
Robert Schroot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5041415/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Accumulative Charging of Redox-Active Side-Chain-Modified Polymers: Experimental and Computational Insights from Oligo- to Polymeric Triarylamines. Macromolecules, 2019, 52, 4673-4685.	4.8	3
2	Poly(<i>N</i> -alkyl-3,6-carbazole)s via Suzuki–Miyaura Polymerization: From Macrocyclization toward End Functionalization. Macromolecules, 2017, 50, 1319-1330.	4.8	14
3	Hydrophilic Poly(naphthalene diimide)â€Based Acceptor–Photosensitizer Dyads: Toward Waterâ€Processible Modular Photoredoxâ€Active Architectures. Macromolecular Chemistry and Physics, 2017, 218, 1600534.	2.2	10
4	Synthetic approaches towards structurally-defined electrochemically and (photo)redox-active polymer architectures. Chemical Society Reviews, 2017, 46, 2754-2798.	38.1	25
5	A multidonor–photosensitizer–multiacceptor triad for long-lived directional charge separation. Physical Chemistry Chemical Physics, 2017, 19, 28572-28578.	2.8	17
6	Extending Longâ€lived Charge Separation Between Donor and Acceptor Blocks in Novel Copolymer Architectures Featuring a Sensitizer Core. Chemistry - A European Journal, 2017, 23, 16484-16490.	3.3	16
7	Frontispiece: Extending Longâ€lived Charge Separation Between Donor and Acceptor Blocks in Novel Copolymer Architectures Featuring a Sensitizer Core. Chemistry - A European Journal, 2017, 23, .	3.3	0
8	Modular Assembly of Poly(naphthalene diimide) and Ru(II) Dyes for an Efficient Light-Induced Charge Separation in Hierarchically Controlled Polymer Architectures. Macromolecules, 2016, 49, 2112-2123.	4.8	15
9	Poly(<i>N</i> -alkyl-3,6-carbazole)s via Kumada Catalyst Transfer Polymerization: Impact of Metal–Halogen Exchange. Macromolecules, 2016, 49, 8801-8811.	4.8	5
10	Photoredox-active Dyads Based on a Ru(II) Photosensitizer Equipped with Electron Donor or Acceptor Polymer Chains: A Spectroscopic Study of Light-Induced Processes toward Efficient Charge Separation. Journal of Physical Chemistry C, 2015, 119, 4742-4751.	3.1	36
11	Block Copolymers for Directional Charge Transfer: Synthesis, Characterization, and Electrochemical Properties of Redox-Active Triarylamines. Macromolecules, 2015, 48, 1963-1971.	4.8	13
12	Nitroxide-Mediated Polymerization of Styrenic Triarylamines and Chain-End Functionalization with a Ruthenium Complex: Toward Tailored Photoredox-Active Architectures. Macromolecules, 2013, 46, 2039-2048.	4.8	26