David R Walt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5040761/publications.pdf

Version: 2024-02-01

53794 42399 9,699 140 45 92 citations h-index g-index papers 159 159 159 11758 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Circulating Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Vaccine Antigen Detected in the Plasma of mRNA-1273 Vaccine Recipients. Clinical Infectious Diseases, 2022, 74, 715-718.	5.8	141
2	Singleâ€Molecule Enzymology for Diagnostics: Profiling Alkaline Phosphatase Activity in Clinical Samples. ChemBioChem, 2022, 23, .	2.6	4
3	Donor Clonal Hematopoiesis and Recipient Outcomes After Transplantation. Journal of Clinical Oncology, 2022, 40, 189-201.	1.6	79
4	High-Sensitivity Single Molecule Array Assays for Pathological Isoforms in Parkinson's Disease. Clinical Chemistry, 2022, 68, 431-440.	3.2	8
5	High-Throughput, High-Multiplex Digital Protein Detection with Attomolar Sensitivity. ACS Nano, 2022, 16, 1025-1035.	14.6	51
6	Zonulin Antagonist, Larazotide (AT1001), As an Adjuvant Treatment for Multisystem Inflammatory Syndrome in Children: A Case Series., 2022, 10, e0641.		15
7	Ectopic Lymphoid Follicle Formation and Human Seasonal Influenza Vaccination Responses Recapitulated in an Organâ€onâ€aâ€Chip. Advanced Science, 2022, 9, e2103241.	11.2	32
8	Reverse Transcriptase Inhibition Disrupts Repeat Element Life Cycle in Colorectal Cancer. Cancer Discovery, 2022, 12, 1462-1481.	9.4	30
9	Single-molecule studies reveal method for tuning the heterogeneous activity of alkaline phosphatase. Biophysical Journal, 2022, 121, 2027-2034.	0.5	6
10	Harmonization of Multiple SARS-CoV-2 Reference Materials Using the WHO IS (NIBSC 20/136): Results and Implications. Frontiers in Microbiology, 2022, 13 , .	3.5	4
11	New Views of Old Proteins: Clarifying the Enigmatic Proteome. Molecular and Cellular Proteomics, 2022, 21, 100254.	3.8	16
12	Sequential Protein Capture in Multiplex Single Molecule Arrays: A Strategy for Eliminating Assay Crossâ€Reactivity. Advanced Healthcare Materials, 2021, 10, e2001111.	7.6	13
13	Single-Molecule Dwell-Time Analysis of Restriction Endonuclease-Mediated DNA Cleavage. Journal of Visualized Experiments, 2021, , .	0.3	1
14	Ultrasensitive Measurement of Both SARS-CoV-2 RNA and Antibodies from Saliva. Analytical Chemistry, 2021, 93, 5365-5370.	6.5	34
15	The American lobster genome reveals insights on longevity, neural, and immune adaptations. Science Advances, 2021, 7, .	10.3	27
16	L1CAM is not associated with extracellular vesicles in human cerebrospinal fluid or plasma. Nature Methods, 2021, 18, 631-634.	19.0	118
17	Evaluation of serological lateral flow assays for severe acute respiratory syndrome coronavirus-2. BMC Infectious Diseases, 2021, 21, 580.	2.9	20
18	Multisystem inflammatory syndrome in children is driven by zonulin-dependent loss of gut mucosal barrier. Journal of Clinical Investigation, 2021, 131, .	8.2	170

#	Article	IF	Citations
19	Evaluation of Three Commercial and Two Non-Commercial Immunoassays for the Detection of Prior Infection to SARS-CoV-2. journal of applied laboratory medicine, The, 2021, 6, 1561-1570.	1.3	14
20	Activity of mRNA COVID-19 vaccines in patients with lymphoid malignancies. Blood Advances, 2021, 5, 3062-3065.	5.2	20
21	Protective heterologous TÂcell immunity in COVID-19 induced by the trivalent MMR and Tdap vaccine antigens. Med, 2021, 2, 1050-1071.e7.	4.4	33
22	A SARSâ€CoVâ€2 Neutralization Assay Using Single Molecule Arrays. Angewandte Chemie - International Edition, 2021, 60, 25966-25972.	13.8	21
23	A Modular Biomaterial Scaffoldâ€Based Vaccine Elicits Durable Adaptive Immunity to Subunit SARSâ€CoVâ€2 Antigens. Advanced Healthcare Materials, 2021, 10, e2101370.	7.6	10
24	Coronavirus antigens as targets of antibody responses. Clinics in Laboratory Medicine, 2021, 42, 97-109.	1.4	1
25	SARS-CoV-2 mRNA Vaccines in Allogeneic Hematopoietic Stem Cell Transplant Recipients: Immunogenicity and Reactogenicity. Clinical Infectious Diseases, 2021, , .	5.8	18
26	Framework for rapid comparison of extracellular vesicle isolation methods. ELife, 2021, 10, .	6.0	51
27	Single-molecule measurements in microwells for clinical applications. Critical Reviews in Clinical Laboratory Sciences, 2020, 57, 270-290.	6.1	23
28	Plasma IL-6 changes correlate to PD-1 inhibitor responses in NSCLC., 2020, 8, e000678.		78
29	Simplified Digital Enzyme-Linked Immunosorbent Assay Using Tyramide Signal Amplification and Fibrin Hydrogels. ACS Sensors, 2020, 5, 3037-3042.	7.8	34
30	Systems Biology Methods Applied to Blood and Tissue for a Comprehensive Analysis of Immune Response to Hepatitis B Vaccine in Adults. Frontiers in Immunology, 2020, 11, 580373.	4.8	28
31	Can mHealth Technology Help Mitigate the Effects of the COVID-19 Pandemic?. IEEE Open Journal of Engineering in Medicine and Biology, 2020, 1, 243-248.	2.3	69
32	Ultrasensitive Detection of Enzymatic Activity Using Single Molecule Arrays. Journal of the American Chemical Society, 2020, 142, 15098-15106.	13.7	27
33	Ultrasensitive high-resolution profiling of early seroconversion in patients with COVID-19. Nature Biomedical Engineering, 2020, 4, 1180-1187.	22.5	110
34	Ultra-Sensitive Serial Profiling of SARS-CoV-2 Antigens and Antibodies in Plasma to Understand Disease Progression in COVID-19 Patients with Severe Disease. Clinical Chemistry, 2020, 66, 1562-1572.	3.2	134
35	Hypothermic Ex Situ Perfusion of Human Limbs With Acellular Solution for 24 Hours. Transplantation, 2020, 104, e260-e270.	1.0	18
36	Ultrasensitive Detection of Attomolar Protein Concentrations by Dropcast Single Molecule Assays. Journal of the American Chemical Society, 2020, 142, 12314-12323.	13.7	90

#	Article	IF	CITATIONS
37	Singleâ€Molecule Analysis Determines Isozymes of Human Alkaline Phosphatase in Serum. Angewandte Chemie, 2020, 132, 18166-18171.	2.0	3
38	Singleâ€Molecule Analysis Determines Isozymes of Human Alkaline Phosphatase in Serum. Angewandte Chemie - International Edition, 2020, 59, 18010-18015.	13.8	36
39	Simultaneous detection of small molecules, proteins and microRNAs using single molecule arrays. Chemical Science, 2020, 11, 7896-7903.	7.4	45
40	Single Molecule Protein Detection with Attomolar Sensitivity Using Droplet Digital Enzyme-Linked Immunosorbent Assay. ACS Nano, 2020, 14, 9491-9501.	14.6	138
41	Single-Molecule Arrays for Ultrasensitive Detection of Blood-Based Biomarkers for Immunotherapy. Methods in Molecular Biology, 2020, 2055, 399-412.	0.9	5
42	Highly Sensitive and Multiplexed Protein Measurements. Chemical Reviews, 2019, 119, 293-321.	47.7	187
43	A rapid triage test for active pulmonary tuberculosis in adult patients with persistent cough. Science Translational Medicine, 2019, 11, .	12.4	44
44	Single-Molecule Mechanistic Study of Enzyme Hysteresis. ACS Central Science, 2019, 5, 1691-1698.	11.3	23
45	Accumulation mechanism of indigo and indirubin in Polygonum tinctorium revealed by metabolite and transcriptome analysis. Industrial Crops and Products, 2019, 141, 111783.	5.2	11
46	Protein Detection by Counting Molecules. Clinical Chemistry, 2019, 65, 809-810.	3.2	4
47	Impact of clinical sample handling and processing on ultra-low level measurements of plasma cytokines. Clinical Biochemistry, 2019, 65, 38-44.	1.9	18
48	Detection of amyloid \hat{l}^2 oligomers toward early diagnosis of Alzheimer's disease. Analytical Biochemistry, 2019, 566, 40-45.	2.4	25
49	Clinical testing should be individualized, not based on populations. Journal of Clinical Investigation, 2019, 129, 3472-3473.	8.2	5
50	How many human proteoforms are there?. Nature Chemical Biology, 2018, 14, 206-214.	8.0	580
51	Ultrasensitive Single-Molecule Enzyme Detection and Analysis Using a Polymer Microarray. Analytical Chemistry, 2018, 90, 3091-3098.	6.5	18
52	Single Molecule Arrays for ultra-sensitive detection of rat cytokines in serum. Journal of Immunological Methods, 2018, 452, 20-25.	1.4	10
53	Competitive Immunoassays for the Detection of Small Molecules Using Single Molecule Arrays. Journal of the American Chemical Society, 2018, 140, 18132-18139.	13.7	102
54	Evaluation of Antibody Biotinylation Approaches for Enhanced Sensitivity of Single Molecule Array (Simoa) Immunoassays. Bioconjugate Chemistry, 2018, 29, 3452-3458.	3.6	22

#	Article	IF	Citations
55	Bottom-up single-molecule strategy for understanding subunit function of tetrameric \hat{l}^2 -galactosidase. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8346-8351.	7.1	14
56	Finding useful biomarkers for Parkinson's disease. Science Translational Medicine, 2018, 10, .	12.4	125
57	Single-Molecule Arrays for Protein and Nucleic Acid Analysis. Annual Review of Analytical Chemistry, 2017, 10, 345-363.	5.4	101
58	Long-Term Measurements of Human Inflammatory Cytokines Reveal Complex Baseline Variations between Individuals. American Journal of Pathology, 2017, 187, 2620-2626.	3.8	34
59	Using Next-Generation Sequencing to Explore Genetics and Race in the High School Classroom. CBE Life Sciences Education, 2017, 16, ar22.	2.3	9
60	Digital direct detection of microRNAs using single molecule arrays. Nucleic Acids Research, 2017, 45, e137-e137.	14.5	91
61	Parkinson's disease biomarkers: perspective from the NINDS Parkinson's Disease Biomarkers Program. Biomarkers in Medicine, 2017, 11, 451-473.	1.4	49
62	Rapid and ultrasensitive detection of botulinum neurotoxin serotype A1 in human serum and urine using single-molecule array method. Forensic Toxicology, 2017, 35, 179-184.	2.4	10
63	Development of a Rapid Salivary Proteomic Platform for Oral Feeding Readiness in the Preterm Newborn. Frontiers in Pediatrics, 2017, 5, 268.	1.9	7
64	Incorporation of Slow Off-Rate Modified Aptamers Reagents in Single Molecule Array Assays for Cytokine Detection with Ultrahigh Sensitivity. Analytical Chemistry, 2016, 88, 8385-8389.	6.5	31
65	Personal microbiomes and next-generation sequencing for laboratory-based education. FEMS Microbiology Letters, 2016, 363, fnw266.	1.8	19
66	Using Antigen–antibody Binding Kinetic Parameters to Understand Single-Molecule Array Immunoassay Performance. Analytical Chemistry, 2016, 88, 11335-11339.	6.5	23
67	Protein Counting in Single Cancer Cells. Analytical Chemistry, 2016, 88, 2952-2957.	6.5	37
68	Correlations of Salivary Biomarkers with Clinical Assessments in Patients with Cystic Fibrosis. PLoS ONE, 2015, 10, e0135237.	2.5	18
69	Fiber-optic array using molecularly imprinted microspheres for antibiotic analysis. Chemical Science, 2015, 6, 3139-3147.	7.4	44
70	Ultrasensitive Detection of Ricin Toxin in Multiple Sample Matrixes Using Single-Domain Antibodies. Analytical Chemistry, 2015, 87, 6570-6577.	6.5	45
71	Stoichiometry of the \hat{l} ±-Complementation Reaction of Escherichia coli \hat{l} 2-Galactosidase As Revealed through Single-Molecule Studies. Biochemistry, 2015, 54, 1583-1588.	2.5	10
72	Catalytic kinetics of single gold nanoparticles observed via optical microwell arrays. Nanotechnology, 2015, 26, 055704.	2.6	7

#	Article	IF	Citations
73	Ultra-sensitive protein detection via Single Molecule Arrays towards early stage cancer monitoring. Scientific Reports, 2015, 5, 11034.	3.3	43
74	Single-Molecule Arrays for Ultrasensitive Detection of Host Immune Response to Dengue Virus Infection. Journal of Clinical Microbiology, 2015, 53, 1722-1724.	3.9	21
75	Salivary Diagnostics Using a Portable Point-of-Service Platform: A Review. Clinical Therapeutics, 2015, 37, 498-504.	2.5	21
76	Single molecule array (Simoa) assay with optimal antibody pairs for cytokine detection in human serum samples. Analyst, The, 2015, 140, 6277-6282.	3.5	69
77	Observing Single Enzyme Molecules Interconvert between Activity States upon Heating. PLoS ONE, 2014, 9, e86224.	2.5	17
78	Advancing the speed, sensitivity and accuracy of biomolecular detection using multi-length-scale engineering. Nature Nanotechnology, 2014, 9, 969-980.	31.5	349
79	An automated integrated platform for rapid and sensitive multiplexed protein profiling using human saliva samples. Lab on A Chip, 2014, 14, 1087.	6.0	54
80	Elucidating the relationship between substrate and inhibitor binding to the active sites of tetrameric \hat{l}^2 -galactosidase. Chemical Science, 2014, 5, 4467-4473.	7.4	10
81	Protein measurements in microwells. Lab on A Chip, 2014, 14, 3195-3200.	6.0	31
82	Disease Detection by Ultrasensitive Quantification of Microdosed Synthetic Urinary Biomarkers. Journal of the American Chemical Society, 2014, 136, 13709-13714.	13.7	50
83	Salivary Inflammatory Mediator Profiling and Correlation to Clinical Disease Markers in Asthma. PLoS ONE, 2014, 9, e84449.	2.5	35
84	Genome-Wide SNP-Genotyping Array to Study the Evolution of the Human Pathogen Vibrio vulnificus Biotype 3. PLoS ONE, 2014, 9, e114576.	2.5	22
85	Multiplexed Salivary Protein Profiling for Patients with Respiratory Diseases Using Fiber-Optic Bundles and Fluorescent Antibody-Based Microarrays. Analytical Chemistry, 2013, 85, 9272-9280.	6.5	26
86	Direct Detection of Bacterial Genomic DNA at Sub-Femtomolar Concentrations Using Single Molecule Arrays. Analytical Chemistry, 2013, 85, 1932-1939.	6.5	73
87	Optical Methods for Single Molecule Detection and Analysis. Analytical Chemistry, 2013, 85, 1258-1263.	6.5	185
88	Multiplexed Fluorescent Microarray for Human Salivary Protein Analysis Using Polymer Microspheres and Fiber-optic Bundles. Journal of Visualized Experiments, 2013, , .	0.3	4
89	Robust error correction in infofuses. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468, 361-377.	2.1	0
90	Oil-sealed femtoliter fiber-optic arrays for single molecule analysis. Lab on A Chip, 2012, 12, 2229.	6.0	41

#	Article	IF	CITATIONS
91	Lessons learned from the introduction of personalized genotyping into a medical school curriculum. Genetics in Medicine, 2011, 13, 63-66.	2.4	54
92	Analytical Chemistry on the Femtoliter Scale. Angewandte Chemie - International Edition, 2010, 49, 3880-3895.	13.8	72
93	Bead-based optical fiber arrays for artificial olfaction. Current Opinion in Chemical Biology, 2010, 14, 767-770.	6.1	22
94	Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nature Biotechnology, 2010, 28, 595-599.	17.5	1,557
95	Synthesis and Biological Testing of Penicillins: An Investigative Approach to the Undergraduate Teaching Laboratory. Journal of Chemical Education, 2010, 87, 634-636.	2.3	8
96	Fibre optic microarrays. Chemical Society Reviews, 2010, 39, 38-50.	38.1	97
97	CMOS Microelectrode Array for Electrochemical Lab-on-a-Chip Applications. IEEE Sensors Journal, 2009, 9, 609-615.	4.7	58
98	Mechanistic Aspects of Horseradish Peroxidase Elucidated through Single-Molecule Studies. Journal of the American Chemical Society, 2009, 131, 6277-6282.	13.7	129
99	Ubiquitous Sensors: When Will They Be Here?. ACS Nano, 2009, 3, 2876-2880.	14.6	32
100	Microsphere-Based Rolling Circle Amplification Microarray for the Detection of DNA and Proteins in a Single Assay. Analytical Chemistry, 2009, 81, 5777-5782.	6.5	78
101	Distinct and Long-Lived Activity States of Single Enzyme Molecules. Journal of the American Chemical Society, 2008, 130, 5349-5353.	13.7	119
102	Detection of Single-Molecule DNA Hybridization Using Enzymatic Amplification in an Array of Femtoliter-Sized Reaction Vessels. Journal of the American Chemical Society, 2008, 130, 12622-12623.	13.7	67
103	Stochastic inhibitor release and binding from single-enzyme molecules. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17680-17685.	7.1	115
104	Opticalâ€fiber bundles. FEBS Journal, 2007, 274, 5462-5470.	4.7	44
105	Microsensor Arrays for Saliva Diagnostics. Annals of the New York Academy of Sciences, 2007, 1098, 389-400.	3.8	39
106	Digital Concentration Readout of Single Enzyme Molecules Using Femtoliter Arrays and Poisson Statistics. Nano Letters, 2006, 6, 520-523.	9.1	177
107	Digital Readout of Target Binding with Attomole Detection Limits via Enzyme Amplification in Femtoliter Arrays. Journal of the American Chemical Society, 2006, 128, 6286-6287.	13.7	90
108	Duplexed sandwich immunoassays on a fiber-optic microarray. Analytica Chimica Acta, 2006, 564, 34-39.	5.4	41

#	Article	IF	Citations
109	Synthesis of gold-poly(methyl methacrylate) core-shell nanoparticles by surface-confined atom transfer radical polymerization at elevated temperature. Journal of Polymer Science Part A, 2005, 43, 3631-3642.	2.3	55
110	CHEMISTRY: Miniature Analytical Methods for Medical Diagnostics. Science, 2005, 308, 217-219.	12.6	114
111	Progress toward the determination of Sr2+ in highly basic solutions using imaging optical fiber sensor arrays. Journal of Materials Chemistry, 2005, 15, 4361.	6.7	5
112	An imaging fiber-based optical tweezer array for microparticle array assembly. Applied Physics Letters, 2004, 84, 4289-4291.	3.3	53
113	Cross-Reactive Optical Sensing Arrays. ACS Symposium Series, 2002, , 318-329.	0.5	3
114	Imaging optical sensor arrays. Current Opinion in Chemical Biology, 2002, 6, 689-695.	6.1	46
115	Randomly-Ordered High-Density Fiber Optic Microsensor Array Sensors. ACS Symposium Series, 2002, , 129-148.	0.5	1
116	Nanosphereâ^'Microsphere Assembly:Â Methods for Coreâ^'Shell Materials Preparation. Chemistry of Materials, 2001, 13, 2210-2216.	6.7	232
117	Novel Colloidal Assembly Methods for the Preparation of Core-Shell Composite Materials. Materials Research Society Symposia Proceedings, 2000, 636, 9171.	0.1	0
118	Screening unlabeled DNA targets with randomly ordered fiber-optic gene arrays. Nature Biotechnology, 2000, 18, 91-94.	17.5	273
119	A Combinatorial Approach To Discover New Chelators for Optical Metal Ion Sensing. Analytical Chemistry, 2000, 72, 5250-5257.	6.5	65
120	Fluorescent Excitation Transfer Immunoassay for the Determination of Spinosyn A in Water. Journal of Agricultural and Food Chemistry, 1999, 47, 2766-2770.	5.2	8
121	An Autonomous Sensor and Telemetry System for Low-Level pCO2Measurements in Seawater. Analytical Chemistry, 1999, 71, 154-161.	6.5	45
122	Convergent, Self-Encoded Bead Sensor Arrays in the Design of an Artificial Nose. Analytical Chemistry, 1999, 71, 2192-2198.	6.5	179
123	An olfactory neuronal network for vapor recognition in an artificial nose. Biological Cybernetics, 1998, 78, 245-251.	1.3	58
124	Randomly Ordered Addressable High-Density Optical Sensor Arrays. Analytical Chemistry, 1998, 70, 1242-1248.	6.5	318
125	The Use of Optical-Imaging Fibers for the Fabrication of Array Sensors. ACS Symposium Series, 1998, , 273-289.	0.5	3
126	Toward a near-field optical array. Review of Scientific Instruments, 1997, 68, 1357-1359.	1.3	43

#	Article	IF	CITATIONS
127	Oxygen Sensing Properties of a New Ruthenium (II) Compound. Analytical Letters, 1997, 30, 2289-2299.	1.8	4
128	Fluorescence monitoring of the microenvironmental pH of highly charged polymers. Journal of Polymer Science Part A, 1997, 35, 2105-2110.	2.3	15
129	Ordered Nanowell Arrays. Chemistry of Materials, 1996, 8, 2832-2835.	6.7	146
130	A chemical-detecting system based on a cross-reactive optical sensor array. Nature, 1996, 382, 697-700.	27.8	406
131	A Fiber-Optic Carbon Dioxide Sensor for Fermentation Monitoring. Nature Biotechnology, 1995, 13, 597-601.	17.5	44
132	Self-Regenerating Fiber-Optic Sensors. ACS Symposium Series, 1995, , 186-196.	0.5	0
133	Fiber-Optic Sensors Based on Degradable Polymers. ACS Symposium Series, 1994, , 21-33.	0.5	0
134	Fiber-optic Sensor for Continuous Monitoring of Fermentation pH. Nature Biotechnology, 1993, 11, 726-729.	17.5	30
135	Optical Immunosensors Using Controlled-Release Polymers. ACS Symposium Series, 1992, , 310-320.	0.5	2
136	pH-Dependent fluorescence and singlet energy transfer in water-soluble polymers containing eosin and phenol red chromophores. Journal of Fluorescence, 1992, 2, 231-235.	2.5	3
137	A fibre-optic chemical sensor with discrete sensing sites. Nature, 1991, 353, 338-340.	27.8	98
138	Optical Electronic Noses. , 0, , 181-199.		1
139	A SARSâ€CoVâ€2 Neutralization Assay using Single Molecule Arrays. Angewandte Chemie, 0, , .	2.0	5
140	Systematic Approach to Address Early Pandemic's Diagnostic Unmet Needs. Frontiers in Microbiology, 0, 13, .	3 . 5	2