
Ahmed Sadeq Al-Fatesh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5039248/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Critical challenges in biohydrogen production processes from the organic feedstocks. Biomass Conversion and Biorefinery, 2023, 13, 8383-8401.	2.9	75
2	Hydrogen production, storage, utilisation and environmental impacts: a review. Environmental Chemistry Letters, 2022, 20, 153-188.	8.3	218
3	Engineered magnetic oxides nanoparticles as efficientÂsorbents for wastewater remediation: a review. Environmental Chemistry Letters, 2022, 20, 519-562.	8.3	28
4	Comprehensive thermokinetic modelling and predictions of cellulose decomposition in isothermal, non-isothermal, and stepwise heating modes. Journal of Analytical and Applied Pyrolysis, 2022, 161, 105427.	2.6	23
5	Insights on magnetic spinel ferrites for targeted drug delivery and hyperthermia applications. Nanotechnology Reviews, 2022, 11, 372-413.	2.6	39
6	Integrating life cycle assessment and characterisation techniques: A case study of biodiesel production utilising waste Prunus Armeniaca seeds (PAS) and a novel catalyst. Journal of Environmental Management, 2022, 304, 114319.	3.8	26
7	Role of Ca, Cr, Ga and Gd promotor over lanthanaâ€zirconia–supported Ni catalyst towards H ₂ â€rich syngas production through dry reforming of methane. Energy Science and Engineering, 2022, 10, 866-880.	1.9	21
8	Adsorptive removal of some Cl-VOC's as dangerous environmental pollutants using feather-like γ-Al2O3 derived from aluminium waste with life cycle analysis. Chemosphere, 2022, 295, 133795.	4.2	11
9	Dry Reforming of Methane with Ni Supported on Mechanically Mixed Yttria-Zirconia Support. Catalysis Letters, 2022, 152, 3632-3641.	1.4	6
10	Hydrogen production from CO ₂ reforming of methane using zirconia supported nickel catalyst. RSC Advances, 2022, 12, 10846-10854.	1.7	11
11	Solar photo-oxidation of recalcitrant industrial wastewater: a review. Environmental Chemistry Letters, 2022, 20, 1839-1862.	8.3	49
12	Assessment of Lewisâ€Acidic Surface Sites Using Tetrahydrofuran as a Suitable and Smart Probe Molecule. ChemistryOpen, 2022, 11, e202200021.	0.9	5
13	Strategies to achieve a carbon neutral society: a review. Environmental Chemistry Letters, 2022, 20, 2277-2310.	8.3	336
14	Kinetic modelling for pyrolytic degradation of olive tree pruning residues with predictions under various heating configurations. Chemical Engineering Research and Design, 2022, 161, 221-230.	2.7	11
15	Effect of Cerium Promoters on an MCM-41-Supported Nickel Catalyst in Dry Reforming of Methane. Industrial & Engineering Chemistry Research, 2022, 61, 164-174.	1.8	33
16	The Effect of Calcination Temperature on Various Sources of ZrO2 Supported Ni Catalyst for Dry Reforming of Methane. Catalysts, 2022, 12, 361.	1.6	15
17	Highly basic and active ZnO– <i>x</i> % K ₂ O nanocomposite catalysts for the production of methyl ethyl ketone biofuel. Energy Science and Engineering, 2022, 10, 2827-2841.	1.9	3
18	Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage, and carbon sequestration: a review. Environmental Chemistry Letters, 2022, 20, 2385-2485.	8.3	162

#	Article	lF	CITATIONS
19	Barium-Promoted Yttria–Zirconia-Supported Ni Catalyst for Hydrogen Production via the Dry Reforming of Methane: Role of Barium in the Phase Stabilization of Cubic ZrO ₂ . ACS Omega, 2022, 7, 16468-16483.	1.6	25
20	Modification of CeNi0.9Zr0.1O3 Perovskite Catalyst by Partially Substituting Yttrium with Zirconia in Dry Reforming of Methane. Materials, 2022, 15, 3564.	1.3	10
21	Promotional effect of addition of ceria over yttria-zirconia supported Ni based catalyst system for hydrogen production through dry reforming of methane. International Journal of Hydrogen Energy, 2022, 47, 20838-20850.	3.8	38
22	Performance Study of Methane Dry Reforming on Ni/ZrO2 Catalyst. Energies, 2022, 15, 3841.	1.6	11
23	Lanthanum–Cerium-Modified Nickel Catalysts for Dry Reforming of Methane. Catalysts, 2022, 12, 715.	1.6	9
24	Morphology Dependent Catalytic Activity of Mn3O4 for Complete Oxidation of Toluene and Carbon Monoxide. Catalysis Letters, 2021, 151, 172-183.	1.4	13
25	Ameliorative Impact of an Extract of the Halophyte Arthrocnemum macrostachyum on Growth and Biochemical Parameters of Soybean Under Salinity Stress. Journal of Plant Growth Regulation, 2021, 40, 1245-1256.	2.8	56
26	Renewable cellulosic nanocomposites for food packaging to avoid fossil fuel plastic pollution: a review. Environmental Chemistry Letters, 2021, 19, 613-641.	8.3	111
27	Thermokinetic study of residual solid digestate from anaerobic digestion. Chemical Engineering Journal, 2021, 406, 127039.	6.6	42
28	In situ auto-gasification of coke deposits over a novel Ni-Ce/W-Zr catalyst by sequential generation of oxygen vacancies for remarkably stable syngas production via CO2-reforming of methane. Applied Catalysis B: Environmental, 2021, 280, 119445.	10.8	104
29	Removal of lead (Pb(II)) and zinc (Zn(II)) from aqueous solution using coal fly ash (CFA) as a dual-sites adsorbent. Chinese Journal of Chemical Engineering, 2021, 34, 289-298.	1.7	22
30	Recent advances in carbon capture storage and utilisation technologies: a review. Environmental Chemistry Letters, 2021, 19, 797-849.	8.3	363
31	Ni supported on La2O3+ZrO2 for dry reforming of methane: The impact of surface adsorbed oxygen species. International Journal of Hydrogen Energy, 2021, 46, 3780-3788.	3.8	30
32	Advanced materials and technologies for supercapacitors used in energy conversion and storage: a review. Environmental Chemistry Letters, 2021, 19, 375-439.	8.3	255
33	Role of Mixed Oxides in Hydrogen Production through the Dry Reforming of Methane over Nickel Catalysts Supported on Modified γ-Al2O3. Processes, 2021, 9, 157.	1.3	22
34	Yttria Modified ZrO ₂ Supported Ni Catalysts for CO ₂ Reforming of Methane: The Role of Ce Promoter. ACS Omega, 2021, 6, 1280-1288.	1.6	29
35	Boosting NiO Catalytic Activity by x wt % Fâ€ions and K ₂ O for the Production of Methyl Ethyl Ketone (MEK) via Catalytic Dehydrogenation of 2â€Butanol. ChemCatChem, 2021, 13, 2200-2214.	1.8	7
36	Ce promoted lanthana-zirconia supported Ni catalyst system: A ternary redox system for hydrogen production. Molecular Catalysis, 2021, 504, 111498.	1.0	22

#	Article	IF	CITATIONS
37	Industrial biochar systems for atmospheric carbon removal: a review. Environmental Chemistry Letters, 2021, 19, 3023-3055.	8.3	79
38	Hydrogen Yield from CO2 Reforming of Methane: Impact of La2O3 Doping on Supported Ni Catalysts. Energies, 2021, 14, 2412.	1.6	10
39	Optimizing acido-basic profile of support in Ni supported La2O3+Al2O3 catalyst for dry reforming of methane. International Journal of Hydrogen Energy, 2021, 46, 14225-14235.	3.8	39
40	CO2 reforming of CH4 over Ni-catalyst supported on yttria stabilized zirconia. Journal of Saudi Chemical Society, 2021, 25, 101244.	2.4	6
41	Optimizing yttria-zirconia proportions in Ni supported catalyst system for H2 production through dry reforming of methane. Molecular Catalysis, 2021, 510, 111676.	1.0	20
42	Ceria promoted phosphateâ€≢irconia supported Ni catalyst for hydrogen rich syngas production through dry reforming of methane. International Journal of Energy Research, 2021, 45, 19289-19302.	2.2	20
43	Dry Reforming of Methane Using Ni Catalyst Supported on ZrO2: The Effect of Different Sources of Zirconia. Catalysts, 2021, 11, 827.	1.6	11
44	MoS2-based nanocomposites: synthesis, structure, and applications in water remediation and energy storage: a review. Environmental Chemistry Letters, 2021, 19, 3645-3681.	8.3	48
45	Conversion of biomass to biofuels and life cycle assessment: a review. Environmental Chemistry Letters, 2021, 19, 4075-4118.	8.3	263
46	Impact of ceria over WO3–ZrO2 supported Ni catalyst towards hydrogen production through dry reforming of methane. International Journal of Hydrogen Energy, 2021, 46, 25015-25028.	3.8	44
47	Characterization and kinetic modeling for pyrolytic conversion of cotton stalks. Energy Science and Engineering, 2021, 9, 1908-1918.	1.9	13
48	Pyrolysis Kinetic Modeling of a Poly(ethylene-co-vinyl acetate) Encapsulant Found in Waste Photovoltaic Modules. Industrial & Engineering Chemistry Research, 2021, 60, 13492-13504.	1.8	13
49	Mg and Cu incorporated CoFe2O4 catalyst: characterization and methane cracking performance for hydrogen and nano-carbon production. Ceramics International, 2021, 47, 27201-27209.	2.3	14
50	Optimizing MgO Content for Boosting γ-Al2O3-Supported Ni Catalyst in Dry Reforming of Methane. Catalysts, 2021, 11, 1233.	1.6	8
51	The effect of modifier identity on the performance of Ni-based catalyst supported on Î ³ -Al2O3 in dry reforming of methane. Catalysis Today, 2020, 348, 236-242.	2.2	46
52	Mass spectrometry study of lignocellulosic biomass combustion and pyrolysis with NOx removal. Renewable Energy, 2020, 146, 484-496.	4.3	77
53	Upcycling brewer's spent grain waste into activated carbon and carbon nanotubes for energy and other applications via twoâ€stage activation. Journal of Chemical Technology and Biotechnology, 2020, 95, 183-195.	1.6	69
54	Naturally occurring neem gum: An unprecedented green resource for bioelectrochemical flexible energy storage device. International Journal of Energy Research, 2020, 44, 913-924.	2.2	7

#	Article	IF	CITATIONS
55	H2 Production from Catalytic Methane Decomposition Using Fe/x-ZrO2 and Fe-Ni/(x-ZrO2) (x = 0, La2O3,) Tj E	ſQq110.7	84314 rgBT
56	Spatio-temporal analyses of extracted citrullus colocynthis seeds (Handal seed oil) as biofuel in internal combustion engine. Renewable Energy, 2020, 166, 234-244.	4.3	5
57	Catalytic Performance of Lanthanum Promoted Ni/ZrO2 for Carbon Dioxide Reforming of Methane. Processes, 2020, 8, 1502.	1.3	20
58	Facile technique towards clean fuel production by upgrading waste cooking oil in the presence of a heterogeneous catalyst. Journal of King Saud University - Science, 2020, 32, 3410-3416.	1.6	19
59	Strategies for mitigation of climate change: a review. Environmental Chemistry Letters, 2020, 18, 2069-2094.	8.3	532
60	Impact of Ce-Loading on Ni-catalyst supported over La2O3+ZrO2 in methane reforming with CO2. International Journal of Hydrogen Energy, 2020, 45, 33343-33351.	3.8	25
61	Techno-economic evaluation of biogas production from food waste via anaerobic digestion. Scientific Reports, 2020, 10, 15719.	1.6	87
62	Promotional effect of magnesium oxide for a stable nickel-based catalyst in dry reforming of methane. Scientific Reports, 2020, 10, 13861.	1.6	42
63	Pyrolysis kinetic modelling of abundant plastic waste (PET) and in-situ emission monitoring. Environmental Sciences Europe, 2020, 32, .	2.6	54
64	Study of Partial Oxidation of Methane by Ni/Al2O3 Catalyst: Effect of Support Oxides of Mg, Mo, Ti and Y as Promoters. Molecules, 2020, 25, 5029.	1.7	5
65	Physicochemical Characterization and Kinetic Modeling Concerning Combustion of Waste Berry Pomace. ACS Sustainable Chemistry and Engineering, 2020, 8, 17573-17586.	3.2	31
66	Methane Decomposition Over ZrO2-Supported Fe and Fe–Ni Catalysts—Effects of Doping La2O3 and WO3. Frontiers in Chemistry, 2020, 8, 317.	1.8	13
67	Dry Reforming of Methane Using Ce-modified Ni Supported on 8%PO4 + ZrO2 Catalysts. Catalysts, 2020, 10, 242.	1.6	21
68	Catalytic Hydrogen Production fromÂMethane Partial Oxidation: MechanismÂandÂKinetic Study. Chemical Engineering and Technology, 2020, 43, 641-648.	0.9	62
69	γ-FeOOH and γ-FeOOH decorated multi-layer graphene: Potential materials for selenium(VI) removal from water. Journal of Water Process Engineering, 2020, 37, 101396.	2.6	27
70	Synthesis of silver nanoparticles decorated on reduced graphene oxide nanosheets and their electrochemical sensing towards hazardous 4-nitrophenol. Journal of Materials Science: Materials in Electronics, 2020, 31, 11927-11937.	1.1	33
71	The production and application of carbon nanomaterials from high alkali silicate herbaceous biomass. Scientific Reports, 2020, 10, 2563.	1.6	93
72	Methane decomposition over strontium promoted iron catalyst: effect of different ratio of Al/Si support on hydrogen yield. Chemical Engineering Communications, 2020, 207, 1148-1156.	1.5	4

#	Article	IF	CITATIONS
73	Hydrogen Production by Partial Oxidation Reforming of Methane over Ni Catalysts Supported on High and Low Surface Area Alumina and Zirconia. Processes, 2020, 8, 499.	1.3	26
74	Exploring the photocatalytic hydrogen production potential of titania doped with alumina derived from foil waste. International Journal of Hydrogen Energy, 2020, 45, 34494-34502.	3.8	39
75	Catalytic methane decomposition over ZrO2 supported iron catalysts: Effect of WO3 and La2O3 addition on catalytic activity and stability. Renewable Energy, 2020, 155, 969-978.	4.3	36
76	Silica-immobilized ionic liquid BrÃ,nsted acids as highly effective heterogeneous catalysts for the isomerization of <i>n</i> -heptane and <i>n</i> -octane. RSC Advances, 2020, 10, 15282-15292.	1.7	14
77	Effect of Pressure on Na0.5La0.5Ni0.3Al0.7O2.5 Perovskite Catalyst for Dry Reforming of CH4. Catalysts, 2020, 10, 379.	1.6	5
78	Catalytic Performance of Metal Oxides Promoted Nickel Catalysts Supported on Mesoporous γ-Alumina in Dry Reforming of Methane. Processes, 2020, 8, 522.	1.3	18
79	Sterically Hindered Amine Functionalized Zeolites Prepared from Fly Ash for Effective Carbon Dioxide Adsorption. Current Science, 2020, 119, 123.	0.4	0
80	Hydrogen production from CH4 dry reforming over Sc promoted Ni / MCM-41. International Journal of Hydrogen Energy, 2019, 44, 20770-20781.	3.8	40
81	Role of TiO2 nanoparticle modification of Cr/MCM41 catalyst to enhance Cr-support interaction for oxidative dehydrogenation of ethane with carbon dioxide. Applied Catalysis A: General, 2019, 584, 117114.	2.2	23
82	Effect of pre-treatment and calcination temperature on Al2O3-ZrO2 supported Ni-Co catalysts for dry reforming of methane. International Journal of Hydrogen Energy, 2019, 44, 21546-21558.	3.8	47
83	Enhanced coke suppression by using phosphate-zirconia supported nickel catalysts under dry methane reforming conditions. International Journal of Hydrogen Energy, 2019, 44, 27784-27794.	3.8	32
84	An overview of caprolactam synthesis. Catalysis Reviews - Science and Engineering, 2019, 61, 516-594.	5.7	27
85	Catalytic Behaviour of Ce-Doped Ni Systems Supported on Stabilized Zirconia under Dry Reforming Conditions. Catalysts, 2019, 9, 473.	1.6	24
86	Acidic ionic liquids containing variable cationic head groups for catalytic isomerization of n-hexane. Journal of Molecular Liquids, 2019, 288, 111047.	2.3	12
87	Influence of Nature Support on Methane and CO2 Conversion in a Dry Reforming Reaction over Nickel-Supported Catalysts. Materials, 2019, 12, 1777.	1.3	23
88	Chemical composition of diesel particulate matter and its control. Catalysis Reviews - Science and Engineering, 2019, 61, 447-515.	5.7	20
89	Nanosized Ni/SBA-15 Catalysts for CO2 Reforming of CH4. Applied Sciences (Switzerland), 2019, 9, 1926.	1.3	14

90 Highly Selective Syngas/H2 Production via Partial Oxidation of CH4 Using (Ni, Co and) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62 Td (Niâ€

#	Article	IF	CITATIONS
91	Kinetics of long chain n-paraffin dehydrogenation over a commercial Pt-Sn-K-Mg/γ-Al2O3 catalyst: Model studies using n-dodecane. Applied Catalysis A: General, 2019, 579, 130-140.	2.2	9
92	CO2 reforming of CH4: Effect of Gd as promoter for Ni supported over MCM-41 as catalyst. Renewable Energy, 2019, 140, 658-667.	4.3	59
93	Assessment of the energy recovery potential of waste Photovoltaic (PV) modules. Scientific Reports, 2019, 9, 5267.	1.6	56
94	Kaolin-Supported Ni Catalysts for Dry Methane Reforming: Effect of Cs and Mixed K–Na Promoters. Journal of Chemical Engineering of Japan, 2019, 52, 232-238.	0.3	4
95	Combined Magnesia, Ceria and Nickel catalyst supported over Î ³ -Alumina Doped with Titania for Dry Reforming of Methane. Catalysts, 2019, 9, 188.	1.6	16
96	Production and characterisation of activated carbon and carbon nanotubes from potato peel waste and their application in heavy metal removal Environmental Science and Pollution Research, 2019, 26, 37228-37241.	2.7	90
97	Low Temperature CO Oxidation Over a Novel Nano-Structured, Mesoporous CeO2 Supported Au Catalyst. Catalysis Letters, 2019, 149, 127-140.	1.4	13
98	Impact of precursor sequence of addition for one-pot synthesis of Cr-MCM-41 catalyst nanoparticles to enhance ethane oxidative dehydrogenation with carbon dioxide. Ceramics International, 2019, 45, 1125-1134.	2.3	38
99	Kinetic Investigation of ÎAl2O3 Catalyst for Dimethyl Ether Production. Catalysis Letters, 2018, 148, 1236-1245.	1.4	23
100	Characterisation of Robust Combustion Catalyst from Aluminium Foil Waste. ChemistrySelect, 2018, 3, 1545-1550.	0.7	23
101	Preparation and characterization of mesoporous Î ³ -Al2O3 recovered from aluminum cans waste and its use in the dehydration of methanol to dimethyl ether. Journal of Material Cycles and Waste Management, 2018, 20, 1428-1436.	1.6	15
102	Bi-metallic catalysts of mesoporous Al2O3 supported on Fe, Ni and Mn for methane decomposition: Effect of activation temperature. Chinese Journal of Chemical Engineering, 2018, 26, 1904-1911.	1.7	17
103	Decomposition of methane over alumina supported Fe and Ni–Fe bimetallic catalyst: Effect of preparation procedure and calcination temperature. Journal of Saudi Chemical Society, 2018, 22, 239-247.	2.4	44
104	Hydrogen production via catalytic methane decomposition over alumina supported iron catalyst. Arabian Journal of Chemistry, 2018, 11, 405-414.	2.3	60
105	lridium promoted Niâ€Co/Al ₂ O ₃ â€ZrO ₂ catalyst for dry reforming of methane. Canadian Journal of Chemical Engineering, 2018, 96, 955-960.	0.9	15
106	Physicochemical characterization of miscanthus and its application in heavy metals removal from wastewaters. Environmental Progress and Sustainable Energy, 2018, 37, 1058-1067.	1.3	41
107	Ketonization of oxygenated hydrocarbons on metal oxide based catalysts. Catalysis Today, 2018, 302, 16-49.	2.2	65
108	In Situ Regeneration of Alumina-Supported Cobalt–Iron Catalysts for Hydrogen Production by Catalytic Methane Decomposition. Catalysts, 2018, 8, 567.	1.6	9

#	Article	IF	CITATIONS
109	Evaluation of Co-Ni/Sc-SBA–15 as a novel coke resistant catalyst for syngas production via CO2 reforming of methane. Applied Catalysis A: General, 2018, 567, 102-111.	2.2	42
110	A highly active and synergistic Pt/Mo2C/Al2O3 catalyst for water-gas shift reaction. Molecular Catalysis, 2018, 455, 38-47.	1.0	36
111	Rh promoted and ZrO2/Al2O3 supported Ni/Co based catalysts: High activity for CO2 reforming, steam–CO2 reforming and oxy–CO2 reforming ofÂCH4. International Journal of Hydrogen Energy, 2018, 43, 12069-12080.	3.8	79
112	Iron catalyst for decomposition of methane: Influence of Al/Si ratio support. Egyptian Journal of Petroleum, 2018, 27, 1221-1225.	1.2	14
113	Influence of promoted 5%Ni/MCM-41 catalysts on hydrogen yield in CO ₂ reforming of CH ₄ . International Journal of Energy Research, 2018, 42, 4120-4130.	2.2	21
114	Gallium-Promoted Ni Catalyst Supported on MCM-41 for Dry Reforming of Methane. Catalysts, 2018, 8, 229.	1.6	22
115	Energetic and exergetic analysis of solar-powered lithium bromide-water absorption cooling system. Journal of Cleaner Production, 2017, 151, 60-73.	4.6	63
116	A Facile Green Synthetic Route for the Preparation of Highly Active Î ³ -Al2O3 from Aluminum Foil Waste. Scientific Reports, 2017, 7, 3593.	1.6	47
117	Study of Methane Decomposition on Fe/MgO-Based Catalyst Modified by Ni, Co, and Mn Additives. Chemical Engineering Communications, 2017, 204, 739-749.	1.5	30
118	Enhanced catalytic activity of Ni on ÎAl 2 O 3 and ZSM-5 on addition of ceria zirconia for the partial oxidation of methane. Applied Catalysis B: Environmental, 2017, 212, 68-79.	10.8	62
119	Ni nanoparticles prepared by simple chemical method for the synthesis of Ni/NiO-multi-layered graphene by chemical vapor deposition. Solid State Sciences, 2017, 64, 34-40.	1.5	8
120	CO2-reforming of methane to produce syngas over Co-Ni/SBA-15 catalyst: Effect of support modifiers (Mg, La and Sc) on catalytic stability. Journal of CO2 Utilization, 2017, 21, 395-404.	3.3	83
121	Thermal Investigation and Kinetic Modeling of Lignocellulosic Biomass Combustion for Energy Production and Other Applications. Industrial & Engineering Chemistry Research, 2017, 56, 12119-12130.	1.8	56
122	Silver-Modified ÎAl ₂ O ₃ Catalyst for DME Production. Journal of Physical Chemistry C, 2017, 121, 25018-25032.	1.5	38
123	Effect of SO2 on Catalytic CO Oxidation Over Nano-Structured, Mesoporous Au/Ce1â^'xZrxO2 Catalysts. Catalysis Letters, 2017, 147, 2893-2900.	1.4	9
124	Promotional effect of Gd over Ni/Y2O3 catalyst used in dry reforming of CH4 for H2 production. International Journal of Hydrogen Energy, 2017, 42, 18805-18816.	3.8	36
125	Template-free synthesis of nitrogen doped carbon materials from an organic ionic dye (murexide) for supercapacitor application. RSC Advances, 2017, 7, 54626-54637.	1.7	16
126	Effect of Ce and Co Addition to Fe/Al2O3 for Catalytic Methane Decomposition. Catalysts, 2016, 6, 40.	1.6	25

#	Article	IF	CITATIONS
127	Suitability of Titania and Magnesia as Support for Methane Decomposition Catalyst Using Iron as Active Materials. Journal of Chemical Engineering of Japan, 2016, 49, 552-562.	0.3	2
128	Hydrogen production by catalytic methane decomposition over Ni, Co, and Ni-Co/Al ₂ O ₃ catalyst. Petroleum Science and Technology, 2016, 34, 1617-1623.	0.7	11
129	Production of hydrogen by catalytic methane decomposition over alumina supported mono-, bi- and tri-metallic catalysts. International Journal of Hydrogen Energy, 2016, 41, 22932-22940.	3.8	49
130	<i>Phoenix dactylifera</i> mediated green synthesis of Cu ₂ O particles for arsenite uptake from water. Science and Technology of Advanced Materials, 2016, 17, 760-768.	2.8	18
131	Crystallization and thermal stability of polypropylene/multi-wall carbon nanotube nanocomposites. Philosophical Magazine Letters, 2016, 96, 367-374.	0.5	16
132	Iron Oxide Supported on Al ₂ O ₃ Catalyst for Methane Decomposition Reaction: Effect of MgO Additive and Calcination Temperature. Journal of the Chinese Chemical Society, 2016, 63, 205-212.	0.8	11
133	Production of hydrogen from methane over lanthanum supported bimetallic catalysts. International Journal of Hydrogen Energy, 2016, 41, 8193-8198.	3.8	28
134	A bimetallic catalyst on a dual component support for low temperature total methane oxidation. Applied Catalysis B: Environmental, 2016, 187, 408-418.	10.8	68
135	La 2 O 3 supported bimetallic catalysts for the production of hydrogen and carbon nanomaterials from methane. International Journal of Hydrogen Energy, 2016, 41, 976-983.	3.8	36
136	Rapid investigation of paraffin dehydrogenation catalyst by TPRn/SPI-TOF-MS technique for industrial application. Applied Catalysis A: General, 2016, 514, 241-247.	2.2	2
137	Highly active InOx/TUD-1 catalyst towards Baeyer–Villiger oxidation of cyclohexanone using molecular oxygen and benzaldehyde. Catalysis Communications, 2016, 74, 80-84.	1.6	17
138	Synthesis of chitosan based semi-IPN hydrogels using epichlorohydrine as crosslinker to study the adsorption kinetics of Rhodamine B. Desalination and Water Treatment, 2016, 57, 17523-17536.	1.0	17
139	Methane decomposition over Fe supported catalysts for hydrogen and nano carbon yield. Catalysis for Sustainable Energy, 2015, 2, 71-82.	0.7	14
140	Influence of Support Type and Metal Loading in Methane Decomposition over Iron Catalyst for Hydrogen Production. Journal of the Chinese Chemical Society, 2015, 62, 592-599.	0.8	23
141	The Effect of Sc Promoter on the Performance of Co/ <scp>TiO₂–P25</scp> Catalyst in Dry Reforming of Methane. Bulletin of the Korean Chemical Society, 2015, 36, 2081-2088.	1.0	20
142	Production of Synthesis Gas via Dry Reforming of Methane over Coâ€Based Catalysts: Effect on H ₂ /CO Ratio and Carbon Deposition. Chemical Engineering and Technology, 2015, 38, 1397-1405.	0.9	15
143	Production of hydrogen and carbon nanofibers from methane over Ni–Co–Al catalysts. International Journal of Hydrogen Energy, 2015, 40, 1774-1781.	3.8	53
144	Methane decomposition over iron catalyst for hydrogen production. International Journal of Hydrogen Energy, 2015, 40, 7593-7600.	3.8	136

#	Article	IF	CITATIONS
145	Catalytic performance of CeO2 and ZrO2 supported Co catalysts for hydrogen production via dry reforming of methane. International Journal of Hydrogen Energy, 2015, 40, 6818-6826.	3.8	85
146	Ni catalysts with different promoters supported on zeolite for dry reforming of methane. Applied Petrochemical Research, 2015, 5, 329-337.	1.3	28
147	Suppression of carbon formation in CH 4 –CO 2 reforming by addition of Sr into bimetallic Ni–Co/γ-Al 2 O 3 catalyst. Journal of King Saud University, Engineering Sciences, 2015, 27, 101-107.	1.2	29
148	Reforming of Methane by CO ₂ over Bimetallic Ni-Mn/γ-Al ₂ O ₃ Catalyst. Chinese Journal of Chemical Physics, 2014, 27, 214-220.	0.6	13
149	Effect of Nanoâ€support and Type of Active Metal on Reforming of CH ₄ with CO ₂ . Journal of the Chinese Chemical Society, 2014, 61, 461-470.	0.8	9
150	Enhancing hydrogen production by dry reforming process with strontium promoter. International Journal of Hydrogen Energy, 2014, 39, 1680-1687.	3.8	49
151	Activities of Ni-based nano catalysts for CO2–CH4 reforming prepared by polyol process. Fuel Processing Technology, 2014, 122, 141-152.	3.7	60
152	Hydrogen production from methane dry reforming over nickel-based nanocatalysts using surfactant-assisted or polyol method. International Journal of Hydrogen Energy, 2014, 39, 17009-17023.	3.8	50
153	Role of La2O3 as Promoter and Support in Ni/Ĵ³-Al2O3 Catalysts for Dry Reforming of Methane. Chinese Journal of Chemical Engineering, 2014, 22, 28-37.	1.7	109
154	Syngas production via CO2 reforming of methane using Co-Sr-Al catalyst. Journal of Industrial and Engineering Chemistry, 2014, 20, 549-557.	2.9	50
155	Stabilities of zeolite-supported Ni catalysts for dry reforming of methane. Chinese Journal of Catalysis, 2013, 34, 764-768.	6.9	60
156	Sustainable Production of Synthesis Gases via State of the Art Metal Supported Catalytic Systems: An Overview. Journal of the Chinese Chemical Society, 2013, 60, 1297-1308.	0.8	12
157	CO2 Reforming of Methane to Produce Syngas over γ-Al2O3-Supported Ni–Sr Catalysts. Bulletin of the Chemical Society of Japan, 2013, 86, 742-748.	2.0	42
158	Methane Reforming Using a Ni–Ag/l͡³-Al ₂ O ₃ Catalyst. Journal of Chemical Engineering of Japan, 2013, 46, 158-161.	0.3	1
159	Effect of Pd on CH ₄ Reforming with CO ₂ Catalyzed by Ni over Mixed Titian –Alumina Support. Advanced Materials Research, 2012, 476-478, 513-518.	0.3	1
160	Ni/Y- Zeolite Catalysts for Carbon Dioxide Reforming of Methane. Advanced Materials Research, 2012, 550-553, 325-328.	0.3	4
161	Effects of calcination and activation temperature on dry reforming catalysts. Journal of Saudi Chemical Society, 2012, 16, 55-61.	2.4	57
162	Modification of alumina support with TiO2-P25 in CO2 reforming of CH4. Journal of Industrial and Engineering Chemistry, 2012, 18, 212-217.	2.9	13

Ahmed Sadeq Al-Fatesh

#	Article	IF	CITATIONS
163	Effects of Selected Promoters on Ni/Y-Al2O3 Catalyst Performance in Methane Dry Reforming. Chinese Journal of Catalysis, 2011, 32, 1604-1609.	6.9	69
164	Activity and Carbon Formation of a Low Ni-Loading Alumina-Supported Catalyst. Journal of Chemical Engineering of Japan, 2011, 44, 328-335.	0.3	8
165	Oxidative CO2 reforming of CH4 over Ni/α-Al2O3 catalyst. Journal of Industrial and Engineering Chemistry, 2011, 17, 479-483.	2.9	16
166	Investigation of Suitable Pretreatment for Dry Reforming of Methane Over Ni/Al ₂ O ₃ . Advanced Materials Research, 2011, 233-235, 1665-1673.	0.3	5
167	Effects of promoters on methane dry reforming over Ni catalyst on a mixed (a-Al2O3+TiO2-P25) support. International Journal of Physical Sciences, 2011, 6, .	0.1	Ο
168	Coke formation during CO2 reforming of CH4 over alumina-supported nickel catalysts. Applied Catalysis A: General, 2009, 364, 150-155.	2.2	115
169	Effect of Calcium Promoter on Ni-Based Catalysts Supported on α-Al ₂ O ₃ and TiO ₂ -P25. Applied Mechanics and Materials, 0, 204-208, 3909-3913.	0.2	2
170	Catalytic Decomposition of Methane over La ₂ O ₃ Supported Mono- and Bimetallic Catalysts. Applied Mechanics and Materials, 0, 625, 275-279.	0.2	1
171	The role of synthesis method on ZnO nanoparticles: implications for zinc dissolution and arsenite adsorption in water. , 0, 123, 138-149.		2