Pilar Guerrero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5039787/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	de la Cruz etÂal. Reply. Physical Review Letters, 2019, 122, 059802.	7.8	Ο
2	Neuronal differentiation influences progenitor arrangement in the vertebrate neuroepithelium. Development (Cambridge), 2019, 146, .	2.5	19
3	Minimum Action Path Theory Reveals the Details of Stochastic Transitions Out of Oscillatory States. Physical Review Letters, 2018, 120, 128102.	7.8	15
4	Coarse-graining and hybrid methods for efficient simulation of stochastic multi-scale models of tumour growth. Journal of Computational Physics, 2017, 350, 974-991.	3.8	11
5	Intrinsic Noise Profoundly Alters the Dynamics and Steady State of Morphogen-Controlled Bistable Genetic Switches. PLoS Computational Biology, 2016, 12, e1005154.	3.2	60
6	Deterministic and Stochastic Study for a Microscopic Angiogenesis Model: Applications to the Lewis Lung Carcinoma. PLoS ONE, 2016, 11, e0155553.	2.5	1
7	Stochastic multi-scale models of competition within heterogeneous cellular populations: Simulation methods and mean-field analysis. Journal of Theoretical Biology, 2016, 407, 161-183.	1.7	6
8	From invasion to latency: intracellular noise and cell motility as key controls of the competition between resource-limited cellular populations. Journal of Mathematical Biology, 2016, 72, 123-156.	1.9	9
9	The effects of intrinsic noise on the behaviour of bistable cell regulatory systems under quasi-steady state conditions. Journal of Chemical Physics, 2015, 143, 074105.	3.0	13
10	Stochastic Multiscale Models of Cell Population Dynamics: Asymptotic and Numerical Methods. Mathematical Modelling of Natural Phenomena, 2015, 10, 64-93.	2.4	7
11	Hybrid approaches for multiple-species stochastic reaction–diffusion models. Journal of Computational Physics, 2015, 299, 429-445.	3.8	26
12	Mesoscopic and continuum modelling of angiogenesis. Journal of Mathematical Biology, 2015, 70, 485-532.	1.9	64
13	A wavefunction description of quantum Fokker–Planck dissipation: derivation and numerical approximation of transient dynamics. Journal of Physics A: Mathematical and Theoretical, 2014, 47, 035303.	2.1	1
14	On the analysis of traveling waves to a nonlinear flux limited reaction–diffusion equation. Annales De L'Institut Henri Poincare (C) Analyse Non Lineaire, 2013, 30, 141-155.	1.4	26
15	Wellposedness of a Nonlinear, Logarithmic Schrödinger Equation of Doebner–Goldin Type Modeling Quantum Dissipation. Journal of Nonlinear Science, 2012, 22, 631-663.	2.1	11
16	Global solvability of the 3D logarithmic SchrĶdinger equation. Nonlinear Analysis: Real World Applications, 2010, 11, 79-87.	1.7	51