the Training Actions. Lecture Notes in Networks and Systems, 2018, , 375-391.	0.7	4
10	A sustainable approach to let students do more real experiments with electrical and electronic circuits. , $2018, , .$		3
11	PILAR: a Federation of VISIR Remote Laboratory Systems for Educational Open Activities., 2018,,.		10
12	Engineering Education and Technological / Professional Learning. , 2018, , .		4
13	Macro Analysis on how to Potentiate Experimental Competences Using VISIR., 2018,,.		2
14	Experimenting in PILAR federation: A common path for the future. , 2018, , .		7
15	Impact of a remote lab on teaching practices and student learning. Computers and Education, 2018, 126, 201-216.	8.3	72
16	Bone Immobilization devices and consolidation mechanisms: Impact on healing time. Procedia Structural Integrity, 2017, 5, 34-39.	0.8	O
17	The VISIR+ project-helping contextualize math in an engineering course. , 2017, , .		5
18	21st Century Challenges in Engineering and Technological learning. , 2017, , .		10

#	Article	IF	CITATIONS
19	Currently used systems of dental posts for endodontic treatment. Procedia Structural Integrity, 2017, 5, 27-33.	0.8	17
20	Do Students Really Understand the Difference Between Simulation and Remote Labs?., 2017,,.		3
21	A federation of VISIR remote laboratories through the PILAR Project. , 2017, , .		8
22	Engineering and technological learning in educational and professional contexts., 2016,,.		7
23	Spreading remote lab usage a system — A community — A Federation. , 2016, , .		23
24	Engineering and technological learning in educational and professional contexts. , 2015, , .		1
25	Biomechanical study of the Spider Crab as inspiration for the development of a biomimetic robot. Biomaterials and Biomechanics in Bioengineering, 2015, 2, 249-269.	0.4	0
26	How Remote Labs Impact on Course Outcomes: Various Practices Using VISIR. IEEE Transactions on Education, 2014, 57, 151-159.	2.4	75
27	Monitoring of plantar forces and surfboard's movement: Alternative to understand the injuries mechanism. , 2014, , .		0
28	Instrumentation of a surfboard to evaluate surfing performance., 2014,,.		3
29	Adapting Remote Labs to Learning Scenarios: Case Studies Using VISIR and RemotElectLab. Revista Iberoamericana De Tecnologias Del Aprendizaje, 2014, 9, 33-39.	0.9	14
30	Controlling the operating conditions in an operating room. , 2014, , .		0
31	Developing the control system of a syringe infusion pump. , 2014, , .		6
32	TRAILER. International Journal of Human Capital and Information Technology Professionals, 2014, 5, 1-17.	0.6	4
33	Biomechanical modeling and simulation of the spider crab (maja brachydactyla). , 2013, , .		2
34	A remote lab for projectile launch experiments: Professional and academic perspectives. , 2013, , .		3
35	Using the TRAILER tool for managing informal learning in academic and professional contexts. , 2013, , .		5
36	Impact of different Moodle Course Designs on Students' Performance. International Journal of Engineering Pedagogy, 2013, 3, 18.	1.1	3

#	Article	IF	CITATIONS
37	A Flexible Online Apparatus for Projectile Launch Experiments. International Journal of Online and Biomedical Engineering, 2013, 9, 35.	1.4	4
38	A Tool to Aid Institutions Recognize Their Employees Competences Acquired by Informal Learning. Lecture Notes in Computer Science, 2013, , 552-555.	1.3	5
39	Simulation and Control of a Spider Crab Biomechanical Model. , 2013, , .		O
40	Design State Exploration applied to the development of a Remote Lab for Projectile Launch Experiments. International Journal of Online and Biomedical Engineering, 2013, 9, 55.	1.4	1
41	Student performance analysis under different moodle course designs. , 2012, , .		7
42	Structuring and moodleing a course: Case studies at the polytechnic of Porto - School of engineering. , 2012 , , .		2
43	A flexible online apparatus for projectile launch experiments. , 2012, , .		1
44	Using remote labs to serve different teacher's needs A case study with VISIR and RemotElectLab. , 2012, , .		14
45	Using Remote Labs to Serve Different Teacherâ??s Needs - A Case Study with VISIR and RemotElectLab. International Journal of Online and Biomedical Engineering, 2012, 8, 36.	1.4	2
46	Engaging students by Moodleing a Course? Case studies at the Polytechnic of Porto \tilde{A} $\$?? School of Engineering. International Journal of Engineering Pedagogy, 2012, 2, 40.	1.1	4
47	VISIR: Experiences and Challenges. International Journal of Online and Biomedical Engineering, 2012, 8, 25.	1.4	31
48	Using VISIR in a large undergraduate course: Preliminary assessment results. , 2011, , .		49
49	Using remote experimentation in a large undergraduate course: Initial findings. , 2011, , .		10
50	VISIR deployment in undergraduate engineering practices. , 2011, , .		13
51	3D modelling for FEM simulation of an obese foot. , 2011, , 33-36.		4
52	Using VISIR in a Large Undergraduate Course: Preliminary Assessment Results. International Journal of Engineering Pedagogy, 2011, 1, 12.	1.1	3
53	Actuator Capabilities of Piezoelectric Devices Embedded in Composite Laminate. Materials Science Forum, 2008, 587-588, 237-240.	0.3	0