
Francesco Perdisa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5039669/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stem cells in articular cartilage regeneration. Journal of Orthopaedic Surgery and Research, 2016, 11, 42.	2.3	105
2	Clinical Results and MRI Evolution of a Nano-Composite Multilayered Biomaterial for Osteochondral Regeneration at 5 Years. American Journal of Sports Medicine, 2014, 42, 158-165.	4.2	104
3	Adipose-Derived Mesenchymal Stem Cells for the Treatment of Articular Cartilage: A Systematic Review on Preclinical and Clinical Evidence. Stem Cells International, 2015, 2015, 1-13.	2.5	97
4	Treatment of Knee Osteochondritis Dissecans With a Cell-Free Biomimetic Osteochondral Scaffold: Clinical and Imaging Findings at Midterm Follow-up. American Journal of Sports Medicine, 2018, 46, 314-321.	4.2	39
5	Is the clinical outcome after cartilage treatment affected by subchondral bone edema?. Knee Surgery, Sports Traumatology, Arthroscopy, 2014, 22, 1337-1344.	4.2	35
6	Novel alginate biphasic scaffold for osteochondral regeneration: an in vivo evaluation in rabbit and sheep models. Journal of Materials Science: Materials in Medicine, 2018, 29, 74.	3.6	33
7	Regenerative Features of Adipose Tissue for Osteoarthritis Treatment in a Rabbit Model: Enzymatic Digestion Versus Mechanical Disruption. International Journal of Molecular Sciences, 2019, 20, 2636.	4.1	31
8	Association between incision technique for hamstring tendon harvest in anterior cruciate ligament reconstruction and the risk of injury to the infra-patellar branch of the saphenous nerve: a meta-analysis. Knee Surgery, Sports Traumatology, Arthroscopy, 2018, 26, 2410-2423.	4.2	22
9	Micro-fragmentation is a valid alternative to cell expansion and enzymatic digestion of adipose tissue for the treatment of knee osteoarthritis: a comparative preclinical study. Knee Surgery, Sports Traumatology, Arthroscopy, 2022, 30, 773-781.	4.2	20
10	A Composite Chitosan-Reinforced Scaffold Fails to Provide Osteochondral Regeneration. International Journal of Molecular Sciences, 2019, 20, 2227.	4.1	19
11	Polyurethane scaffold implants for partial meniscus lesions: delayed intervention leads to an inferior outcome. Knee Surgery, Sports Traumatology, Arthroscopy, 2021, 29, 109-116.	4.2	16
12	Cell-Free Biomimetic Osteochondral Scaffold. JBJS Essential Surgical Techniques, 2019, 9, e27.	0.8	6