Jin Soo Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5039548/publications.pdf

Version: 2024-02-01

567281 752698 72 617 15 20 citations h-index g-index papers 73 73 73 768 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Photoelectrochemical Water Splitting using GaN Nanowires with Reverse-Mesa Structures as Photoanode Material. Applied Science and Convergence Technology, 2022, 31, 51-55.	0.9	8
2	Drastic improvement in photoelectrochemical water splitting performance over prolonged reaction time using new carrier-guiding semiconductor nanostructures. Journal of Materials Chemistry A, 2022, 10, 9821-9829.	10.3	8
3	Photoelectrochemical water-splitting using GaN pyramidal dots and their long-term stability in the two-electrode configuration. Journal of Materials Chemistry A, 2022, 10, 10355-10362.	10.3	7
4	Flexible 1.3 \hat{l} 4m photodetector fabricated with InN nanowires and graphene on overhead projector transparency sheet. Nanoscale, 2022, 14, 10793-10800.	5 . 6	1
5	Luminescence properties of InGaN/GaN light-emitting diodes with violet, blue, and green emission. Journal of the Korean Physical Society, 2021, 78, 275-279.	0.7	3
6	Stretchable Inorganic GaN-Nanowire Photosensor with High Photocurrent and Photoresponsivity. ACS Applied Materials & Interfaces, 2021, 13, 22728-22737.	8.0	15
7	Room-temperature operation of light-assisted NO ₂ gas sensor based on GaN nanowires and graphene. Nanotechnology, 2021, 32, 505201.	2.6	10
8	Luminescence Properties of InGaN/GaN Green Light-Emitting Diodes with Si-Doped Graded Short-Period Superlattice. Journal of Nanoscience and Nanotechnology, 2021, 21, 5648-5652.	0.9	2
9	Improvement in the photoelectrochemical water-splitting performance using GaN nanowires with bundle structures. Journal of Materials Chemistry C, 2021, 9, 12802-12810.	5.5	8
10	Fast Response Characteristics of Flexible Ultraviolet Photosensors with GaN Nanowires and Graphene. ACS Applied Materials & Samp; Interfaces, 2020, 12, 970-979.	8.0	22
11	Formation Mechanism of GaN Nanowires with Various Shapes on Si(111). Journal of the Korean Physical Society, 2020, 77, 247-252.	0.7	7
12	Highly Efficient Photoelectrochemical Water Splitting Using GaN-Nanowire Photoanode with Tungsten Sulfides. ACS Applied Materials & Samp; Interfaces, 2020, 12, 58028-58037.	8.0	18
13	Enhanced optical output in InGaN/GaN light-emitting diodes by tailored refractive index of nanoporous GaN. Nanotechnology, 2019, 30, 415301.	2.6	11
14	A UV-responsive pressure sensitive adhesive for damage-free fabrication of an ultrathin imperceptible mechanical sensor with ultrahigh optical transparency. Journal of Materials Chemistry A, 2019, 7, 22588-22595.	10.3	25
15	Perovskite-Based Artificial Multiple Quantum Wells. Nano Letters, 2019, 19, 3535-3542.	9.1	27
16	Application of Hexagonal Boron Nitride to a Heat-Transfer Medium of an InGaN/GaN Quantum-Well Green LED. ACS Applied Materials & Samp; Interfaces, 2019, 11, 18876-18884.	8.0	25
17	Polarized Light Emission from Uniaxially Oriented and Polymer-Stabilized AIE Luminogen Thin Films. Macromolecules, 2019, 52, 1739-1745.	4.8	20
18	Interfacial Engineering for the Synergistic Enhancement of Thermal Conductivity of Discotic Liquid Crystal Composites. ACS Applied Materials & Samp; Interfaces, 2018, 10, 3155-3159.	8.0	33

#	Article	IF	CITATIONS
19	Dependence of Internal Crystal Structures of InAs Nanowires on Electrical Characteristics of Field Effect Transistors. Journal of Electronic Materials, 2018, 47, 944-948.	2.2	7
20	Highly Efficient and Flexible Photosensors with GaN Nanowires Horizontally Embedded in a Graphene Sandwich Channel. ACS Applied Materials & Sandwich Channel.	8.0	22
21	Formation of spherical-shaped GaN and InN quantum dots on curved SiN/Si surface. Nanotechnology, 2018, 29, 315603.	2.6	4
22	Structural and Optical Properties of GaN Nanowires Formed on Si(111). Applied Science and Convergence Technology, 2018, 27, 95-99.	0.9	5
23	Terahertz Characteristics of InGaAs with Periodic InAlAs Insertion Layers. Applied Science and Convergence Technology, 2018, 27, 173-177.	0.9	0
24	Influences of graded superlattice on the electrostatic discharge characteristics of green InGaN/GaN light-emitting diodes. Journal of Crystal Growth, 2017, 464, 138-142.	1.5	11
25	Topochemical polymerization of dumbbell-shaped diacetylene monomers: relationship between chemical structure, molecular packing structure, and gelation property. Soft Matter, 2017, 13, 5759-5766.	2.7	19
26	Flower-Like Internal Emission Distribution of LEDs with Monolithic Integration of InGaN-based Quantum Wells Emitting Narrow Blue, Green, and Red Spectra. Scientific Reports, 2017, 7, 7164.	3.3	5
27	Flower-like light distribution inside InGaN-based light-emitting diodes operated in spectral range from violet to red. , 2017, , .		0
28	Improvement of device performances, including electrostatic discharge characteristics, of InGaN/GaN light-emitting diodes by using a Si-doped graded superlattice. Journal of the Korean Physical Society, 2017, 70, 1001-1006.	0.7	1
29	Yellow-red light-emitting diodes using periodic Ga-flow interruption during deposition of InGaN well. Optics Express, 2017, 25, 15152.	3.4	6
30	Influences of Si-doped graded short-period superlattice on green InGaN/GaN light-emitting diodes. Optics Express, 2016, 24, 7743.	3.4	26
31	Emission characteristics of shape-engineered InAs/InAlGaAs quantum dots subjected to thermal treatments. Journal of the Korean Physical Society, 2016, 69, 85-90.	0.7	1
32	Improvement of Terahertz Wave Radiation for InAs Nanowires by Simple Dipping into Tap Water. Scientific Reports, 2016, 6, 36094.	3.3	8
33	Hydrogen Generation using non-polar coaxial InGaN/GaN Multiple Quantum Well Structure Formed on Hollow n-GaN Nanowires. Scientific Reports, 2016, 6, 31996.	3.3	16
34	Remoteâ€Controllable Molecular Knob in the Mesomorphic Helical Superstructures. Advanced Functional Materials, 2016, 26, 4242-4251.	14.9	34
35	Photopolymerization of Reactive Amphiphiles: Automatic and Robust Vertical Alignment Layers of Liquid Crystals with a Strong Surface Anchoring Energy. Macromolecules, 2016, 49, 23-29.	4.8	24
36	Structural and electrical properties of catalyst-free Si-doped InAs nanowires formed on Si(111). Scientific Reports, 2015, 5, 16652.	3.3	16

#	Article	IF	CITATIONS
37	Spatially resolved optical properties of ZnO sub-microstructures on a graphene monolayer. Journal of the Korean Physical Society, 2015, 67, 1634-1638.	0.7	0
38	Terahertz characteristics of InGaAs with periodically-positioned InAlAs insertion layers. , 2015, , .		0
39	Periodic variation in the electroluminescence intensity on a single pattern from InGaN/GaN light-emitting diodes fabricated on lens-shaped patterns. Journal of the Korean Physical Society, 2015, 66, 266-269.	0.7	1
40	Optimizing the optical properties of fluorine-doped ZnO thin films deposited by sol-gel spin-coating. Journal of the Korean Physical Society, 2014, 65, 509-514.	0.7	5
41	Effect of different sol concentrations on the properties of nanocrystalline ZnO thin films grown on FTO substrates by sol-gel spin-coating. Journal of the Korean Physical Society, 2014, 65, 480-486.	0.7	9
42	Effects of Ga concentration on the structural, electrical and optical properties of Ga-doped ZnO thin films grown by sol-gel method. Journal of the Korean Physical Society, 2014, 64, 109-113.	0.7	6
43	Influence of Cr-doping on the structural and the optical properties of ZnO thin films prepared by sol-gel spin coating. Journal of the Korean Physical Society, 2014, 64, 41-45.	0.7	2
44	Investigation on the lasing characteristics of InAs/InGaAsP quantum dots with additional confinement structures. Journal of Crystal Growth, 2014, 393, 59-63.	1.5	1
45	Structural, optical, and electrical properties of ZnO thin films deposited by sol-gel dip-coating process at low temperature. Electronic Materials Letters, 2014, 10, 869-878.	2.2	12
46	K-doping effects on the characteristics of ZnO thin films synthesized by using a spin-coating method. Journal of the Korean Physical Society, 2014, 64, 1581-1585.	0.7	9
47	Spatial emission distribution of InGaN/GaN light-emitting diodes depending on the pattern structures. Materials Research Bulletin, 2014, 58, 121-125.	5.2	4
48	Photoluminescent properties of Cd x Zn1 \hat{a} 'x O thin films prepared by sol-gel spin-coating method. Electronic Materials Letters, 2013, 9, 497-500.	2.2	3
49	Effects of in doping on structural and optical properties of ZnO nanorods grown by hydrothermal method. Electronic Materials Letters, 2013, 9, 509-512.	2.2	8
50	Influences of dot-in-a-well structure and GaAs insertion layer on InP-based InAs quantum dots. Journal of the Korean Physical Society, 2013, 62, 1274-1279.	0.7	2
51	Growth and optical properties of sol-gel ZnO thin films grown on R-plane sapphire substrates. Journal of the Korean Physical Society, 2013, 62, 1154-1159.	0.7	3
52	Improved blue electroluminescence in InGaN/GaN multiple-quantum well light-emitting diodes with an electron blocking layer. Journal of the Korean Physical Society, 2013, 62, 1160-1163.	0.7	0
53	Analysis of the abnormal voltage-current behaviors on localized carriers of InGaN/GaN multiple quantum well from electron blocking layer. Journal of the Korean Physical Society, 2013, 63, 1784-1788.	0.7	0
54	Improved Hole Transport by ${m p}hbox{-}{m ln}_{x}{m Ga}_{1-x}{m N}$ Layer in Multiple Quantum Wells of Visible LEDs. IEEE Photonics Technology Letters, 2013, 25, 1789-1792.	2.5	2

#	Article	IF	Citations
55	Temperature dependence of the optical properties of high-density GaAs quantum dots. Journal of the Korean Physical Society, 2012, 60, 1428-1432.	0.7	3
56	Effects of post-annealing temperature on the properties of ZnO nanorods grown on homogenous seed-layers by using the hydrothermal method. Journal of the Korean Physical Society, 2012, 60, 1605-1610.	0.7	2
57	Optical parameters of Mg x $Zn1\hat{a}^{2}$ O thin films prepared by using the sol-gel method. Journal of the Korean Physical Society, 2012, 60, 830-835.	0.7	4
58	Formation characteristics of a self-catalyzed GaAs nanowire without a Ga droplet on Si(111). Journal of the Korean Physical Society, 2012, 61, 2017-2021.	0.7	2
59	Modification in the structural and optical characteristics of InAs quantum dots by manipulating the strain distribution. Journal of the Korean Physical Society, 2012, 60, 460-465.	0.7	2
60	Effects of growth temperature on the structural and the optical properties of ZnO thin films on porous silicon grown by using plasma-assisted molecular beam epitaxy. Journal of the Korean Physical Society, 2012, 60, 1570-1575.	0.7	3
61	Effects of zinc capping layers and annealing on the properties of porous silicon. Journal of the Korean Physical Society, 2012, 60, 1582-1586.	0.7	3
62	Effects of post-heat-treatment temperature for seed layers on the properties of ZnO nanostructures grown by using the hydrothermal method. Journal of the Korean Physical Society, 2012, 60, 1593-1598.	0.7	5
63	Effects of growth conditions on the structural and the optical properties of ZnO submicron particles grown by using vapor phase transport. Journal of the Korean Physical Society, 2012, 60, 1599-1604.	0.7	6
64	Growth and characterization of seed layer-free ZnO thin films deposited on porous silicon by hydrothermal method. Electronic Materials Letters, 2012, 8, 75-80.	2.2	15
65	Carrier repopulation process for spatially-ordered InAs/InAlGaAs quantum dots. Journal of Applied Physics, 2011, 109, 113505.	2.5	5
66	Optical properties of the InAs/InAlGaAs quantum dots subjected to thermal treatments. Thin Solid Films, 2010, 518, 6429-6431.	1.8	8
67	Different shape of GaAs quantum structures under various growth conditions. Thin Solid Films, 2010, 518, 6500-6504.	1.8	5
68	Effects of a thin InGaAs layer on carrier dynamics of InAs quantum dots. Journal of Applied Physics, 2010, 108, 093521.	2.5	13
69	Optical stability of shape-engineered InAs/InAlGaAs quantum dots. Journal of Applied Physics, 2009, 105, 053510.	2.5	9
70	1.55 \$mu\$m InAs/InAlGaAs Quantum Dot DFB Lasers. IEEE Nanotechnology Magazine, 2008, 7, 128-130.	2.0	4
71	Wavelength Shift of InP-Based InAs Quantum Dot Lasers Above Room Temperature. Journal of Nanoscience and Nanotechnology, 2007, 7, 4443-4446.	0.9	1
72	Effects of band-offset on the carrier lifetime in InAs quantum dots on InP substrates. Journal of Applied Physics, 2007, 101, 096103.	2.5	5