Maurizio Scaltriti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5039509/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High <i>FGFR1–4</i> mRNA Expression Levels Correlate with Response to Selective FGFR Inhibitors in Breast Cancer. Clinical Cancer Research, 2022, 28, 137-149.	7.0	12
2	MEK1/2 inhibition transiently alters the tumor immune microenvironment to enhance immunotherapy efficacy against head and neck cancer. , 2022, 10, e003917.		19
3	The evolution of RET inhibitor resistance in RET-driven lung and thyroid cancers. Nature Communications, 2022, 13, 1450.	12.8	47
4	The Oncogenic PI3K-Induced Transcriptomic Landscape Reveals Key Functions in Splicing and Gene Expression Regulation. Cancer Research, 2022, 82, 2269-2280.	0.9	6
5	Phase I Basket Study of Taselisib, an Isoform-Selective PI3K Inhibitor, in Patients with <i>PIK3CA</i> -Mutant Cancers. Clinical Cancer Research, 2021, 27, 447-459.	7.0	22
6	TRK xDFG Mutations Trigger a Sensitivity Switch from Type I to II Kinase Inhibitors. Cancer Discovery, 2021, 11, 126-141.	9.4	34
7	Targeting transcription of MCL-1 sensitizes HER2-amplified breast cancers to HER2 inhibitors. Cell Death and Disease, 2021, 12, 179.	6.3	11
8	Molecular mechanisms of assembly and TRIP13-mediated remodeling of the human Shieldin complex. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2024512118.	7.1	16
9	Targeted drug delivery strategies for precision medicines. Nature Reviews Materials, 2021, 6, 351-370.	48.7	388
10	How a new drug is born. European Heart Journal, 2021, 42, 3039-3041.	2.2	0
11	Genomic Alterations in <i>PIK3CA</i> -Mutated Breast Cancer Result in mTORC1 Activation and Limit the Sensitivity to PI3Kα Inhibitors. Cancer Research, 2021, 81, 2470-2480.	0.9	20
12	Canakinumab as treatment for COVID-19-related pneumonia: A prospective case-control study. International Journal of Infectious Diseases, 2021, 104, 433-440.	3.3	47
13	José Manuel Baselga (1959–2021). Science, 2021, 372, 350-350.	12.6	0
14	José Baselga (1959–2021). Cancer Cell, 2021, 39, 581-582.	16.8	0
15	José Baselga 1959–2021. Nature Cancer, 2021, 2, 479-480.	13.2	0
16	The present and future of PI3K inhibitors for cancer therapy. Nature Cancer, 2021, 2, 587-597.	13.2	63
17	ER+ Breast Cancer Strongly Depends on MCL-1 and BCL-xL Anti-Apoptotic Proteins. Cells, 2021, 10, 1659.	4.1	16
18	UDP-glucose pyrophosphorylase 2, a regulator of glycogen synthesis and glycosylation, is critical for pancreatic cancer growth. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2103592118.	7.1	14

#	Article	IF	CITATIONS
19	Cell Line–Specific Network Models of ER+ Breast Cancer Identify Potential PI3Kα Inhibitor Resistance Mechanisms and Drug Combinations. Cancer Research, 2021, 81, 4603-4617.	0.9	13
20	Recurrence biomarkers of triple negative breast cancer treated with neoadjuvant chemotherapy and anti-EGFR antibodies. Npj Breast Cancer, 2021, 7, 124.	5.2	7
21	First Nationwide Molecular Screening Program in Spain for Patients With Advanced Breast Cancer: Results From the AGATA SOLTI-1301 Study. Frontiers in Oncology, 2021, 11, 744112.	2.8	3
22	Pancreatoblastomas and mixed and pure acinar cell carcinomas share epigenetic signatures distinct from other neoplasms of the pancreas. Modern Pathology, 2021, , .	5.5	3
23	TRK Fusions Are Enriched in Cancers with Uncommon Histologies and the Absence of Canonical Driver Mutations. Clinical Cancer Research, 2020, 26, 1624-1632.	7.0	103
24	CDK 4/6 Inhibition Overcomes Acquired and Inherent Resistance to PI3Kα Inhibition in Pre-Clinical Models of Head and Neck Squamous Cell Carcinoma. Journal of Clinical Medicine, 2020, 9, 3214.	2.4	6
25	Metabolic Imaging Detects Resistance to PI3Kα Inhibition Mediated by Persistent FOXM1 Expression in ER+ Breast Cancer. Cancer Cell, 2020, 38, 516-533.e9.	16.8	38
26	FOXA1 Mutations Reveal Distinct Chromatin Profiles and Influence Therapeutic Response in Breast Cancer. Cancer Cell, 2020, 38, 534-550.e9.	16.8	67
27	Personalized cancer therapy prioritization based on driver alteration co-occurrence patterns. Genome Medicine, 2020, 12, 78.	8.2	10
28	Phase and context shape the function of composite oncogenic mutations. Nature, 2020, 582, 100-103.	27.8	31
29	ARID1A determines luminal identity and therapeutic response in estrogen-receptor-positive breast cancer. Nature Genetics, 2020, 52, 198-207.	21.4	140
30	Efficacy and Determinants of Response to HER Kinase Inhibition in <i>HER2</i> -Mutant Metastatic Breast Cancer. Cancer Discovery, 2020, 10, 198-213.	9.4	83
31	In Vitro Establishment of a Genetically Engineered Murine Head and Neck Cancer Cell Line using an Adeno-Associated Virus-Cas9 System. Journal of Visualized Experiments, 2020, , .	0.3	2
32	Alterations in PTEN and ESR1 promote clinical resistance to alpelisib plus aromatase inhibitors. Nature Cancer, 2020, 1, 382-393.	13.2	96
33	Capivasertib, an AKT Kinase Inhibitor, as Monotherapy or in Combination with Fulvestrant in Patients with <i>AKT1</i> E17K-Mutant, ER-Positive Metastatic Breast Cancer. Clinical Cancer Research, 2020, 26, 3947-3957.	7.0	54
34	Modeling biological and genetic diversity in upper tract urothelial carcinoma with patient derived xenografts. Nature Communications, 2020, 11, 1975.	12.8	37
35	Genetic Alterations in the PI3K/AKT Pathway and Baseline AKT Activity Define AKT Inhibitor Sensitivity in Breast Cancer Patient-derived Xenografts. Clinical Cancer Research, 2020, 26, 3720-3731.	7.0	21
36	HER2-Mediated Internalization of Cytotoxic Agents in <i>ERBB2</i> Amplified or Mutant Lung Cancers. Cancer Discovery, 2020, 10, 674-687.	9.4	149

#	Article	IF	CITATIONS
37	Resistance to TRK inhibition mediated by convergent MAPK pathway activation. Nature Medicine, 2019, 25, 1422-1427.	30.7	144
38	Cell-free DNA analysis in healthy individuals by next-generation sequencing: a proof of concept and technical validation study. Cell Death and Disease, 2019, 10, 534.	6.3	78
39	ESMO recommendations on the standard methods to detect NTRK fusions in daily practice and clinical research. Annals of Oncology, 2019, 30, 1417-1427.	1.2	263
40	Double <i>PIK3CA</i> mutations in cis increase oncogenicity and sensitivity to PI3Kα inhibitors. Science, 2019, 366, 714-723.	12.6	185
41	Solid pseudopapillary neoplasms of the pancreas are dependent on the Wnt pathway. Molecular Oncology, 2019, 13, 1684-1692.	4.6	21
42	PI3K Inhibition Activates SGK1 via a Feedback Loop to Promote Chromatin-Based Regulation of ER-Dependent Gene Expression. Cell Reports, 2019, 27, 294-306.e5.	6.4	49
43	Prevalence and role of HER2 mutations in cancer. , 2019, 199, 188-196.		44
44	MET activation confers resistance to cetuximab, and prevents HER2 and HER3 upregulation in head and neck cancer. International Journal of Cancer, 2019, 145, 748-762.	5.1	20
45	Overview of the relevance of PI3K pathway in HR-positive breast cancer. Annals of Oncology, 2019, 30, x3-x11.	1.2	92
46	<i>EGFR</i> and <i>MET</i> Amplifications Determine Response to HER2 Inhibition in <i>ERBB2</i> -Amplified Esophagogastric Cancer. Cancer Discovery, 2019, 9, 199-209.	9.4	115
47	Colorectal Carcinomas Containing Hypermethylated MLH1 Promoter and Wild-Type BRAF/KRAS Are Enriched for Targetable Kinase Fusions. Cancer Research, 2019, 79, 1047-1053.	0.9	112
48	Coamplification of <i>miR-4728</i> protects <i>HER2</i> -amplified breast cancers from targeted therapy. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2594-E2603.	7.1	23
49	Mechanisms of Resistance to PI3K and AKT Inhibitors. Resistance To Targeted Anti-cancer Therapeutics, 2018, , 117-146.	0.1	3
50	HER kinase inhibition in patients with HER2- and HER3-mutant cancers. Nature, 2018, 554, 189-194.	27.8	572
51	The prognostic value of PI3K mutational status in breast cancer: A metaâ€analysis. Journal of Cellular Biochemistry, 2018, 119, 4287-4292.	2.6	69
52	Genetic Predictors of Response to Systemic Therapy in Esophagogastric Cancer. Cancer Discovery, 2018, 8, 49-58.	9.4	275
53	Ado-Trastuzumab Emtansine for Patients With <i>HER2</i> -Mutant Lung Cancers: Results From a Phase II Basket Trial. Journal of Clinical Oncology, 2018, 36, 2532-2537.	1.6	381
54	Loss of the FAT1 Tumor Suppressor Promotes Resistance to CDK4/6 Inhibitors via the Hippo Pathway. Cancer Cell, 2018, 34, 893-905.e8.	16.8	307

#	Article	IF	CITATIONS
55	p95HER2–T cell bispecific antibody for breast cancer treatment. Science Translational Medicine, 2018, 10, .	12.4	59
56	Neratinib is effective in breast tumors bearing both amplification and mutation of ERBB2 (HER2). Science Signaling, 2018, 11, .	3.6	53
57	NTRK fusion-positive cancers and TRK inhibitor therapy. Nature Reviews Clinical Oncology, 2018, 15, 731-747.	27.6	975
58	The Genomic Landscape of Endocrine-Resistant Advanced Breast Cancers. Cancer Cell, 2018, 34, 427-438.e6.	16.8	633
59	Oncogenic TRK fusions are amenable to inhibition in hematologic malignancies. Journal of Clinical Investigation, 2018, 128, 3819-3825.	8.2	45
60	Tumour-specific PI3K inhibition via nanoparticle-targeted delivery in head and neck squamous cell carcinoma. Nature Communications, 2017, 8, 14292.	12.8	90
61	A Next-Generation TRK Kinase Inhibitor Overcomes Acquired Resistance to Prior TRK Kinase Inhibition in Patients with TRK Fusion–Positive Solid Tumors. Cancer Discovery, 2017, 7, 963-972.	9.4	331
62	PI3K pathway regulates ER-dependent transcription in breast cancer through the epigenetic regulator KMT2D. Science, 2017, 355, 1324-1330.	12.6	217
63	Overcoming resistance to HER2-targeted therapy with a novel HER2/CD3 bispecific antibody. Oncolmmunology, 2017, 6, e1267891.	4.6	66
64	Genotyping tumour DNA in cerebrospinal fluid and plasma of a HER2-positive breast cancer patient with brain metastases. ESMO Open, 2017, 2, e000253.	4.5	56
65	Somatic chromosomal engineering identifies BCAN-NTRK1 as a potent glioma driver and therapeutic target. Nature Communications, 2017, 8, 15987.	12.8	53
66	The emerging role of serum/glucocorticoid-regulated kinases in cancer. Cell Cycle, 2017, 16, 5-6.	2.6	8
67	A network modeling approach to elucidate drug resistance mechanisms and predict combinatorial drug treatments in breast cancer. Cancer Convergence, 2017, 1, 5.	8.0	50
68	Characterization of Ntrk fusions and Therapeutic Response to Ntrk Inhibition in Hematologic Malignancies. Blood, 2017, 130, 794-794.	1.4	0
69	Stratification and therapeutic potential of PML in metastatic breast cancer. Nature Communications, 2016, 7, 12595.	12.8	45
70	Somatic <i>PIK3CA</i> mutations as a driver of sporadic venous malformations. Science Translational Medicine, 2016, 8, 332ra42.	12.4	147
71	Differential Receptor Tyrosine Kinase PET Imaging for Therapeutic Guidance. Journal of Nuclear Medicine, 2016, 57, 1413-1419.	5.0	28
72	CDK12 Inhibition Reverses De Novo and Acquired PARP Inhibitor Resistance in BRCA Wild-Type and Mutated Models of Triple-Negative Breast Cancer. Cell Reports, 2016, 17, 2367-2381.	6.4	215

#	Article	IF	CITATIONS
73	Systematic Functional Characterization of Resistance to PI3K Inhibition in Breast Cancer. Cancer Discovery, 2016, 6, 1134-1147.	9.4	106
74	PDK1-SCK1 Signaling Sustains AKT-Independent mTORC1 Activation and Confers Resistance to PI3Kα Inhibition. Cancer Cell, 2016, 30, 229-242.	16.8	187
75	P-selectin is a nanotherapeutic delivery target in the tumor microenvironment. Science Translational Medicine, 2016, 8, 345ra87.	12.4	152
76	PIM1 kinase regulates cell death, tumor growth and chemotherapy response in triple-negative breast cancer. Nature Medicine, 2016, 22, 1303-1313.	30.7	188
77	Molecular Pathways: AXL, a Membrane Receptor Mediator of Resistance to Therapy. Clinical Cancer Research, 2016, 22, 1313-1317.	7.0	92
78	Taselisib (GDC-0032), a Potent β-Sparing Small Molecule Inhibitor of PI3K, Radiosensitizes Head and Neck Squamous Carcinomas Containing Activating <i>PIK3CA</i> Alterations. Clinical Cancer Research, 2016, 22, 2009-2019.	7.0	70
79	AKT signaling in ERBB2-amplified breast cancer. , 2016, 158, 63-70.		49
80	Pten loss promotes MAPK pathway dependency in HER2/neu breast carcinomas. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3030-3035.	7.1	52
81	High HER2 protein levels correlate with increased survival in breast cancer patients treated with antiâ€HER2 therapy. Molecular Oncology, 2016, 10, 138-147.	4.6	76
82	Buparlisib, an oral pan-PI3K inhibitor for the treatment of breast cancer. Expert Opinion on Investigational Drugs, 2015, 24, 421-431.	4.1	29
83	High HER2 Expression Correlates with Response to the Combination of Lapatinib and Trastuzumab. Clinical Cancer Research, 2015, 21, 569-576.	7.0	71
84	Quantification of HER family receptors in breast cancer. Breast Cancer Research, 2015, 17, 53.	5.0	39
85	PI3K inhibition results in enhanced estrogen receptor function and dependence in hormone receptor–positive breast cancer. Science Translational Medicine, 2015, 7, 283ra51.	12.4	276
86	AXL Mediates Resistance to PI3Kα Inhibition by Activating the EGFR/PKC/mTOR Axis in Head and Neck and Esophageal Squamous Cell Carcinomas. Cancer Cell, 2015, 27, 533-546.	16.8	263
87	MEK plus PI3K/mTORC1/2 Therapeutic Efficacy Is Impacted by <i>TP53</i> Mutation in Preclinical Models of Colorectal Cancer. Clinical Cancer Research, 2015, 21, 5499-5510.	7.0	18
88	Convergent loss of PTEN leads to clinical resistance to a PI(3)Kα inhibitor. Nature, 2015, 518, 240-244.	27.8	486
89	Rationale-based therapeutic combinations with PI3K inhibitors in cancer treatment. Molecular and Cellular Oncology, 2014, 1, e963447.	0.7	9
90	Antagonism of EGFR and HER3 Enhances the Response to Inhibitors of the PI3K-Akt Pathway in Triple-Negative Breast Cancer. Science Signaling, 2014, 7, ra29.	3.6	123

#	Article	IF	CITATIONS
91	Effect of p95HER2/611CTF on the Response to Trastuzumab and Chemotherapy. Journal of the National Cancer Institute, 2014, 106, .	6.3	36
92	Biomarkers of drugs targeting <scp>HER</scp> â€family signalling in cancer. Journal of Pathology, 2014, 232, 219-229.	4.5	49
93	Potential biomarkers of longâ€term benefit from singleâ€agent trastuzumab or lapatinib in HER2â€positive metastatic breast cancer. Molecular Oncology, 2014, 8, 20-26.	4.6	37
94	Therapeutic Antibodies in Breast Cancer. Seminars in Oncology, 2014, 41, 576-588.	2.2	3
95	mTORC1 Inhibition Is Required for Sensitivity to PI3K p110α Inhibitors in <i>PIK3CA</i> -Mutant Breast Cancer. Science Translational Medicine, 2013, 5, 196ra99.	12.4	251
96	Evaluation and Clinical Analyses of Downstream Targets of the Akt Inhibitor GDC-0068. Clinical Cancer Research, 2013, 19, 6976-6986.	7.0	72
97	Clinical Response to a Lapatinib-Based Therapy for a Li-Fraumeni Syndrome Patient with a Novel <i>HER2</i> V659E Mutation. Cancer Discovery, 2013, 3, 1238-1244.	9.4	43
98	RSK3/4 mediate resistance to PI3K pathway inhibitors in breast cancer. Journal of Clinical Investigation, 2013, 123, 2551-2563.	8.2	108
99	PI3K pathway inhibitors: better not left alone. Current Pharmaceutical Design, 2013, 19, 895-906.	1.9	16
100	Molecular Pathways: Targeting Hsp90—Who Benefits and Who Does Not. Clinical Cancer Research, 2012, 18, 4508-4513.	7.0	56
101	Dual mTORC1/2 and HER2 Blockade Results in Antitumor Activity in Preclinical Models of Breast Cancer Resistant to Anti-HER2 Therapy. Clinical Cancer Research, 2012, 18, 2603-2612.	7.0	154
102	PI3K Inhibition Impairs BRCA1/2 Expression and Sensitizes BRCA-Proficient Triple-Negative Breast Cancer to PARP Inhibition. Cancer Discovery, 2012, 2, 1036-1047.	9.4	507
103	AKT Inhibition Relieves Feedback Suppression of Receptor Tyrosine Kinase Expression and Activity. Cancer Cell, 2011, 19, 58-71.	16.8	867
104	mTOR Kinase Inhibition Causes Feedback-Dependent Biphasic Regulation of AKT Signaling. Cancer Discovery, 2011, 1, 248-259.	9.4	385
105	Antitumor Activity of the Hsp90 Inhibitor IPI-504 in HER2-Positive Trastuzumab-Resistant Breast Cancer. Molecular Cancer Therapeutics, 2011, 10, 817-824.	4.1	50
106	Cyclin E amplification/overexpression is a mechanism of trastuzumab resistance in HER2 ⁺ breast cancer patients. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3761-3766.	7.1	291
107	A Major Role of p95/611-CTF, a Carboxy-Terminal Fragment of HER2, in the Down-modulation of the Estrogen Receptor in HER2-Positive Breast Cancers. Cancer Research, 2010, 70, 8537-8546.	0.9	47
108	Clinical Benefit of Lapatinib-Based Therapy in Patients with Human Epidermal Growth Factor Receptor 2–Positive Breast Tumors Coexpressing the Truncated p95HER2 Receptor. Clinical Cancer Research, 2010, 16, 2688-2695.	7.0	137

#	Article	IF	CITATIONS
109	A Naturally Occurring HER2 Carboxy-Terminal Fragment Promotes Mammary Tumor Growth and Metastasis. Molecular and Cellular Biology, 2009, 29, 3319-3331.	2.3	150
110	Loss of <i>HER2</i> Amplification Following Trastuzumab-Based Neoadjuvant Systemic Therapy and Survival Outcomes. Clinical Cancer Research, 2009, 15, 7381-7388.	7.0	281
111	NVP-BEZ235, a Dual PI3K/mTOR Inhibitor, Prevents PI3K Signaling and Inhibits the Growth of Cancer Cells with Activating PI3K Mutations. Cancer Research, 2008, 68, 8022-8030.	0.9	726
112	Phosphatidylinositol 3-Kinase Hyperactivation Results in Lapatinib Resistance that Is Reversed by the mTOR/Phosphatidylinositol 3-Kinase Inhibitor NVP-BEZ235. Cancer Research, 2008, 68, 9221-9230.	0.9	474
113	Expression of p95HER2, a Truncated Form of the HER2 Receptor, and Response to Anti-HER2 Therapies in Breast Cancer. Journal of the National Cancer Institute, 2007, 99, 628-638.	6.3	769
114	Clusterin Isoforms Differentially Affect Growth and Motility of Prostate Cells: Possible Implications in Prostate Tumorigenesis. Cancer Research, 2007, 67, 10325-10333.	0.9	53
115	The Epidermal Growth Factor Receptor Pathway: A Model for Targeted Therapy. Clinical Cancer Research, 2006, 12, 5268-5272.	7.0	776
116	Biosynthesis of tumorigenic HER2 C-terminal fragments by alternative initiation of translation. EMBO Journal, 2006, 25, 3234-3244.	7.8	196
117	Molecular classification of green tea catechin-sensitive and green tea catechin-resistant prostate cancer in the TRAMP mice model by quantitative real-time PCR gene profiling. Carcinogenesis, 2006, 27, 1047-1053.	2.8	31
118	Intracellular Clusterin Induces G2-M Phase Arrest and Cell Death in PC-3 Prostate Cancer Cells1. Cancer Research, 2004, 64, 6174-6182.	0.9	97
119	Clusterin-Mediated Apoptosis Is Regulated by Adenomatous Polyposis Coli and Is p21 Dependent but p53 Independent. Cancer Research, 2004, 64, 7412-7419.	0.9	74
120	Clusterin (SGP-2, ApoJ) expression is downregulated in low- and high-grade human prostate cancer. International Journal of Cancer, 2004, 108, 23-30.	5.1	96
121	Successful prediction of prostate cancer recurrence by gene profiling in combination with clinical data: a 5-year follow-up study. Cancer Research, 2003, 63, 3469-72.	0.9	21
122	Clusterin (SGP-2) transient overexpression decreases proliferation rate of SV40-immortalized human prostate epithelial cells by slowing down cell cycle progression. Oncogene, 2002, 21, 4328-4334.	5.9	79
123	TRK xDFG Mutations Trigger a Sensitivity Switch from Type I to II Kinase Inhibitors. SSRN Electronic Journal, 0, , .	0.4	0