Zhiyun Lin

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5040120/zhiyun-lin-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 154
 4,026
 28
 61

 papers
 citations
 h-index
 g-index

 198
 5,158
 3.6
 5.78

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
154	Target-Value-Competition-Based Multi-agent Deep Reinforcement Learning Algorithm for Distributed Nonconvex Economic Dispatch. <i>IEEE Transactions on Power Systems</i> , 2022 , 1-1	7	O
153	Distributed fixed-time resource allocation algorithm for the general linear multi-agent systems. <i>IEEE Transactions on Circuits and Systems II: Express Briefs</i> , 2022 , 1-1	3.5	1
152	Nonlinear Model Predictive Control of Single-Link Flexible-Joint Robot Using Recurrent Neural Network and Differential Evolution Optimization. <i>Electronics (Switzerland)</i> , 2021 , 10, 2426	2.6	3
151	An exponentially convergent distributed algorithm for resource allocation problem. <i>Asian Journal of Control</i> , 2021 , 23, 1072-1082	1.7	О
150	Reach almost sure consensus via L-norm group information. European Journal of Control, 2021 , 59, 207	-2 <u>1</u> .5	
149	Random grouping based resilient beamforming. <i>Automatica</i> , 2021 , 123, 109309	5.7	1
148	Distributed dynamic event-triggered algorithm with minimum inter-event time for multi-agent convex optimisation. <i>International Journal of Systems Science</i> , 2021 , 52, 1440-1451	2.3	4
147	. IEEE Transactions on Automatic Control, 2021 , 1-1	5.9	2
146	Distributed Event-Triggered Approach for Multi-Agent Formation Based on Cooperative Localization with Mixed Measurements. <i>Electronics (Switzerland)</i> , 2021 , 10, 2265	2.6	3
145	Bearing-only distributed localization: A unified barycentric approach. <i>Automatica</i> , 2021 , 133, 109834	5.7	3
144	Distributed algorithm for a finite time horizon resource allocation over a directed network. <i>IET Control Theory and Applications</i> , 2020 , 14, 1170-1182	2.5	1
143	Distributed dynamic event-triggered algorithm with positive minimum inter-event time for convex optimisation problem. <i>International Journal of Control</i> , 2020 , 1-8	1.5	2
142	Distributed Affine Formation Tracking Control of Multiple Fixed-Wing UAVs 2020,		3
141	Tight bound on parameter of surplus-based averaging algorithm over balanced digraphs. <i>International Journal of Control</i> , 2020 , 93, 1859-1866	1.5	3
140	Distributed optimization for economic power dispatch with event-triggered communication. <i>Asian Journal of Control</i> , 2020 , 22, 2412-2421	1.7	5
139	Distributed optimization algorithm for economic dispatch: A bisectional approach 2020 , 177-202		
138	Optimal Charging and Discharging Control of Plug-in Hybrid Electric Vehicles in a System-level Power Distribution Network. <i>Journal of Physics: Conference Series</i> , 2019 , 1304, 012012	0.3	1

(2016-2019)

137	Multi-Objective Optimal Charging Control of Plug-In Hybrid Electric Vehicles in Power Distribution Systems. <i>Energies</i> , 2019 , 12, 2563	3.1	7
136	Multi-Objective Optimization for Cyber-Physical-Social Systems: A Case Study of Electric Vehicles Charging and Discharging. <i>IEEE Access</i> , 2019 , 7, 76754-76767	3.5	11
135	Theory and Algorithms in Distributed Localization for Multi-Vehicle Networks Using Graph Laplacian Techniques 2019 , 319-333		1
134	On Active Disturbance Rejection Control for Path Following of Automated Guided Vehicle with Uncertain Velocities 2019 ,		4
133	A Distributed Algorithm with Event-Triggered Communication for Resource Allocation Problem 2019 ,		2
132	Integrated Relative Localization and Leader Hollower Formation Control. <i>IEEE Transactions on Automatic Control</i> , 2019 , 64, 20-34	5.9	59
131	A Barycentric Coordinate-Based Approach to Formation Control Under Directed and Switching Sensing Graphs. <i>IEEE Transactions on Cybernetics</i> , 2018 , 48, 1202-1215	10.2	25
130	Coordinate-free formation control of multi-agent systems using rooted graphs. <i>Systems and Control Letters</i> , 2018 , 119, 8-15	2.4	3
129	Application of online supervisory control of discrete-event systems to multi-robot warehouse automation. <i>Control Engineering Practice</i> , 2018 , 81, 97-104	3.9	11
128	Integrating Vector Field Approach and Input-to-State Stability Curved Path Following for Unmanned Aerial Vehicles. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> , 2018 , 1-8	7.3	16
127	. IEEE Transactions on Signal Processing, 2017 , 65, 2600-2612	4.8	49
126	Distributed localization with mixed measurements under switching topologies. <i>Automatica</i> , 2017 , 76, 251-257	5.7	13
125	Fast centralized integer resource allocation algorithm and its distributed extension over digraphs. <i>Neurocomputing</i> , 2017 , 270, 91-100	5.4	4
124	Distributed algorithm for dynamic economic power dispatch with energy storage in smart grids. <i>IET Control Theory and Applications</i> , 2017 , 11, 1813-1821	2.5	2 0
123	A new decentralized algorithm for optimal load shifting via electric vehicles 2017,		6
122	A barycentric coordinate based approach to three-dimensional distributed localization for wireless sensor networks 2017 ,		8
121	A Graph Laplacian Approach to Coordinate-Free Formation Stabilization for Directed Networks. <i>IEEE Transactions on Automatic Control</i> , 2016 , 61, 1269-1280	5.9	67
120	Quantification for the importance degree of engineering characteristics with a multi-level hierarchical structure in QFD. <i>International Journal of Production Research</i> , 2016 , 54, 1627-1649	7.8	31

119	Distributed Localization for 2-D Sensor Networks With Bearing-Only Measurements Under Switching Topologies. <i>IEEE Transactions on Signal Processing</i> , 2016 , 64, 6345-6359	4.8	27
118	A sustainable running criterion for biped balance control. <i>Transactions of the Institute of Measurement and Control</i> , 2016 , 38, 62-72	1.8	1
117	Coupling mechanical design and control design for energy-efficient and stable walking of a compass-like biped. <i>Transactions of the Institute of Measurement and Control</i> , 2016 , 38, 253-265	1.8	11
116	Combined Flocking and Distance-Based Shape Control of Multi-Agent Formations. <i>IEEE Transactions on Automatic Control</i> , 2016 , 61, 1824-1837	5.9	68
115	A distributed algorithm for efficiently solving linear equations and its applications (Special Issue JCW). <i>Systems and Control Letters</i> , 2016 , 91, 21-27	2.4	38
114	Necessary and Sufficient Graphical Conditions for Affine Formation Control. <i>IEEE Transactions on Automatic Control</i> , 2016 , 61, 2877-2891	5.9	78
113	Performance Analysis of Raptor Codes Under Maximum Likelihood Decoding. <i>IEEE Transactions on Communications</i> , 2016 , 64, 906-917	6.9	10
112	Formation Control With Size Scaling Via a Complex Laplacian-Based Approach. <i>IEEE Transactions on Cybernetics</i> , 2016 , 46, 2348-2359	10.2	66
111	Distributed Source Localization of Multi-Agent Systems With Bearing Angle Measurements. <i>IEEE Transactions on Automatic Control</i> , 2016 , 61, 1105-1110	5.9	14
110	Decentralized Optimal Scheduling for Charging and Discharging of Plug-In Electric Vehicles in Smart Grids. <i>IEEE Transactions on Power Systems</i> , 2016 , 31, 4118-4127	7	87
109	A game-theoretic approach to decentralized control of heterogeneous load population. <i>Electric Power Systems Research</i> , 2016 , 140, 552-559	3.5	3
108	Balance control of planar biped robots using virtual holonomic constraints. <i>Robotica</i> , 2016 , 34, 1227-124	4 2 .1	1
107	A new framework of electrical cyber physical systems 2016 ,		1
106	Global stabilization of rigid formations via sliding mode control 2016 ,		1
105	Formation control of heterogeneous agents over directed graphs 2016,		2
104	Assessing electric cyber-physical system using integrated co-simulation platform 2016,		1
103	On the necessity of the invariance conditions for reach control on polytopes. <i>Systems and Control Letters</i> , 2016 , 90, 16-19	2.4	4
102	On modeling of electrical cyber-physical systems considering cyber security. <i>Frontiers of Information Technology and Electronic Engineering</i> , 2016 , 17, 465-478	2.2	30

(2015-2016)

101	Single landmark based collaborative multi-agent localization with time-varying range measurements and information sharing. <i>Systems and Control Letters</i> , 2016 , 87, 56-63	2.4	9
100	Energy-Efficient Time Synchronization in Wireless Sensor Networks via Temperature-Aware Compensation. <i>ACM Transactions on Sensor Networks</i> , 2016 , 12, 1-29	2.9	14
99	Reprint of A distributed algorithm for efficiently solving linear equations and its applications (Special Issue JCW) (Special	2.4	
98	A single-mobile-anchor based distributed localization scheme for sensor networks 2016 ,		2
97	Three-dimensional formation merging control under directed and switching topologies. <i>Automatica</i> , 2015 , 58, 99-105	5.7	14
96	Distributed coordination in multi-agent systems: a graph Laplacian perspective. <i>Frontiers of Information Technology and Electronic Engineering</i> , 2015 , 16, 429-448	2.2	13
95	Stability and agility: biped running over varied and unknown terrain. <i>Frontiers of Information Technology and Electronic Engineering</i> , 2015 , 16, 283-292	2.2	3
94	Distributed Bisection Method for Economic Power Dispatch in Smart Grid. <i>IEEE Transactions on Power Systems</i> , 2015 , 30, 3024-3035	7	100
93	An ADMM + consensus based distributed algorithm for dynamic economic power dispatch in smart grid 2015 ,		8
92	. IEEE Transactions on Smart Grid, 2015 , 6, 726-736	10.7	99
91	Feedback control for compass-like biped robot with underactuated ankles using transverse coordinate transformation. <i>Robotica</i> , 2015 , 33, 563-577	2.1	6
90	Stable walking of 3D compass-like biped robot with underactuated ankles using discrete transverse linearization. <i>Transactions of the Institute of Measurement and Control</i> , 2015 , 37, 1074-1083	1.8	10
89	Distributed Kalman filter for relative sensing networks 2015 ,		1
89 88	Distributed Kalman filter for relative sensing networks 2015 , Controllability analysis of second-ordermulti-agent systems with directed andweighted interconnection. <i>Frontiers of Information Technology and Electronic Engineering</i> , 2015 , 16, 838-847	2.2	1
	Controllability analysis of second-ordermulti-agent systemswith directed andweighted		1
88	Controllability analysis of second-ordermulti-agent systems with directed andweighted interconnection. <i>Frontiers of Information Technology and Electronic Engineering</i> , 2015 , 16, 838-847		
88	Controllability analysis of second-ordermulti-agent systems with directed andweighted interconnection. <i>Frontiers of Information Technology and Electronic Engineering</i> , 2015 , 16, 838-847 Scheduling parallel Kalman filters with quantized deadlines. <i>Systems and Control Letters</i> , 2015 , 86, 9-15 Distributed Self Localization for Relative Position Sensing Networks in 2D Space. <i>IEEE Transactions</i>	2.4	1

83	A barycentric coordinate based approach to formation control of multi-agent systems under directed and switching topologies 2015 ,		5
82	A distributed algorithm for efficiently solving linear equations 2015 ,		4
81	A fully distributed approach to resource allocation problem under directed and switching topologies 2015 ,		1
80	A Switching Control Strategy for Energy Efficient Walking on Uneven Surfaces. <i>International Journal of Humanoid Robotics</i> , 2015 , 12, 1550015	1.2	1
79	Decentralized PWM-based charging control for plug-in electric vehicles 2015,		4
78	Distributed algorithm for economic power dispatch including transmission losses 2015,		4
77	Reach almost sure consensus with only group information. <i>Automatica</i> , 2015 , 52, 283-289	5.7	9
76	Distributed control for uniform circumnavigation of ring-coupled unicycles. <i>Automatica</i> , 2015 , 53, 23-29	9 5.7	44
75	Cooperative localization of a cascading quadrilateral network 2014,		1
74	Distributed Formation Control of Multi-Agent Systems Using Complex Laplacian. <i>IEEE Transactions on Automatic Control</i> , 2014 , 59, 1765-1777	5.9	230
74 73		5.9	230
	on Automatic Control, 2014 , 59, 1765-1777	5.9	
73	on Automatic Control, 2014, 59, 1765-1777 2014, Fast Distributed Power Regulation Method via Networked Thermostatically Controlled Loads. IFAC		10
73 72	on Automatic Control, 2014, 59, 1765-1777 2014, Fast Distributed Power Regulation Method via Networked Thermostatically Controlled Loads. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 5439-5444 Energy Based Set Point Modulation for Obstacle Avoidance In Haptic Teleoperation of Aerial		10
73 72 71	2014, Fast Distributed Power Regulation Method via Networked Thermostatically Controlled Loads. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2014, 47, 5439-5444 Energy Based Set Point Modulation for Obstacle Avoidance In Haptic Teleoperation of Aerial Robots. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2014, 47, 11030-11 Formation Merging Control in 3D under Directed and Switching Topologies. <i>IFAC Postprint Volumes</i>		10
73 72 71 70	2014, Fast Distributed Power Regulation Method via Networked Thermostatically Controlled Loads. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 5439-5444 Energy Based Set Point Modulation for Obstacle Avoidance In Haptic Teleoperation of Aerial Robots. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 11030-11 Formation Merging Control in 3D under Directed and Switching Topologies. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 10036-10041 Variable Speed Running on Kneed Biped Robot with Underactuation Degree Two. International	1035	10 9 1
73 72 71 70 69	2014, Fast Distributed Power Regulation Method via Networked Thermostatically Controlled Loads. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 5439-5444 Energy Based Set Point Modulation for Obstacle Avoidance In Haptic Teleoperation of Aerial Robots. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 11030-11 Formation Merging Control in 3D under Directed and Switching Topologies. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 10036-10041 Variable Speed Running on Kneed Biped Robot with Underactuation Degree Two. International Journal of Humanoid Robotics, 2014, 11, 1450015	1035	10 9 1

(2013-2014)

65	Consensus-Based Cooperative Source Localization of Multi-Agent Systems with Sampled Range Measurements. <i>Unmanned Systems</i> , 2014 , 02, 231-241	3	12
64	High efficient walking of compass-like biped robots with foot rotation 2014,		1
63	A Barycentric Coordinate Based Distributed Localization Algorithm for Sensor Networks. <i>IEEE Transactions on Signal Processing</i> , 2014 , 62, 4760-4771	4.8	62
62	Bearing angle based cooperative source localization 2014,		2
61	Curve shortening-inspired self-reconfiguration of heterogenous hexagonal-shaped modules toward a straight chain. <i>Robotica</i> , 2014 , 32, 723-741	2.1	
60	Affine formation of multi-agent systems over directed graphs 2014,		4
59	A new approach to distributed charging control for plug-in hybrid electric vehicles 2014,		10
58	Leaderfollower formation via complex Laplacian. <i>Automatica</i> , 2013 , 49, 1900-1906	5.7	126
57	Range based target localization using a single mobile robot or multiple cooperative mobile robots 2013 ,		2
56	A linear control approach to distributed multi-agent formations in d-dimensional space 2013,		1
55	Scheduling parallel Kalman filters for multiple processes. <i>Automatica</i> , 2013 , 49, 9-16	5.7	11
54	An incremental deployment algorithm for wireless sensor networks using one or multiple autonomous agents. <i>Ad Hoc Networks</i> , 2013 , 11, 355-367	4.8	17
53	A new distributed localization method for sensor networks 2013,		8
52	Realizability of similar formation and local control of directed multi-agent networks in discrete-time 2013 ,		10
51	Distributed circumnavigation by unicycles with cyclic repelling strategies 2013,		6
50	A new distributed state estimation technique for power networks 2013,		2
49	Decentralized control of aggregated loads for demand response 2013,		5
48	Localizability and Distributed Localization of Sensor Networks using Relative Position Measurements. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2013 , 46, 1-6		2

47	Complex Laplacian and pattern formation in multi-agent systems 2012,		1
46	A geographically opportunistic routing protocol used in mobile wireless sensor networks 2012 ,		4
45	Local multi-robot coordination and experiments 2012,		1
44	A Dual Quaternion Solution to Attitude and Position Control for Rigid-Body Coordination. <i>IEEE Transactions on Robotics</i> , 2012 , 28, 1162-1170	6.5	60
43	Stability of interconnected impulsive switched systems subject to state dimension variation. <i>Nonlinear Analysis: Hybrid Systems</i> , 2012 , 6, 960-971	4.5	16
42	Walking control for compass-like biped robot with underactuated ankle 2012 ,		4
41	Pursuit formations with dynamic control gains. <i>International Journal of Robust and Nonlinear Control</i> , 2012 , 22, 300-317	3.6	10
40	Enhancing Sink-Location Privacy in Wireless Sensor Networks through k-Anonymity. <i>International Journal of Distributed Sensor Networks</i> , 2012 , 8, 648058	1.7	13
39	Formation control of directed multi-agent networks based on complex Laplacian 2012,		8
38	Distributed transmit beamforming via feedback-based inter-cluster synchronization 2012,		4
37	Stable running on a kneed biped robot with only hip-joint actuation 2012,		1
36	Feedback Control of Planar Biped Robot With Regulable Step Length and Walking Speed. <i>IEEE Transactions on Robotics</i> , 2011 , 27, 162-169	6.5	29
35	Rendezvous of Unicycles with Continuous and Time-invariant Local Feedback. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2011 , 44, 10044-10049		8
34	Gait generation and control for biped robots with underactuation degree one. <i>Automatica</i> , 2011 , 47, 1605-1616	5.7	10
33	Reachability and stabilization of discrete-time affine systems with disturbances. <i>Automatica</i> , 2011 ,	5.7	1
	47, 2720-2727		
32	Piecewise output feedback control for affine systems with disturbances based on linear temporal logic specifications. <i>Journal of Control Theory and Applications</i> , 2011 , 9, 289-294	<i>3</i> ,	1
32 31	Piecewise output feedback control for affine systems with disturbances based on linear temporal	5.9	1 26

(2006-2011)

29	A distributed reconfiguration strategy for target enveloping with hexagonal metamorphic modules 2011 ,		2	
28	Stable running of a planar underactuated biped robot. <i>Robotica</i> , 2011 , 29, 657-665	2.1	13	
27	Time-scaling control and passive walking of bipeds with underactuation degree one 2010,		3	
26	Distributed Transmit Beamforming with Autonomous and Self-Organizing Mobile Antennas 2010 ,		4	
25	A distributed reconfigurable control law for escorting and patrolling missions using teams of unicycles 2010 ,		18	
24	Adaptive control schemes for mobile robot formations with triangularised structures. <i>IET Control Theory and Applications</i> , 2010 , 4, 1817-1827	2.5	37	
23	Collective motions and formations under pursuit strategies on directed acyclic graphs. <i>Automatica</i> , 2010 , 46, 174-181	5.7	47	
22	Distributed control of cooperative target enclosing based on reachability and invariance analysis. <i>Systems and Control Letters</i> , 2010 , 59, 381-389	2.4	78	
21	Local control strategy for moving-target-enclosing under dynamically changing network topology. <i>Systems and Control Letters</i> , 2010 , 59, 654-661	2.4	101	
20	Reachability of Affine Systems on Polytopes. <i>Zidonghua Xuebao/Acta Automatica Sinica</i> , 2010 , 35, 152	8-1533		
19	A hybrid control approach to multi-robot coordinated path following 2009,		2	
18	A hybrid control approach to cooperative target tracking with multiple mobile robots 2009,		8	
17	Synthesis of output feedback control for motion planning based on LTL specifications 2009,		3	
16	Ring-coupled unicycles: Boundedness, convergence, and control. <i>Automatica</i> , 2009 , 45, 2699-2706	5.7	35	
15	Characterization of backward reachable set and positive invariant set in polytopes 2009,		2	
14	2007,		4	
13	State Agreement for Continuous-Time Coupled Nonlinear Systems. <i>SIAM Journal on Control and Optimization</i> , 2007 , 46, 288-307	1.9	322	
12	Perfectly matched layer absorbing boundary condition for truncating the boundary of the left-handed medium. <i>Microwave and Optical Technology Letters</i> , 2006 , 48, 57-63	1.2	13	

11	Controlling the polarization rotation of an optical field via asymmetry in electromagnetically induced transparency. <i>Physical Review A</i> , 2006 , 73,	2.6	47
10	Resolving Control to Facet Problems for Affine Hypersurface Systems on Simplices 2006,		10
9	ON THE STATE AGREEMENT PROBLEM FOR MULTIPLE NONLINEAR DYNAMICAL SYSTEMS. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2005 , 38, 82-87		2
8	Necessary and sufficient graphical conditions for formation control of unicycles. <i>IEEE Transactions on Automatic Control</i> , 2005 , 50, 121-127	5.9	677
7	Local control strategies for groups of mobile autonomous agents. <i>IEEE Transactions on Automatic Control</i> , 2004 , 49, 622-629	5.9	542
6	Feasibility for formation stabilization of multiple unicycles 2004,		1
5	Observer-based robust control for uncertain systems with time-varying delay. <i>IMA Journal of Mathematical Control and Information</i> , 2001 , 18, 439-450	1.1	13
4	Robust guaranteed cost control for discrete-time uncertain systems with delay. <i>IET Control Theory and Applications</i> , 1999 , 146, 598-602		38
3	Getting Mobile Autonomous Robots to Rendezvous119-137		7
2	Local control strategies for groups of mobile autonomous agents		4
1	Combining distance-based formation shape control with formation translation 121-130		21