Maya Jacob John

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5039944/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biofibres and biocomposites. Carbohydrate Polymers, 2008, 71, 343-364.	5.1	1,866
2	Recent developments in chemical modification and characterization of natural fiberâ€reinforced composites. Polymer Composites, 2008, 29, 187-207.	2.3	940
3	Mechanical properties of sisal/oil palm hybrid fiber reinforced natural rubber composites. Composites Science and Technology, 2004, 64, 955-965.	3.8	580
4	Extraction of nanocellulose fibrils from lignocellulosic fibres: A novel approach. Carbohydrate Polymers, 2011, 86, 1468-1475.	5.1	579
5	Title is missing!. Applied Composite Materials, 2000, 7, 295-329.	1.3	380
6	Dynamical mechanical analysis of sisal/oil palm hybrid fiber-reinforced natural rubber composites. Polymer Composites, 2006, 27, 671-680.	2.3	254
7	Bio-based products from xylan: A review. Carbohydrate Polymers, 2018, 179, 28-41.	5.1	239
8	Effect of chemical modification on properties of hybrid fiber biocomposites. Composites Part A: Applied Science and Manufacturing, 2008, 39, 352-363.	3.8	231
9	Environmental friendly method for the extraction of coir fibre and isolation of nanofibre. Carbohydrate Polymers, 2013, 92, 1477-1483.	5.1	231
10	Electrospun chitosan-based nanocomposite mats reinforced with chitin nanocrystals for wound dressing. Carbohydrate Polymers, 2014, 109, 7-15.	5.1	207
11	Chemical modification of flax reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing, 2009, 40, 442-448.	3.8	164
12	Review on flammability of biofibres and biocomposites. Carbohydrate Polymers, 2014, 111, 149-182.	5.1	161
13	Physicomechanical properties of nanocomposites based on cellulose nanofibre and natural rubber latex. Cellulose, 2013, 20, 417-427.	2.4	148
14	Cellulose nanomaterials: new generation materials for solving global issues. Cellulose, 2020, 27, 1149-1194.	2.4	148
15	Review on hygroscopic aging of cellulose fibres and their biocomposites. Carbohydrate Polymers, 2015, 131, 337-354.	5.1	136
16	A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nanofibres. Carbohydrate Polymers, 2015, 118, 1-8.	5.1	127
17	Thermoplastic Processing of PLA/Cellulose Nanomaterials Composites. Polymers, 2018, 10, 1363.	2.0	113
18	Water Sorption Studies of Hybrid Biofiber-Reinforced Natural Rubber Biocomposites. Biomacromolecules, 2005, 6, 2969-2979,	2.6	92

2

Μαγά Јасов Јонν

#	Article	IF	CITATIONS
19	Natural rubber composites reinforced with sisal/oil palm hybrid fibers: Tensile and cure characteristics. Journal of Applied Polymer Science, 2004, 93, 2305-2312.	1.3	85
20	Dynamic Mechanical and Dielectric Behavior of Banana-Glass Hybrid Fiber Reinforced Polyester Composites. Journal of Reinforced Plastics and Composites, 2010, 29, 1131-1145.	1.6	72
21	Investigation of surface properties of physico-chemically modified natural fibres using inverse gas chromatography. Industrial Crops and Products, 2011, 33, 108-115.	2.5	70
22	A study of advances in characterization of interfaces and fiber surfaces in lignocellulosic fiber-reinforced composites. Composite Interfaces, 2005, 12, 95-124.	1.3	69
23	Electrospun Alginate Nanofibers Toward Various Applications: A Review. Materials, 2020, 13, 934.	1.3	65
24	Kenaf–polypropylene composites: Effect of amphiphilic coupling agent on surface properties of fibres and composites. Carbohydrate Polymers, 2010, 82, 549-554.	5.1	64
25	Meltâ€spun polylactic acid fibers: Effect of cellulose nanowhiskers on processing and properties. Journal of Applied Polymer Science, 2013, 127, 274-281.	1.3	60
26	Mechanical properties of cellulose nanofibril papers and their bionanocomposites: A review. Carbohydrate Polymers, 2021, 273, 118507.	5.1	60
27	Effect of Chemical Modification on the Mechanical and Electrical Properties of Banana Fiber Polyester Composites. Journal of Composite Materials, 2007, 41, 2371-2386.	1.2	57
28	The Effect of Silane Coupling Agents on the Viscoelastic Properties of Rubber Biocomposites. Macromolecular Materials and Engineering, 2006, 291, 1119-1126.	1.7	55
29	Green Composites from Natural Fibers and Natural Rubber: Effect of Fiber Ratio on Mechanical and Swelling Characteristics. Journal of Natural Fibers, 2008, 5, 47-60.	1.7	54
30	Mineralization of Poly(lactic acid) (PLA), Poly(3-hydroxybutyrate-co-valerate) (PHBV) and PLA/PHBV Blend in Compost and Soil Environments. Journal of Renewable Materials, 2016, 4, 133-145.	1.1	54
31	Natural fibre-nanocellulose composite filters for the removal of heavy metal ions from water. Industrial Crops and Products, 2019, 133, 325-332.	2.5	44
32	A study on the moisture sorption characteristics in woven sisal fabric reinforced natural rubber biocomposites. Journal of Applied Polymer Science, 2006, 102, 416-423.	1.3	38
33	Optimization of pyrolysis conditions for char production from rice husks and its characterization as a precursor for production of activated carbon. Biomass Conversion and Biorefinery, 2020, 10, 57-72.	2.9	34
34	Novel Woven Sisal Fabric Reinforced Natural Rubber Composites: Tensile and Swelling Characteristics. Journal of Composite Materials, 2006, 40, 1471-1485.	1.2	30
35	Mechanical performance of hybrid woven jute–roselle-reinforced polyester composites. Polymers and Polymer Composites, 2019, 27, 407-418.	1.0	29
36	Effect of Clay Nanofillers on the Mechanical and Water Vapor Permeability Properties of Xylan–Alginate Films. Polymers, 2020, 12, 2279.	2.0	29

Μαγά Јасов Јонν

#	Article	IF	CITATIONS
37	Morphology, thermal and dynamic mechanical properties of poly(lactic acid)/expandable graphite (PLA/EG) flame retardant composites. Journal of Thermoplastic Composite Materials, 2019, 32, 89-107.	2.6	24
38	Investigation of the degree of homogeneity and hydrogen bonding in PEG/PVP blends prepared in supercritical CO2: Comparison with ethanol-cast blends and physical mixtures. Journal of Supercritical Fluids, 2010, 54, 81-88.	1.6	23
39	Pultrusion of flax/poly(lactic acid) commingled yarns and nonwoven fabrics. Journal of Thermoplastic Composite Materials, 2014, 27, 1553-1572.	2.6	23
40	Flammability performance ofÂbiocomposites. , 2019, , 43-58.		23
41	Cellulose nanofibrils reinforced xylan-alginate composites: Mechanical, thermal and barrier properties. International Journal of Biological Macromolecules, 2021, 179, 448-456.	3.6	23
42	Stress Relaxation and Thermal Analysis of Hybrid Biofiber Reinforced Rubber Biocomposites. Journal of Reinforced Plastics and Composites, 2006, 25, 1903-1917.	1.6	22
43	Effect of amphiphilic coupling agent on heat flow and dielectric properties of flax–polypropylene composites. Composites Part B: Engineering, 2012, 43, 526-532.	5.9	22
44	Cellulosic fibre-reinforced green composites. Composite Interfaces, 2007, 14, 733-751.	1.3	21
45	Aging studies on flame retardant treated lignocellulosic fibers. Journal of Applied Polymer Science, 2016, 133, .	1.3	17
46	Fabrication and Characterization of Various Engineered Nanomaterials. , 2018, , 151-171.		17
47	Flame retardant treated flax fibre reinforced phenolic composites: Ageing and thermal characteristics. Fire and Materials, 2018, 42, 50-58.	0.9	16
48	Esterified cellulose nanofibres from saw dust using vegetable oil. International Journal of Biological Macromolecules, 2020, 148, 1109-1117.	3.6	10
49	Interaction ofn-alkanes with crosslinkedcis-1,4-polybutadiene. Journal of Applied Polymer Science, 2001, 82, 2404-2413.	1.3	9
50	Poly(lactic acid)-starch/Expandable Graphite (PLA-starch/EG) Flame Retardant Composites. Journal of Renewable Materials, 2018, 6, 26-37.	1.1	9
51	Effect of expandable graphite on thermal and flammability properties of poly(lactic) Tj ETQq1 1 0.784314 rgE	T /Overlock	10 Tf 50 182
52	Lignin fractionation and conversion to bio-based functional products. Sustainable Chemistry and Pharmacy, 2022, 25, 100594.	1.6	7
53	Biopolymer blends based on polylactic acid and polyhydroxy butyrate- <i>co</i> -valerate: Effect of clay on mechanical and thermal properties. Polymer Composites, 2015, 36, 2042-2050.	2.3	6
54	Agave nonwovens in polypropylene composites – Mechanical and thermal studies. Journal of Composite Materials, 2015, 49, 669-676.	1.2	5

Μαγά Јасов Јонν

#	Article	IF	CITATIONS
55	Biobased alginate treatments on flax fibre reinforced PLA and PHBV composites. Current Research in Green and Sustainable Chemistry, 2022, 5, 100319.	2.9	4
56	Advanced polysaccharide based products from biomass resources. International Journal of Biological Macromolecules, 2020, 151, 508.	3.6	2
57	Chapter 11. Mechanical, Rheological and Viscoelastic Properties of Polysaccharide and Protein Based Aerogels. RSC Green Chemistry, 2018, , 177-200.	0.0	2
58	Mechanical Properties and Water Sorption of Chemically Modified Natural Fiber-Based Composites. , 2021, , 159-167.		1
59	CHAPTER 4. Waste Rubber Based Composite Foams. RSC Green Chemistry, 2018, , 83-101.	0.0	1
60	Comparison of Interaction of Aromatic Solvents in Hybrid and Textile Biocomposites. Journal of Elastomers and Plastics, 2009, 41, 523-541.	0.7	0
61	Rubber Compounding and Processing. Materials and Energy, 2014, , 233-244.	2.5	Ο