Al Kay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5041448/publications.pdf

Version: 2024-02-01

		147801	128289
65	3,853	31	60
papers	citations	h-index	g-index
73	73	73	3707
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Comparison of uncertainty sources for climate change impacts: flood frequency in England. Climatic Change, 2009, 92, 41-63.	3.6	488
2	Scenario-neutral approach to climate change impact studies: Application to flood risk. Journal of Hydrology, 2010, 390, 198-209.	5.4	349
3	Human influence on climate in the 2014 southern England winter floods and their impacts. Nature Climate Change, 2016, 6, 627-634.	18.8	237
4	Are seemingly physically similar catchments truly hydrologically similar?. Water Resources Research, 2010, 46, .	4.2	220
5	Climate change and water in the UK – past changes and future prospects. Progress in Physical Geography, 2015, 39, 6-28.	3.2	178
6	RCM rainfall for UK flood frequency estimation. II. Climate change results. Journal of Hydrology, 2006, 318, 163-172.	5.4	172
7	Calculating potential evaporation from climate model data: A source of uncertainty for hydrological climate change impacts. Journal of Hydrology, 2008, 358, 221-239.	5.4	153
8	Potential influences on the United Kingdom's floods of winter 2013/14. Nature Climate Change, 2014, 4, 769-777.	18.8	149
9	Development of a high resolution grid-based river flow model for use with regional climate model output. Hydrology and Earth System Sciences, 2007, 11, 532-549.	4.9	133
10	Use of soil data in a grid-based hydrological model to estimate spatial variation in changing flood risk across the UK. Journal of Hydrology, 2009, 377, 335-350.	5.4	105
11	RCM rainfall for UK flood frequency estimation. I. Method and validation. Journal of Hydrology, 2006, 318, 151-162.	5.4	82
12	Attribution of Autumn/Winter 2000 flood risk in England to anthropogenic climate change: A catchment-based study. Journal of Hydrology, 2011, 406, 97-112.	5.4	70
13	Confidence intervals for a spatially generalized, continuous simulation flood frequency model for Great Britain. Water Resources Research, 2004, 40, .	4.2	69
14	A comparison of three approaches to spatial generalization of rainfall–runoff models. Hydrological Processes, 2006, 20, 3953-3973.	2.6	60
15	How might climate change affect river flows across the Thames Basin? An area-wide analysis using the UKCP09 Regional Climate Model ensemble. Journal of Hydrology, 2012, 442-443, 89-104.	5.4	60
16	Transient changes in flood frequency and timing in Britain under potential projections of climate change. International Journal of Climatology, 2012, 32, 489-502.	3.5	58
17	Use of a grid-based hydrological model and regional climate model outputs to assess changing flood risk. International Journal of Climatology, 2007, 27, 1657-1671.	3.5	56
18	Climate change and river flooding: part 1 classifying the sensitivity of British catchments. Climatic Change, 2013, 119, 933-948.	3.6	56

#	Article	IF	CITATIONS
19	A hydrological perspective on evaporation: historical trends and future projections in Britain. Journal of Water and Climate Change, 2013, 4, 193-208.	2.9	55
20	A large set of potential past, present and future hydro-meteorological time series for the UK. Hydrology and Earth System Sciences, 2018, 22, 611-634.	4.9	54
21	An investigation of site-similarity approaches to generalisation of a rainfall–runoff model. Hydrology and Earth System Sciences, 2007, 11, 500-515.	4.9	52
22	Comparison of the use of alternative UKCP09 products for modelling the impacts of climate change on flood frequency. Climatic Change, 2012, 114, 211-230.	3.6	49
23	Climate change and river flooding: Part 2 sensitivity characterisation for british catchments and example vulnerability assessments. Climatic Change, 2013, 119, 949-964.	3.6	49
24	An assessment of the possible impacts of climate change on snow and peak river flows across Britain. Climatic Change, 2016, 136, 539-553.	3.6	49
25	National-scale analysis of simulated hydrological droughts (1891–2015). Journal of Hydrology, 2017, 550, 368-385.	5.4	43
26	Use of very high resolution climate model data for hydrological modelling: baseline performance and future flood changes. Climatic Change, 2015, 133, 193-208.	3.6	42
27	Changing climate risk in the UK: A multi-sectoral analysis using policy-relevant indicators. Climate Risk Management, 2021, 31, 100265.	3.2	41
28	A national-scale seasonal hydrological forecast system: development and evaluation over Britain. Hydrology and Earth System Sciences, 2017, 21, 4681-4691.	4.9	38
29	Probabilistic impacts of climate change on flood frequency using response surfaces I: England and Wales. Regional Environmental Change, 2014, 14, 1215-1227.	2.9	37
30	The evolution of climate change guidance for fluvial flood risk management in England. Progress in Physical Geography, 2017, 41, 222-237.	3.2	37
31	Use of very high resolution climate model data for hydrological modelling: estimation of potential evaporation. Hydrology Research, 2016, 47, 660-670.	2.7	32
32	National-scale analysis of future river flow and soil moisture droughts: potential changes in drought characteristics. Climatic Change, 2019, 156, 323-340.	3.6	32
33	Climate change impacts on peak river flows: Combining national-scale hydrological modelling and probabilistic projections. Climate Risk Management, 2021, 31, 100263.	3.2	32
34	Climate Change Impact on the Magnitude and Timing of Hydrological Extremes Across Great Britain. Frontiers in Water, 2021, 3, .	2.3	29
35	Using response surfaces to estimate impacts of climate change on flood peaks: assessment of uncertainty. Hydrological Processes, 2014, 28, 5273-5287.	2.6	28
36	An investigation of the effect of transient climate change on snowmelt, flood frequency and timing in northern Britain. International Journal of Climatology, 2014, 34, 3368-3381.	3.5	27

#	Article	IF	Citations
37	The impact of climate change on U. K. river flows: A preliminary comparison of two generations of probabilistic climate projections. Hydrological Processes, 2020, 34, 1081-1088.	2.6	26
38	Influence Diagrams for Representing Uncertainty in Climate-Related Propositions. Climatic Change, 2005, 69, 343-365.	3.6	24
39	Simulation of river flow in Britain under climate change: Baseline performance and future seasonal changes. Hydrological Processes, 2021, 35, e14137.	2.6	24
40	Probabilistic impacts of climate change on flood frequency using response surfaces II: Scotland. Regional Environmental Change, 2014, 14, 1243-1255.	2.9	23
41	Estimating Potential Evaporation from Vegetated Surfaces for Water Management Impact Assessments Using Climate Model Output. Journal of Hydrometeorology, 2011, 12, 1127-1136.	1.9	22
42	An assessment of the potential for natural flood management to offset climate change impacts. Environmental Research Letters, 2019, 14, 044017.	5.2	22
43	Climate change effects on indicators of high and low river flow across Great Britain. Advances in Water Resources, 2021, 151, 103909.	3.8	22
44	Spatial Noise Stabilizes Periodic Wave Patterns in Oscillatory Systems on Finite Domains. SIAM Journal on Applied Mathematics, 2000, 61, 1013-1041.	1.8	20
45	National-scale analysis of low flow frequency: historical trends and potential future changes. Climatic Change, 2018, 147, 585-599.	3.6	20
46	A review of snow in Britain. Progress in Physical Geography, 2016, 40, 676-698.	3.2	19
47	Comparison theorems and variable speed waves for a scalar reaction–diffusion equation. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2001, 131, 1133-1161.	1.2	18
48	Developing a largeâ€scale waterâ€balance approach to seasonal forecasting: application to the 2012 drought in Britain. Hydrological Processes, 2013, 27, 3003-3012.	2.6	18
49	From Catchment to National Scale Rainfall-Runoff Modelling: Demonstration of a Hydrological Modelling Framework. Hydrology, 2014, 1, 63-88.	3.0	17
50	The MaRIUSâ€G2G datasets: Gridâ€toâ€Grid model estimates of flow and soil moisture for Great Britain using observed and climate model driving data. Geoscience Data Journal, 2018, 5, 63-72.	4.4	15
51	On the persistence of spatiotemporal oscillations generated by invasion. IMA Journal of Applied Mathematics, 1999, 63, 199-216.	1.6	14
52	Simulation of river flow in the Thames over 120 years: Evidence of change in rainfall-runoff response?. Journal of Hydrology: Regional Studies, 2015, 4, 172-195.	2.4	14
53	Uncertainty analysis for estimating flood frequencies for ungauged catchments using rainfall-runoff models. Advances in Water Resources, 2007, 30, 1190-1204.	3.8	13
54	Flood event attribution and damage estimation using nationalâ€scale gridâ€based modelling: Winter 2013/2014 in Great Britain. International Journal of Climatology, 2018, 38, 5205-5219.	3.5	13

#	Article	IF	Citations
55	How might climate change affect river flows across West Africa?. Climatic Change, 2021, 169, 1.	3.6	13
56	Investigating potential future changes in surface water flooding hazard and impact. Hydrological Processes, 2020, 34, 139-149.	2.6	11
57	Grid-based simulation of river flows in Northern Ireland: Model performance and future flow changes. Journal of Hydrology: Regional Studies, 2021, 38, 100967.	2.4	11
58	Use of Abstraction and Discharge Data to Improve the Performance of a Nationalâ€Scale Hydrological Model. Water Resources Research, 2022, 58, .	4.2	11
59	Indicators of climate risk in the UK at different levels of warming. Environmental Research Communications, 2021, 3, 095005.	2.3	8
60	Travelling waves for a coupled, singular reactionÂdiffusion system arising from a model of fractional order autocatalysis with decay: I. Permanent form travelling waves. Nonlinearity, 2003, 16, 735-770.	1.4	7
61	Grid-based simulation of soil moisture in the UK: future changes in extremes and wetting and drying dates. Environmental Research Letters, 2022, 17, 074029.	5.2	6
62	Differences in hydrological impacts using regional climate model and nested convection-permitting model data. Climatic Change, 2022, 173, .	3.6	6
63	Reply to 'Drivers of the 2013/14 winter floods in the UK'. Nature Climate Change, 2015, 5, 491-492.	18.8	2
64	Climate change allowances, nonâ€stationarity and flood frequency analyses. Journal of Flood Risk Management, 0, , .	3.3	1
65	Flood risk in the UK: current and future. WIT Transactions on Ecology and the Environment, 2007, , .	0.0	0