List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5041005/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. Clinical Microbiology and Infection, 2012, 18, 413-431.	6.0	727
2	Occurrence of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE): a prospective, multinational study. Lancet Infectious Diseases, The, 2017, 17, 153-163.	9.1	522
3	The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST Subcommittee. Clinical Microbiology and Infection, 2017, 23, 2-22.	6.0	428
4	Insights into the global molecular epidemiology of carbapenem non-susceptible clones of Acinetobacter baumannii. Drug Resistance Updates, 2012, 15, 237-247.	14.4	261
5	<i>Escherichia coli</i> Sequence Type 410 Is Causing New International High-Risk Clones. MSphere, 2018, 3, .	2.9	183
6	A sensitive and specific phenotypic assay for detection of metallo-β-lactamases and KPC in Klebsiella pneumoniae with the use of meropenem disks supplemented with aminophenylboronic acid, dipicolinic acid and cloxacillin. Clinical Microbiology and Infection, 2011, 17, 552-556.	6.0	178
7	Emergence of clonally related Klebsiella pneumoniae isolates of sequence type 258 producing plasmid-mediated KPC carbapenemase in Norway and Sweden. Journal of Antimicrobial Chemotherapy, 2009, 63, 654-658.	3.0	156
8	Molecular Epidemiology of Metallo-β-Lactamase-Producing <i>Pseudomonas aeruginosa</i> Isolates from Norway and Sweden Shows Import of International Clones and Local Clonal Expansion. Antimicrobial Agents and Chemotherapy, 2010, 54, 346-352.	3.2	136
9	Species identification and molecular characterization of Acinetobacter spp. blood culture isolates from Norway. Journal of Antimicrobial Chemotherapy, 2011, 66, 738-744.	3.0	110
10	Lactoferricin B inhibits bacterial macromolecular synthesis in and. FEMS Microbiology Letters, 2004, 237, 377-384.	1.8	108
11	A Long-Term Low-Frequency Hospital Outbreak of KPC-Producing Klebsiella pneumoniae Involving Intergenus Plasmid Diffusion and a Persisting Environmental Reservoir. PLoS ONE, 2013, 8, e59015.	2.5	102
12	Integrated chromosomal and plasmid sequence analyses reveal diverse modes of carbapenemase gene spread among <i>Klebsiella pneumoniae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25043-25054.	7.1	97
13	Antimicrobial and cytotoxic activity of agelasine and agelasimine analogs. Bioorganic and Medicinal Chemistry, 2007, 15, 4016-4037.	3.0	80
14	Conserved collateral antibiotic susceptibility networks in diverse clinical strains of Escherichia coli. Nature Communications, 2018, 9, 3673.	12.8	76
15	Molecular epidemiology of KPC-2- producing Klebsiella pneumoniae isolates in Brazil: the predominance of sequence type 437. Diagnostic Microbiology and Infectious Disease, 2011, 70, 274-277.	1.8	73
16	Molecular characterization of VIM-producing Klebsiella pneumoniae from Scandinavia reveals genetic relatedness with international clonal complexes encoding transferable multidrug resistance. Clinical Microbiology and Infection, 2011, 17, 1811-1816.	6.0	70
17	Plasmid-mediated quinolone resistance determinants qnr and aac(6′)-Ib-cr in Escherichia coli and Klebsiella spp. from Norway and Sweden. Diagnostic Microbiology and Infectious Disease, 2010, 66, 425-431.	1.8	66
18	Identification of NDM-1-producing Enterobacteriaceae in Norway. Journal of Antimicrobial Chemotherapy, 2011, 66, 670-672.	3.0	65

#	Article	IF	CITATIONS
19	Spread of Plasmid-Encoded NDM-1 and GES-5 Carbapenemases among Extensively Drug-Resistant and Pandrug-Resistant Clinical Enterobacteriaceae in Durban, South Africa. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	65
20	OXA-48-Mediated Ceftazidime-Avibactam Resistance Is Associated with Evolutionary Trade-Offs. MSphere, 2019, 4, .	2.9	63
21	(+)-Agelasine D:Â Improved Synthesis and Evaluation of Antibacterial and Cytotoxic Activities#. Journal of Natural Products, 2006, 69, 381-386.	3.0	61
22	Evaluation of a new real-time PCR assay (Check-Direct CPE) for rapid detection of KPC, OXA-48, VIM, and NDM carbapenemases using spiked rectal swabs. Diagnostic Microbiology and Infectious Disease, 2013, 77, 316-320.	1.8	58
23	Crystal Structure of the Mobile Metallo-β-Lactamase AIM-1 from Pseudomonas aeruginosa: Insights into Antibiotic Binding and the Role of Gln157. Antimicrobial Agents and Chemotherapy, 2012, 56, 4341-4353.	3.2	57
24	CRISPR-cas Subtype I-Fb in Acinetobacter baumannii: Evolution and Utilization for Strain Subtyping. PLoS ONE, 2015, 10, e0118205.	2.5	57
25	Emergence of OXA-carbapenemase- and 16S rRNA methylase-producing international clones of Acinetobacter baumannii in Norway. Journal of Medical Microbiology, 2011, 60, 515-521.	1.8	56
26	Proteases in Escherichia coli and Staphylococcus aureus confer reduced susceptibility to lactoferricin B. Journal of Antimicrobial Chemotherapy, 2002, 50, 461-467.	3.0	55
27	Comparison of disk diffusion, Etest and VITEK2 for detection of carbapenemaseâ€producing Klebsiella pneumoniae with the EUCAST and CLSI breakpoint systems. Clinical Microbiology and Infection, 2011, 17, 668-674.	6.0	54
28	Genetic and Biochemical Characterization of a Novel Metallo-β-Lactamase, TMB-1, from an Achromobacter xylosoxidans Strain Isolated in Tripoli, Libya. Antimicrobial Agents and Chemotherapy, 2012, 56, 2241-2245.	3.2	53
29	Molecular and epidemiological characterization of carbapenemase-producing Enterobacteriaceae in Norway, 2007 to 2014. PLoS ONE, 2017, 12, e0187832.	2.5	53
30	Metallo-β-lactamase inhibitors by bioisosteric replacement: Preparation, activity and binding. European Journal of Medicinal Chemistry, 2017, 135, 159-173.	5.5	48
31	Increased prevalence of aminoglycoside resistance in clinical isolates of Escherichia coli and Klebsiella spp. in Norway is associated with the acquisition of AAC(3)-II and AAC(6′)-Ib. Diagnostic Microbiology and Infectious Disease, 2014, 78, 66-69.	1.8	46
32	Staphylococcus aureus small colony variants are resistant to the antimicrobial peptide lactoferricin B. Journal of Antimicrobial Chemotherapy, 2005, 56, 1126-1129.	3.0	44
33	A Trade-off between the Fitness Cost of Functional Integrases and Long-term Stability of Integrons. PLoS Pathogens, 2012, 8, e1003043.	4.7	43
34	Emergence and dissemination of antimicrobial resistance in Escherichia coli causing bloodstream infections in Norway in 2002–17: a nationwide, longitudinal, microbial population genomic study. Lancet Microbe, The, 2021, 2, e331-e341.	7.3	43
35	Low biological cost of carbapenemase-encoding plasmids following transfer from <i>Klebsiella pneumoniae</i> to <i>Escherichia coli</i> . Journal of Antimicrobial Chemotherapy, 2017, 72, 85-89. 	3.0	42
36	Anti-complement effects of lactoferrin-derived peptides. FEMS Immunology and Medical Microbiology, 2004, 41, 141-148.	2.7	39

#	Article	IF	CITATIONS
37	The antimicrobial activity of mecillinam, nitrofurantoin, temocillin and fosfomycin and comparative analysis of resistance patterns in a nationwide collection of ESBL-producing <i>Escherichia coli</i> in Norway 2010–2011. Infectious Diseases, 2016, 48, 99-107.	2.8	39
38	Induced resistance to the antimicrobial peptide lactoferricin B in <i>Staphylococcus aureus</i> . FEBS Letters, 2005, 579, 3421-3426.	2.8	35
39	Structural and Computational Investigations of VIM-7: Insights into the Substrate Specificity of VIM Metallo-β-Lactamases. Journal of Molecular Biology, 2011, 411, 174-189.	4.2	35
40	Synthesis and Preclinical Evaluation of TPA-Based Zinc Chelators as Metallo-Î ² -lactamase Inhibitors. ACS Infectious Diseases, 2018, 4, 1407-1422.	3.8	35
41	Gastrointestinal carriage of Klebsiella pneumoniae in a general adult population: a cross-sectional study of risk factors and bacterial genomic diversity. Gut Microbes, 2021, 13, 1939599.	9.8	34
42	Evaluation of phenotypic tests for the detection of metallo-Â-lactamase-producing Pseudomonas aeruginosa in a low prevalence country. Journal of Antimicrobial Chemotherapy, 2008, 61, 827-830.	3.0	31
43	A Diversity of OXA-Carbapenemases and Class 1 Integrons Among Carbapenem-Resistant <i>Acinetobacter baumannii</i> Clinical Isolates from Sweden Belonging to Different International Clonal Lineages. Microbial Drug Resistance, 2011, 17, 545-549.	2.0	31
44	Pharmacokinetics and Pharmacodynamics of Fosfomycin and Its Activity against Extended-Spectrum-Î2-Lactamase-, Plasmid-Mediated AmpC-, and Carbapenemase-Producing Escherichia coli in a Murine Urinary Tract Infection Model. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	31
45	Kinetic Characterization of VIM-7, a Divergent Member of the VIM Metallo-β-Lactamase Family. Antimicrobial Agents and Chemotherapy, 2008, 52, 2905-2908.	3.2	29
46	Approaches to the simultaneous inactivation of metallo- and serine-Î ² -lactamases. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 1618-1622.	2.2	29
47	Identification of Enterobacteriaceae isolates with OXA-48 and coproduction of OXA-181 and NDM-1 in Norway. Journal of Antimicrobial Chemotherapy, 2013, 68, 1682-1685.	3.0	28
48	Evolution of β-lactamase-mediated cefiderocol resistance. Journal of Antimicrobial Chemotherapy, 2022, 77, 2429-2436.	3.0	27
49	The First Metallo-Î ² -Lactamase Identified in Norway Is Associated with a TniC-Like Transposon in a Pseudomonas aeruginosa Isolate of Sequence Type 233 Imported from Ghana. Antimicrobial Agents and Chemotherapy, 2009, 53, 331-332.	3.2	26
50	Dissemination of a Carbapenem-Resistant Acinetobacter baumannii Strain Belonging to International Clone II/Sequence Type 2 and Harboring a Novel AbaR4-Like Resistance Island in Latvia. Antimicrobial Agents and Chemotherapy, 2013, 57, 1069-1072.	3.2	26
51	Identification of VIM-2-Producing Pseudomonas aeruginosa from Tanzania Is Associated with Sequence Types 244 and 640 and the Location of <i>bla</i> _{VIM-2} in a TniC Integron. Antimicrobial Agents and Chemotherapy, 2015, 59, 682-685.	3.2	26
52	Cross-border spread of blaNDM-1- and blaOXA-48-positive Klebsiella pneumoniae: a European collaborative analysis of whole genome sequencing and epidemiological data, 2014 to 2019. Eurosurveillance, 2020, 25, .	7.0	26
53	Dissemination and Characteristics of a Novel Plasmid-Encoded Carbapenem-Hydrolyzing Class D β-Lactamase, OXA-436, Found in Isolates from Four Patients at Six Different Hospitals in Denmark. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	24
54	Evaluation of Rosco Neoâ€Sensitabs for phenotypic detection and subgrouping of ESBLâ€, AmpC―and carbapenemaseâ€producing Enterobacteriaceae. Apmis, 2012, 120, 724-732.	2.0	23

#	Article	IF	CITATIONS
55	Piggybacking on Niche Adaptation Improves the Maintenance of Multidrug-Resistance Plasmids. Molecular Biology and Evolution, 2021, 38, 3188-3201.	8.9	23
56	Crystal Structures of Pseudomonas aeruginosa GIM-1: Active-Site Plasticity in Metallo-β-Lactamases. Antimicrobial Agents and Chemotherapy, 2013, 57, 848-854.	3.2	22
57	ZN148 Is a Modular Synthetic Metallo-β-Lactamase Inhibitor That Reverses Carbapenem Resistance in Gram-Negative Pathogens <i>In Vivo</i> . Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	22
58	Structural and biochemical characterization of VIM-26 shows that Leu224 has implications for the substrate specificity of VIM metallo-Î ² -lactamases. FEBS Journal, 2015, 282, 1031-1042.	4.7	21
59	The fight to keep resistance at bay, epidemiology of carbapenemase producing organisms (CPOs), vancomycin resistant enterococci (VRE) and methicillin resistant Staphylococcus aureus (MRSA) in Norway, 2006 - 2017. PLoS ONE, 2019, 14, e0211741.	2.5	20
60	Large IncHI2-plasmids encode extended-spectrum β-lactamases (ESBLs) in Enterobacter spp. bloodstream isolates, and support ESBL-transfer to Escherichia coli. Clinical Microbiology and Infection, 2013, 19, E516-E518.	6.0	19
61	Cryptic \hat{I}^2 -Lactamase Evolution Is Driven by Low \hat{I}^2 -Lactam Concentrations. MSphere, 2021, 6, .	2.9	19
62	Detection of carbapenemases with a newly developed commercial assay using Matrix Assisted Laser Desorption Ionization-Time of Flight. Journal of Microbiological Methods, 2018, 146, 37-39.	1.6	18
63	His224 Alters the R2 Drug Binding Site and Phe218 Influences the Catalytic Efficiency of the Metallo-β-Lactamase VIM-7. Antimicrobial Agents and Chemotherapy, 2014, 58, 4826-4836.	3.2	17
64	Host dependent maintenance of a blaNDM-1-encoding plasmid in clinical Escherichia coli isolates. Scientific Reports, 2020, 10, 9332.	3.3	17
65	Bacterial genomic epidemiology with mixed samples. Microbial Genomics, 2021, 7, .	2.0	17
66	A nationwide genomic study of clinical <i>Klebsiella pneumoniae</i> in Norway 2001–15: introduction and spread of ESBLs facilitated by clonal groups CG15 and CG307. Journal of Antimicrobial Chemotherapy, 2022, 77, 665-674.	3.0	16
67	High prevalence of faecal carriage of ESBL-producing Enterobacteriaceae in Norwegian patients with gastroenteritis. Scandinavian Journal of Infectious Diseases, 2014, 46, 462-465.	1.5	15
68	Impact of extensive antibiotic treatment on faecal carriage of antibiotic-resistant enterobacteria in children in a low resistance prevalence setting. PLoS ONE, 2017, 12, e0187618.	2.5	14
69	Performance of the EUCAST disc diffusion method and two MIC methods in detection of Enterobacteriaceae with reduced susceptibility to meropenem: the NordicAST CPE study. Journal of Antimicrobial Chemotherapy, 2018, 73, 2738-2747.	3.0	13
70	Synthesis and biological evaluation of zinc chelating compounds as metallo-β-lactamase inhibitors. MedChemComm, 2019, 10, 528-537.	3.4	13
71	A high-throughput multiplexing and selection strategy to complete bacterial genomes. GigaScience, 2021, 10, .	6.4	13
72	Interplay of Efflux, Impermeability, and AmpC Activity Contributes to Cefuroxime Resistance in Clinical, Non-ESBL-Producing Isolates ofEscherichia coli. Microbial Drug Resistance, 2009, 15, 91-95.	2.0	12

#	Article	IF	CITATIONS
73	Synthesis and biological evaluation of new dipicolylamine zinc chelators as metallo-β-lactamase inhibitors. Tetrahedron, 2019, 75, 1525-1540.	1.9	10
74	Efficacy of mecillinam against clinical multidrug-resistant Escherichia coli in a murine urinary tract infection model. International Journal of Antimicrobial Agents, 2020, 55, 105851.	2.5	10
75	Complete Genome Sequence of Pseudomonas aeruginosa K34-7, a Carbapenem-Resistant Isolate of the High-Risk Sequence Type 233. Microbiology Resource Announcements, 2018, 7, .	0.6	9
76	Horizontal Plasmid Transfer among Klebsiella pneumoniae Isolates Is the Key Factor for Dissemination of Extended-Spectrum β-Lactamases among Children in Tanzania. MSphere, 2020, 5, .	2.9	9
77	Structural insights into the enhanced carbapenemase efficiency of OXAâ€655 compared to OXAâ€10. FEBS Open Bio, 2020, 10, 1821-1832.	2.3	9
78	The chemotherapeutic drug methotrexate selects for antibiotic resistance. EBioMedicine, 2021, 74, 103742.	6.1	9
79	Evaluation of the total MBL confirm kit (ROSCO) for detection of metallo-β-lactamases in Pseudomonas aeruginosa and Acinetobacter baumannii. Diagnostic Microbiology and Infectious Disease, 2014, 79, 486-488.	1.8	8
80	Role of Residues W228 and Y233 in the Structure and Activity of Metallo-β-Lactamase GIM-1. Antimicrobial Agents and Chemotherapy, 2016, 60, 990-1002.	3.2	8
81	Structural and biochemical characterization of the environmental MBLs MYO-1, ECV-1 and SHD-1. Journal of Antimicrobial Chemotherapy, 2020, 75, 2554-2563.	3.0	8
82	Fecal colonization of VIM-1–producing Klebsiella pneumoniae and in vivo transfer of multidrug-resistant IncN plasmid in a renal transplant patient. Diagnostic Microbiology and Infectious Disease, 2012, 72, 363-366.	1.8	6
83	Identification of a novel IMI carbapenemase variant (IMI-9) in Enterobacter cloacae complex. International Journal of Antimicrobial Agents, 2016, 48, 764-765.	2.5	6
84	Structural Insights into TMB-1 and the Role of Residues 119 and 228 in Substrate and Inhibitor Binding. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	6
85	Carbapenem Resistance Determinants Acquired through Novel Chromosomal Integrations in Extensively Drug-Resistant Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2021, 65, e0028921.	3.2	6
86	Complete Genome Sequence of a Multidrug-Resistant, <i>bla</i> _{NDM-1} -Expressing Klebsiella pneumoniae K66-45 Clinical Isolate from Norway. Genome Announcements, 2017, 5, .	0.8	5
87	Intracellular Transposition and Capture of Mobile Genetic Elements following Intercellular Conjugation of Multidrug Resistance Conjugative Plasmids from Clinical <i>Enterobacteriaceae</i> Isolates. Microbiology Spectrum, 2022, 10, e0214021.	3.0	5
88	Use of a Commercially Available Microarray to Characterize Antibiotic-Resistant Clinical Isolates of Klebsiella pneumoniae. Current Microbiology, 2018, 75, 163-172.	2.2	4
89	First detection of a carbapenemase-producing Enterobacteriaceae in Iceland. Journal of Global Antimicrobial Resistance, 2016, 6, 73-74.	2.2	3
90	Evolutionary Instability of Collateral Susceptibility Networks in Ciprofloxacin-Resistant Clinical Escherichia coli Strains. MBio, 2022, 13, .	4.1	3

#	Article	IF	CITATIONS
91	Evaluation of the Amplex eazyplex® SuperBug Acineto test for detection of acquired OXA and NDM carbapenemases in Acinetobacter spp Journal of Global Antimicrobial Resistance, 2021, 24, 340-341.	2.2	2
92	En kvinne med sepsis etter brannskade i Pakistan. Tidsskrift for Den Norske Laegeforening, 2016, 136, 1228-1232.	0.2	2
93	Phenotypic and genotypic characterisation of thymine auxotrophy in Escherichia coli isolated from a patient with recurrent bloodstream infection. PLoS ONE, 2022, 17, e0270256.	2.5	2
94	Antimicrobial resistance genes and clonal success in Escherichia coli isolates causing bloodstream infection – Authors' reply. Lancet Microbe, The, 2021, 2, e493.	7.3	1
95	Corrigendum to: "Induced resistance to the antimicrobial peptide lactoferricin B inStaphylococcus aureus(FEBS 29639)―[FEBS Lett. 579 (2005) 3421-3426]. FEBS Letters, 2005, 579, 5437-5437.	2.8	0