Oriana Maggi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5040060/publications.pdf

Version: 2024-02-01

331670 477307 48 959 21 29 h-index citations g-index papers 51 51 51 1390 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Genomic and Transcriptomic Study on the DDT-Resistant Trichoderma hamatum FBL 587: First Genetic Data into Mycoremediation Strategies for DDT-Polluted Sites. Microorganisms, 2021, 9, 1680.	3.6	7
2	Bioremediation of Dichlorodiphenyltrichloroethane (DDT)-Contaminated Agricultural Soils: Potential of Two Autochthonous Saprotrophic Fungal Strains. Applied and Environmental Microbiology, 2019, 85, .	3.1	36
3	Understanding fungal potential in the mitigation of contaminated areas in the Czech Republic: tolerance, biotransformation of hexachlorocyclohexane (HCH) and oxidative stress analysis. Environmental Science and Pollution Research, 2019, 26, 24445-24461.	5.3	8
4	Victoriomyces antarcticus gen. nov., sp. nov., a distinct evolutionary lineage of the Cephalothecaceae (Ascomycota) based on sequence-based phylogeny and morphology. International Journal of Systematic and Evolutionary Microbiology, 2019, 69, 1099-1110.	1.7	2
5	Saprotrophic soil fungi to improve phosphorus solubilisation and release: In vitro abilities of several species. Ambio, 2018, 47, 30-40.	5.5	55
6	Metabolic synergies in the biotransformation of organic and metallic toxic compounds by a saprotrophic soil fungus. Applied Microbiology and Biotechnology, 2018, 102, 1019-1033.	3.6	19
7	A simple method for measuring fungal metabolic quotient and comparing carbon use efficiency of different isolates: Application to Mediterranean leaf litter fungi. Plant Biosystems, 2017, 151, 371-376.	1.6	12
8	Overlap in substrate utilisation and spatial exclusion in some microfungi which act as early cellulose colonisers in a Mediterranean environment. Pedobiologia, 2017, 61, 9-21.	1.2	3
9	Phenotype MicroArrayâ,,¢ system in the study of fungal functional diversity and catabolic versatility. Research in Microbiology, 2016, 167, 710-722.	2.1	34
10	Indoor microclimatic study for Cultural Heritage protection and preventive conservation in the Palatina Library. Journal of Cultural Heritage, 2016, 22, 956-967.	3.3	21
11	One taxon does not fit all: Herb-layer diversity and stand structural complexity are weak predictors of biodiversity in Fagus sylvatica forests. Ecological Indicators, 2016, 69, 126-137.	6.3	46
12	Stand structure and deadwood amount influences saproxylic fungal biodiversity in Mediterranean mountain unmanaged forests. IForest, 2016, 9, 115-124.	1.4	31
13	Biotransformation of \hat{l}^2 -hexachlorocyclohexane by the saprotrophic soil fungus Penicillium griseofulvum. Chemosphere, 2015, 137, 101-107.	8.2	18
14	A multidisciplinary approach to the study of cultural heritage environments: Experience at the Palatina Library in Parma. Science of the Total Environment, 2015, 536, 557-567.	8.0	41
15	Wood-inhabiting fungi in southern Italy forest stands: morphogroups, vegetation types and decay classes. Mycologia, 2015, 107, 1074-1088.	1.9	8
16	Microbiological Analysis of Surfaces of Leonardo Da Vinci's <i>Atlantic Codex</i> : Biodeterioration Risk. International Journal of Microbiology, 2014, 2014, 1-7.	2.3	14
17	Metabolic profiling of <i>Minimedusa polyspora</i> (Hotson) Weresub & E.M. LeClair, a cellulolytic fungus isolated from Mediterranean maquis, in southern Italy. Plant Biosystems, 2014, 148, 333-341.	1.6	13
18	Fungal diversity of saprotrophic litter fungi in a Mediterranean maquis environment. Mycologia, 2013, 105, 1499-1515.	1.9	26

#	Article	IF	CITATIONS
19	Macrofungi as ecosystem resources: Conservation versus exploitation. Plant Biosystems, 2013, 147, 219-225.	1.6	38
20	Dynamics of fungi and fungivorous microarthropods in a Mediterranean maquis soil affected by experimental fire. European Journal of Soil Biology, 2013, 56, 33-43.	3.2	24
21	Adaptation of fungi, including yeasts, to cold environments. Plant Biosystems, 2013, 147, 247-258.	1.6	34
22	Species-abundance distribution patterns of soil fungi: contribution to the ecological understanding of their response to experimental fire in Mediterranean maquis (southern Italy). Mycologia, 2013, 105, 260-276.	1.9	9
23	Metabolic profiling reveals a functional succession of active fungi during the decay of Mediterranean plant litter. Soil Biology and Biochemistry, 2013, 60, 210-219.	8.8	17
24	Aspergillus affinis sp. nov., a novel ochratoxin A-producing Aspergillus species (section Circumdati) isolated from decomposing leaves. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 1007-1015.	1.7	10
25	Growth responses to and accumulation of vanadium in agricultural soil fungi. Applied Soil Ecology, 2012, 58, 1-11.	4.3	24
26	Penicillium simile sp. nov. revealed by morphological and phylogenetic analysis. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 451-458.	1.7	9
27	Fungal bioleaching of mineral components in a twentieth-century illuminated parchment. Analytical and Bioanalytical Chemistry, 2012, 402, 1541-1550.	3.7	28
28	Biodiversity of wood-decay fungi in Italy. Plant Biosystems, 2011, 145, 958-968.	1.6	31
29	High spots for diversity of soil and litter microfungi in Italy. Plant Biosystems, 2011, 145, 969-977.	1.6	17
30	Litter decomposition in Mediterranean ecosystems: Modelling the controlling role of climatic conditions and litter quality. Applied Soil Ecology, 2011, 49, 148-157.	4.3	56
31	Ex situ conservation and exploitation of fungi in Italy. Plant Biosystems, 2011, 145, 997-1005.	1.6	29
32	Linking taxonomical and functional biodiversity of saproxylic fungi and beetles in broadâ€leaved forests in southern Italy with varying management histories. Plant Biosystems, 2010, 144, 250-261.	1.6	44
33	Effects of different fire intensities on chemical and biological soil components and related feedbacks on a Mediterranean shrub (Phillyrea angustifolia L.). Plant Ecology, 2009, 204, 155-171.	1.6	23
34	Mediterranean grassland soil fungi: Patterns of biodiversity, functional redundancy and soil carbon storage. Plant Biosystems, 2008, 142, 111-119.	1.6	23
35	Effects of elevation, slope position and livestock exclusion on microfungi isolated from soils of Mediterranean grasslands. Mycologia, 2005, 97, 984-995.	1.9	4
36	Effects of elevation, slope position and livestock exclusion on microfungi isolated from soils of Mediterranean grasslands. Mycologia, 2005, 97, 984-995.	1.9	19

#	Article	IF	CITATIONS
37	Title is missing!. Hydrobiologia, 2000, 439, 49-60.	2.0	25
38	Title is missing!. Aerobiologia, 2000, 16, 429-434.	1.7	34
39	Aerobiological monitoring of the "Sistine Chapel": airborne bacteria and microfungi trends. Aerobiologia, 2000, 16, 441-448.	1.7	10
40	Diversity and variability in soil fungi from a disturbed tropical rain forest. Mycologia, 1998, 90, 206-214.	1.9	31
41	Aspergillus implicatus, a new species isolated from ivory coast forest soil. Mycological Research, 1994, 98, 869-873.	2.5	5
42	Ecological Patterns of Soil Fungal Communities in Mediterrankan Grasslands. Giornale Botanico Italiano (Florence, Italy: 1962), 1994, 128, 360-360.	0.0	0
43	Scanning electron microscopy of Heterocephalum (Hyphomycetes). Transactions of the British Mycological Society, 1986, 87, 551-556.	0.6	1
44	A new species of Heterocephalum from ivory coast soil. Transactions of the British Mycological Society, 1986, 87, 631-635.	0.6	3
45	Comparative studies on Microfungi in Tropical Ecosystems. Further mycological studies in South Western Ivory Coast forest. Report N. 2. Giornale Botanico Italiano (Florence, Italy: 1962), 1984, 118, 201-243.	0.0	13
46	Observations sur la microflore fongique des feuilles vertes et sénescentes de Loudetia simplex. Giornale Botanico Italiano (Florence, Italy: 1962), 1978, 112, 361-372.	0.0	0
47	Indagini micologiche preliminari nella Foresta di TaÃ ⁻ in Costa d'Avorio. Note su Aspergillus longivesica Huang et Raper. Giornale Botanico Italiano (Florence, Italy: 1962), 1978, 112, 197-208.	0.0	0
48	Recherches sur la rhizosphÃ"re de Loudetia simplex C. E. Hubbard, graminée typique de la savane en Côte d'Ivoire: Rapport final. Giornale Botanico Italiano (Florence, Italy: 1962), 1978, 112, 75-96.	0.0	3