Kin-Weng Kong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5040362/publications.pdf

Version: 2024-02-01

279778 265191 45 1,895 23 42 citations h-index g-index papers 46 46 46 2778 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Carotenoids and Their Isomers: Color Pigments in Fruits and Vegetables. Molecules, 2011, 16, 1710-1738.	3.8	382
2	Revealing the Power of the Natural Red Pigment Lycopene. Molecules, 2010, 15, 959-987.	3.8	188
3	Response surface optimisation for the extraction of phenolic compounds and antioxidant capacities of underutilised Mangifera pajang Kosterm. peels. Food Chemistry, 2011, 128, 1121-1127.	8.2	145
4	Two level half factorial design for the extraction of phenolics, flavonoids and antioxidants recovery from palm kernel by-product. Industrial Crops and Products, 2015, 63, 238-248.	5.2	109
5	Antioxidant activities and polyphenolics from the shoots of Barringtonia racemosa (L.) Spreng in a polar to apolar medium system. Food Chemistry, 2012, 134, 324-332.	8.2	86
6	Correlation of antioxidant activities with theoretical studies for new hydrazone compounds bearing a 3,4,5-trimethoxy benzyl moiety. European Journal of Medicinal Chemistry, 2015, 103, 497-505.	5.5	58
7	Antioxidant Capacities of Peel, Pulp, and Seed Fractions of <i>Canarium odontophyllum</i> Miq. Fruit. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-8.	3.0	57
8	Malaysian brown seaweeds Sargassum siliquosum and Sargassum polycystum: Low density lipoprotein (LDL) oxidation, angiotensin converting enzyme (ACE), α-amylase, and α-glucosidase inhibition activities. Food Research International, 2017, 99, 950-958.	6.2	52
9	Lycopene content and lipophilic antioxidant capacity of by-products from Psidium guajava fruits produced during puree production industry. Food and Bioproducts Processing, 2011, 89, 53-61.	3.6	49
10	Phytochemicals and Antioxidant Capacity from <i>Nypa fruticans</i> Wurmb. Fruit. Evidence-based Complementary and Alternative Medicine, 2013, 2013, 1-9.	1.2	47
11	Optimization of oven drying conditions for lycopene content and lipophilic antioxidant capacity in a by-product of the pink guava puree industry using response surface methodology. LWT - Food Science and Technology, 2010, 43, 729-735.	5.2	43
12	Phytochemicals and Medicinal Properties of Indigenous Tropical Fruits with Potential for Commercial Development. Evidence-based Complementary and Alternative Medicine, 2016, 2016, 1-20.	1,2	43
13	Banana inflorescence: Its bio-prospects as an ingredient for functional foods. Trends in Food Science and Technology, 2020, 97, 14-28.	15.1	40
14	Pomegranate peel-derived punicalagin: Ultrasonic-assisted extraction, purification, and its α-glucosidase inhibitory mechanism. Food Chemistry, 2022, 374, 131635.	8.2	40
15	Extraction and recovery of phytochemical components and antioxidative properties in fruit parts of Dacryodes rostrata influenced by different solvents. Journal of Food Science and Technology, 2018, 55, 2523-2532.	2.8	38
16	Lycopene-rich fractions derived from pink guava by-product and their potential activity towards hydrogen peroxide-induced cellular and DNA damage. Food Chemistry, 2010, 123, 1142-1148.	8.2	37
17	Phytochemicals, essential oils, and bioactivities of an underutilized wild fruit Cili (Rosa roxburghii). Industrial Crops and Products, 2020, 143, 111928.	5.2	37
18	Perilla frutescens Leaf Extract and Fractions: Polyphenol Composition, Antioxidant, Enzymes (α-Glucosidase, Acetylcholinesterase, and Tyrosinase) Inhibitory, Anticancer, and Antidiabetic Activities. Foods, 2021, 10, 315.	4.3	36

#	Article	IF	CITATIONS
19	Solid-liquid extraction of bioactive compounds with antioxidant potential from Alternanthera sesillis (red) and identification of the polyphenols using UHPLC-QqQ-MS/MS. Food Research International, 2019, 115, 241-250.	6.2	34
20	Epicatechin content and antioxidant capacity of cocoa beans from four different countries. African Journal of Biotechnology, 2010, 9, 1052-1059.	0.6	33
21	Separation, Identification, and Bioactivities of the Main Gallotannins of Red Sword Bean (Canavalia) Tj ETQq $1\ 1\ 0$	0.784314 3.6	rgBT/Overlo
22	Response surface optimisation for the extraction of phenolics and flavonoids from a pink guava puree industrial byâ€product. International Journal of Food Science and Technology, 2010, 45, 1739-1745.	2.7	30
23	Polyphenols in Barringtonia racemosa and their protection against oxidation of LDL, serum and haemoglobin. Food Chemistry, 2014, 146, 85-93.	8.2	28
24	Protective effects of the extracts of <i>Barringtonia racemosa </i> shoots against oxidative damage in HepG2 cells. PeerJ, 2016, 4, e1628.	2.0	25
25	Determination and Optimization of Flavonoid and Extract Yield from Brown Mango using Response Surface Methodology. Separation Science and Technology, 2012, 47, 73-80.	2.5	23
26	Nutritional constituents and antioxidant properties of indigenous kembayau (Dacryodes rostrata) Tj ETQq0 0 0 0	rgBT /Over	lock 10 Tf 50
27	Dose–Response Effect of Tualang Honey on Postprandial Antioxidant Activity and Oxidative Stress in Female Athletes: A Pilot Study. Journal of Alternative and Complementary Medicine, 2017, 23, 989-995.	2.1	22
28	Application of Two-Level Full Factorial Design for the Extraction of Fucoxanthin and Antioxidant Activities from <i>Sargassum siliquosum</i> and <i>Sargassum polycystum</i> Journal of Aquatic Food Product Technology, 2018, 27, 446-463.	1.4	21
29	Phenolic profiles, antioxidant activities, and antiproliferative activities of different mung bean (Vigna) Tj ETQq1 I	0.78431	4 rggT /Overlo
30	The Role of 1â€Methylcyclopropene in the regulation of ethylene biosynthesis and ethylene receptor gene expression in <i>Mangifera indica</i> L. (Mango Fruit). Food Science and Nutrition, 2020, 8, 1284-1294.	3.4	17
31	Multiple extraction conditions to produce phytochemical- and antioxidant-rich Alternanthera sessilis (red) extracts that attenuate lipid accumulation in steatotic HepG2 cells. Food Bioscience, 2019, 32, 100489.	4.4	14
32	Extraction of carotenoids and applications. , 2020, , 259-288.		13
33	Comparative Evaluation of Antioxidant Properties and Isoflavones of Tempeh Fermented in Two Different Wrapping Materials. Current Research in Nutrition and Food Science, 2018, 6, 307-317.	0.8	11
34	Phytochemical Composition, Antioxidant Activity, and Enzyme Inhibitory Activities (α-Glucosidase,) Tj ETQq0 0 () rgBT /Ov	erlock 10 Tf 5
35	Antioxidant-rich leaf extract of Barringtonia racemosasignificantly alters thein vitroexpression of genes encoding enzymes that are involved in methylglyoxal degradation III. Peerl, 2016, 4, e2379.	2.0	9
36	The influence of probiotic fermentation on the active compounds and bioactivities of walnut flowers. Journal of Food Biochemistry, 2022, 46, e13887.	2.9	8

#	Article	IF	Citations
37	Nutritional values and bioactive components of underâ€utilised vegetables consumed by indigenous people in Malaysia. Journal of the Science of Food and Agriculture, 2015, 95, 2704-2711.	3.5	7
38	Phytochemicals of six selected herbal plants and their inhibitory activities towards free radicals and glycation. Food Bioscience, 2022, 46, 101557.	4.4	6
39	Phytochemicals in Barringtonia species: Linking their traditional uses as food and medicine with current research. Journal of Herbal Medicine, 2020, 19, 100299.	2.0	4
40	Determination of nutritional constituents, antioxidant properties, and \hat{l}_{\pm} -amylase inhibitory activity of Sechium edule (chayote) shoot from different extraction solvents and cooking methods. LWT - Food Science and Technology, 2021, 151, 112177.	5.2	4
41	Effects of Alternanthera sessilis Red leaf extracts on hydrogen peroxide-induced oxidative stress in HepG2 cells and identification of phytochemicals using HPLC-QToF-MS/MS. South African Journal of Botany, 2022, 151, 440-450.	2.5	3
42	Carotenoids and Their Geometry Isomers in Selected Tropical Fruits. International Journal of Food Properties, 2013, 16, 826-837.	3.0	2
43	Identification of Novel Sesamol Dimers with Unusual Methylenedioxy Ring-Opening Skeleton and Evaluation of Their Antioxidant and Cytotoxic Activities. Current Organic Synthesis, 2020, 16, 1166-1173.	1.3	2
44	Valorisation of mango (Mangifera indica) kernel as an ingredient of macaron: sensory acceptance and physicochemical properties. British Food Journal, 2021, ahead-of-print, .	2.9	2
45	Phytochemicals Against Cancer Stem Cells. , 2018, , 559-582.		1