Enrique Alba

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5038935/enrique-alba-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

327
papers
6,569
citations
h-index

349
ext. papers

6,569
g-index

3 6.41
L-index

#	Paper	IF	Citations
327	Automatizing Software Cognitive Complexity Reduction. <i>IEEE Access</i> , 2022 , 10, 11642-11656	3.5	0
326	Metaheuristics on quantum computers: Inspiration, simulation and real execution. <i>Future Generation Computer Systems</i> , 2022 , 130, 164-180	7.5	O
325	A fresh approach to evaluate performance in distributed parallel genetic algorithms. <i>Applied Soft Computing Journal</i> , 2022 , 119, 108540	7.5	
324	Dynamic and adaptive fault-tolerant asynchronous federated learning using volunteer edge devices. <i>Future Generation Computer Systems</i> , 2022 , 133, 53-67	7.5	1
323	Metaheuristics and Software Engineering: Past, Present, and Future. <i>International Journal of Software Engineering and Knowledge Engineering</i> , 2021 , 31, 1349-1375	1	1
322	Bayesian neural architecture search using a training-free performance metric. <i>Applied Soft Computing Journal</i> , 2021 , 106, 107356	7.5	О
321	Hybridization of Racing Methods with Evolutionary Operators for Simulation Optimization of Traffic Lights Programs. <i>Lecture Notes in Computer Science</i> , 2021 , 17-33	0.9	1
320	Improving Search Efficiency and Diversity of Solutions in Multiobjective Binary Optimization by Using Metaheuristics Plus Integer Linear Programming. <i>Lecture Notes in Computer Science</i> , 2021 , 242-2	57 ⁹	
319	Yellow Swarm: LED panels to advise optimal alternative tours to drivers in the city of Malaga. <i>Applied Soft Computing Journal</i> , 2021 , 109, 107566	7.5	Ο
318	Citizen Centric Optimal Electric Vehicle Charging Stations Locations in a Full City: Case of Malaga. <i>Lecture Notes in Computer Science</i> , 2021 , 247-257	0.9	3
317	Software systems from smart city vendors. <i>Cities</i> , 2020 , 101, 102690	5.6	15
316	A better understanding on traffic light scheduling: New cellular GAs and new in-depth analysis of solutions. <i>Journal of Computational Science</i> , 2020 , 41, 101085	3.4	11
315	Parallel execution combinatorics with metaheuristics: Comparative study. <i>Swarm and Evolutionary Computation</i> , 2020 , 55, 100692	9.8	6
314	Parallel Genetic Algorithms. ACM Computing Surveys, 2020, 53, 1-39	13.4	28
313	Intelligent System for the Reduction of Injuries in Archery. <i>Communications in Computer and Information Science</i> , 2020 , 128-137	0.3	
312	CMI: An online multi-objective genetic autoscaler for scientific and engineering workflows in cloud infrastructures with unreliable virtual machines. <i>Journal of Network and Computer Applications</i> , 2020 , 149, 102464	7.9	4
311	Random error sampling-based recurrent neural network architecture optimization. <i>Engineering Applications of Artificial Intelligence</i> , 2020 , 96, 103946	7.2	8

(2018-2020)

310	The grid-to-neighbourhood relationship in cellular GAs: from design to solving complex problems. <i>Soft Computing</i> , 2020 , 24, 3569-3589	3.5	7
309	Can I Park in the City Center? Predicting Car Park Occupancy Rates in Smart Cities. <i>Journal of Urban Technology</i> , 2020 , 27, 27-41	5.9	3
308	An efficient discrete PSO coupled with a fast local search heuristic for the DNA fragment assembly problem. <i>Information Sciences</i> , 2020 , 512, 880-908	7.7	11
307	Performance analysis of synchronous and asynchronous distributed genetic algorithms on multiprocessors. <i>Swarm and Evolutionary Computation</i> , 2019 , 49, 147-157	9.8	11
306	Smart City and information technology: A review. <i>Cities</i> , 2019 , 93, 84-94	5.6	124
305	BIN-CT: Urban waste collection based on predicting the container fill level. <i>BioSystems</i> , 2019 , 186, 1039	62 9	11
304	Reliable simulation-optimization of traffic lights in a real-world city. <i>Applied Soft Computing Journal</i> , 2019 , 78, 697-711	7.5	16
303	A component-based study of energy consumption for sequential and parallel genetic algorithms. Journal of Supercomputing, 2019 , 75, 6194-6219	2.5	4
302	Optimal allocation of public parking spots in a smart city: problem characterisation and first algorithms. <i>Journal of Experimental and Theoretical Artificial Intelligence</i> , 2019 , 31, 575-597	2	10
301	Optimising Real-World Traffic Cycle Programs by Using Evolutionary Computation. <i>IEEE Access</i> , 2019 , 7, 43915-43932	3.5	6
300	Cellular Genetic Algorithms: Understanding the Behavior of Using Neighborhoods. <i>Applied Artificial Intelligence</i> , 2019 , 33, 863-880	2.3	4
299	Efficient anytime algorithms to solve the bi-objective Next Release Problem. <i>Journal of Systems and Software</i> , 2019 , 156, 217-231	3.3	7
298	JSDoop and TensorFlow.js: Volunteer Distributed Web Browser-Based Neural Network Training. <i>IEEE Access</i> , 2019 , 7, 158671-158684	3.5	3
297	Waste generation prediction under uncertainty in smart cities through deep neuroevolution. <i>Revista Facultad De Ingenier</i> ā , 2019 , 128-138	1	4
296	Sustainable Road Traffic Using Evolutionary Algorithms 2019 , 361-380		4
295	A stop-and-start adaptive cellular genetic algorithm for mobility management of GSM-LTE cellular network users. <i>Expert Systems With Applications</i> , 2018 , 106, 290-304	7.8	7
294	A swarm algorithm for collaborative traffic in vehicular networks. <i>Vehicular Communications</i> , 2018 , 12, 127-137	5.7	12
293	A theoretical and empirical study of the trajectories of solutions on the grid of Systolic Genetic Search. <i>Information Sciences</i> , 2018 , 445-446, 97-117	7.7	4

292	Road map partitioning for routing by using a micro steady state evolutionary algorithm. <i>Engineering Applications of Artificial Intelligence</i> , 2018 , 71, 155-165	7.2	О	
291	Green Swarm: Greener routes with bio-inspired techniques. <i>Applied Soft Computing Journal</i> , 2018 , 71, 952-963	7.5	7	
290	Natural evolution tells us how to best make goods delivery 2018 ,		1	
289	Generating realistic urban traffic flows with evolutionary techniques. <i>Engineering Applications of Artificial Intelligence</i> , 2018 , 75, 36-47	7.2	10	
288	An Intelligent Advisor for City Traffic Policies. Lecture Notes in Computer Science, 2018, 383-393	0.9		
287	Designing an Efficient Self-adaptive Parallel Algorithm Using Math Oracles. <i>Lecture Notes on Data Engineering and Communications Technologies</i> , 2018 , 313-325	0.4		
286	How Can Metaheuristics Help Software Engineers?. Lecture Notes in Computer Science, 2018, 89-105	0.9	2	
285	Customer Segmentation Based on the Electricity Demand Signature: The Andalusian Case. <i>Energies</i> , 2018 , 11, 1788	3.1	2	
284	An app performance optimization advisor for mobile device app marketplaces. <i>Sustainable Computing: Informatics and Systems</i> , 2018 , 19, 29-42	3	1	
283	Parallel multi-objective metaheuristics for smart communications in vehicular networks. <i>Soft Computing</i> , 2017 , 21, 1949-1961	3.5	15	
282	An improved problem aware local search algorithm for the DNA fragment assembly problem. <i>Soft Computing</i> , 2017 , 21, 1709-1720	3.5	4	
281	A bi-population based scheme for an explicit exploration/exploitation trade-off in dynamic environments. <i>Journal of Experimental and Theoretical Artificial Intelligence</i> , 2017 , 29, 453-479	2	8	
280	Solving optimization problems using a hybrid systolic search on GPU plus CPU. <i>Soft Computing</i> , 2017 , 21, 3227-3245	3.5	8	
279	The Problem Aware Local Search algorithm: an efficient technique for permutation-based problems. <i>Soft Computing</i> , 2017 , 21, 5193-5206	3.5	3	
278	Hybrid Algorithms Based on Integer Programming for the Search of Prioritized Test Data in Software Product Lines. <i>Lecture Notes in Computer Science</i> , 2017 , 3-19	0.9	2	
277	Infrastructure Deployment in Vehicular Communication Networks Using a Parallel Multiobjective Evolutionary Algorithm. <i>International Journal of Intelligent Systems</i> , 2017 , 32, 801-829	8.4	15	
276	Improving Diversity in Evolutionary Algorithms: New Best Solutions for Frequency Assignment. <i>IEEE Transactions on Evolutionary Computation</i> , 2017 , 21, 539-553	15.6	35	
275	Computing new optimized routes for GPS navigators using evolutionary algorithms 2017,		2	

(2015-2017)

274	Speed-up of synchronous and asynchronous distributed Genetic Algorithms: A first common approach on multiprocessors 2017 ,		2
273	Distributed Genetic Algorithms on Portable Devices for Smart Cities. <i>Lecture Notes in Computer Science</i> , 2017 , 51-62	0.9	4
272	Variable neighborhood search for the stochastic and dynamic vehicle routing problem. <i>Annals of Operations Research</i> , 2016 , 236, 425-461	3.2	37
271	Global memory schemes for dynamic optimization. <i>Natural Computing</i> , 2016 , 15, 319-333	1.3	12
270	Fine Tuning of Traffic in our Cities with Smart Panels 2016 ,		3
269	Optimizing User Experience in Choosing Android Applications 2016 ,		9
268	Smart Mobility by Optimizing the Traffic Lights: A New Tool for Traffic Control Centers. <i>Lecture Notes in Computer Science</i> , 2016 , 147-156	0.9	9
267	CTPATH: A Real World System to Enable Green Transportation by Optimizing Environmentaly Friendly Routing Paths. <i>Lecture Notes in Computer Science</i> , 2016 , 63-75	0.9	3
266	Efficiently finding the optimum number of clusters in a dataset with a new hybrid differential evolution algorithm: DELA. <i>Soft Computing</i> , 2016 , 20, 895-905	3.5	5
265	Evolutionary Computation for Software Product Line Testing: An Overview and Open Challenges. <i>Studies in Computational Intelligence</i> , 2016 , 59-87	0.8	3
264	Two hybrid wrapper-filter feature selection algorithms applied to high-dimensional microarray experiments. <i>Applied Soft Computing Journal</i> , 2016 , 38, 922-932	7.5	137
263	Light commodity devices for building vehicular ad hoc networks: An experimental study. <i>Ad Hoc Networks</i> , 2016 , 37, 499-511	4.8	16
262	Genetic Algorithms Running into Portable Devices: A First Approach. <i>Lecture Notes in Computer Science</i> , 2016 , 383-393	0.9	2
261	Intelligent Testing of Traffic Light Programs: Validation in Smart Mobility Scenarios. <i>Mathematical Problems in Engineering</i> , 2016 , 2016, 1-19	1.1	5
260	A Methodology for the Hybridization Based in Active Components: The Case of cGA and Scatter Search. <i>Computational Intelligence and Neuroscience</i> , 2016 , 2016, 8289237	3	1
259	Towards a dynamic modeling of the predator prey problem. <i>Applied Intelligence</i> , 2016 , 44, 755-770	4.9	3
258	A Systolic Genetic Search for reducing the execution cost of regression testing. <i>Applied Soft Computing Journal</i> , 2016 , 49, 1145-1161	7.5	8
257	Fitness Probability Distribution of Bit-Flip Mutation. <i>Evolutionary Computation</i> , 2015 , 23, 217-48	4.3	16

256	Systolic genetic search, a systolic computing-based metaheuristic. Soft Computing, 2015, 19, 1779-1801	3.5	6
255	Parallel Multiobjective Evolutionary Algorithms 2015 , 1017-1031		10
254	Smart Mobility Policies with Evolutionary Algorithms 2015 ,		6
253	A New Heuristic for Solving the Parking Assignment Problem. <i>Procedia Computer Science</i> , 2015 , 60, 312	-3.26	19
252	An empirical time analysis of evolutionary algorithms as C programs. <i>Software - Practice and Experience</i> , 2015 , 45, 111-142	2.5	8
251	A parallel local search in CPU/GPU for scheduling independent tasks on large heterogeneous computing systems. <i>Journal of Supercomputing</i> , 2015 , 71, 648-672	2.5	18
250	Takeover Time in Evolutionary Dynamic Optimization: From theory to practice. <i>Applied Mathematics and Computation</i> , 2015 , 250, 94-104	2.7	3
249	Search based algorithms for test sequence generation in functional testing. <i>Information and Software Technology</i> , 2015 , 58, 419-432	3.4	16
248	Active components of metaheuristics in cellular genetic algorithms. Soft Computing, 2015, 19, 1295-130	19 3.5	2
247	Smart placement of RSU for vehicular networks using multiobjective evolutionary algorithms 2015 ,		3
246	Hybrid PSO6 for hard continuous optimization. Soft Computing, 2015, 19, 1843-1861	3.5	2
245	An Evolutionary Algorithm to Generate Real Urban Traffic Flows. <i>Lecture Notes in Computer Science</i> , 2015 , 332-343	0.9	5
244	Adapting Distributed Evolutionary Algorithms to Heterogeneous Hardware. <i>Lecture Notes in Computer Science</i> , 2015 , 103-125	0.9	1
243	Enhancing distributed EAs by a proactive strategy. Cluster Computing, 2014, 17, 219-229	2.1	2
242	Red Swarm: Reducing travel times in smart cities by using bio-inspired algorithms. <i>Applied Soft Computing Journal</i> , 2014 , 24, 181-195	7.5	26
241	Empirical evaluation of distributed Differential Evolution on standard benchmarks. <i>Applied Mathematics and Computation</i> , 2014 , 236, 351-366	2.7	19
2 40	Systolic Genetic Search for Software Engineering: The Test Suite Minimization Case. <i>Lecture Notes in Computer Science</i> , 2014 , 678-689	0.9	3
239	A parallel evolutionary algorithm for prioritized pairwise testing of software product lines 2014 ,		14

238	Eco-friendly reduction of travel times in european smart cities 2014,		8
237	Enhancing parallel cooperative trajectory based metaheuristics with path relinking 2014,		1
236	Comparative analysis of classical multi-objective evolutionary algorithms and seeding strategies for pairwise testing of Software Product Lines 2014 ,		16
235	Optimising traffic lights with metaheuristics: Reduction of car emissions and consumption 2014 ,		3
234	An improved trajectory-based hybrid metaheuristic applied to the noisy DNA Fragment Assembly Problem. <i>Information Sciences</i> , 2014 , 277, 273-283	7.7	9
233	Exact computation of the expectation surfaces for uniform crossover along with bit-flip mutation. <i>Theoretical Computer Science</i> , 2014 , 545, 76-93	1.1	8
232	Systolic neighborhood search on graphics processing units. Soft Computing, 2014, 18, 125-142	3.5	3
231	Dealing with hardware heterogeneity: a new parallel search model. <i>Natural Computing</i> , 2013 , 12, 179-19	9 3 .3	4
230	Elementary landscape decomposition of the 0-1 unconstrained quadratic optimization. <i>Journal of Heuristics</i> , 2013 , 19, 711-728	1.9	7
229	Fast energy-aware OLSR routing in VANETs by means of a parallel evolutionary algorithm. <i>Cluster Computing</i> , 2013 , 16, 435-450	2.1	40
228	Estimating software testing complexity. <i>Information and Software Technology</i> , 2013 , 55, 2125-2139	3.4	19
227	Multi-environmental cooperative parallel metaheuristics for solving dynamic optimization problems. <i>Journal of Supercomputing</i> , 2013 , 63, 836-853	2.5	11
226	Ant Colony Based Algorithms for Dynamic Optimization Problems. <i>Studies in Computational Intelligence</i> , 2013 , 189-210	0.8	5
225	Parallel metaheuristics: recent advances and new trends. <i>International Transactions in Operational Research</i> , 2013 , 20, 1-48	2.9	174
224	Metaheuristics for Dynamic Vehicle Routing. Studies in Computational Intelligence, 2013, 265-289	0.8	5
223	Best practices in measuring algorithm performance for dynamic optimization problems. <i>Soft Computing</i> , 2013 , 17, 1005-1017	3.5	16
222	Optimal Cycle Program of Traffic Lights With Particle Swarm Optimization. <i>IEEE Transactions on Evolutionary Computation</i> , 2013 , 17, 823-839	15.6	105
221	Red Swarm 2013 ,		2

220	Math oracles 2013,		2
219	Micro-differential evolution with local search for high dimensional problems 2013,		8
218	Takeover time in dynamic optimization problems 2013,		1
217	Using theory to self-tune migration periods in distributed genetic algorithms 2013,		3
216	Multi-objective Optimal Test Suite Computation for Software Product Line Pairwise Testing 2013,		22
215	Problem understanding through landscape theory 2013 ,		1
214	Quantitative Performance Measures for Dynamic Optimization Problems. <i>Studies in Computational Intelligence</i> , 2013 , 17-33	0.8	3
213	HydroCM: A Hybrid Parallel Search Model for Heterogeneous Platforms. <i>Studies in Computational Intelligence</i> , 2013 , 219-235	0.8	1
212	New Ideas in Parallel Metaheuristics on GPU: Systolic Genetic Search. <i>Natural Computing Series</i> , 2013 , 203-225	2.5	4
211	BIPOP: A New Algorithm with Explicit Exploration/Exploitation Control for Dynamic Optimization Problems. <i>Studies in Computational Intelligence</i> , 2013 , 171-191	0.8	3
2 10	Reducing Gas Emissions in Smart Cities by Using the Red Swarm Architecture. <i>Lecture Notes in Computer Science</i> , 2013 , 289-299	0.9	2
209	Migrants Selection and Replacement in Distributed Evolutionary Algorithms for Dynamic Optimization. <i>Advances in Intelligent Systems and Computing</i> , 2013 , 155-162	0.4	1
208	Swarm intelligence for traffic light scheduling: Application to real urban areas. <i>Engineering Applications of Artificial Intelligence</i> , 2012 , 25, 274-283	7.2	88
207	SCHEDULING IN HETEROGENEOUS COMPUTING AND GRID ENVIRONMENTS USING A PARALLEL CHC EVOLUTIONARY ALGORITHM. <i>Computational Intelligence</i> , 2012 , 28, 131-155	2.5	11
206	Parallel Swarm Intelligence for VANETs Optimization 2012,		16
205	Parallel multi-swarm optimizer for gene selection in DNA microarrays. <i>Applied Intelligence</i> , 2012 , 37, 255-266	4.9	37
204	Evolutionary power-aware routing in VANETs using Monte-Carlo simulation 2012,		6
203	An Efficient Stochastic Local Search for Heterogeneous Computing Scheduling 2012,		3

(2012-2012)

202	Intelligent OLSR Routing Protocol Optimization for VANETs. <i>IEEE Transactions on Vehicular Technology</i> , 2012 , 61, 1884-1894	6.8	116	
201	Green OLSR in VANETs with differential evolution 2012,		6	
200	Multi-objective OLSR optimization for VANETs 2012 ,		8	
199	A Methodology for Comparing the Execution Time of Metaheuristics Running on Different Hardware. <i>Lecture Notes in Computer Science</i> , 2012 , 1-12	0.9	3	
198	Evolutionary algorithms for the multi-objective test data generation problem. <i>Software - Practice and Experience</i> , 2012 , 42, 1331-1362	2.5	44	
197	Designing heterogeneous distributed GAs by efficiently self-adapting the migration period. <i>Applied Intelligence</i> , 2012 , 36, 800-808	4.9	9	
196	Multi-objective optimization using metaheuristics: non-standard algorithms. <i>International Transactions in Operational Research</i> , 2012 , 19, 283-305	2.9	45	
195	Autocorrelation measures for the quadratic assignment problem. <i>Applied Mathematics Letters</i> , 2012 , 25, 698-705	3.5	27	
194	A parallel micro evolutionary algorithm for heterogeneous computing and grid scheduling. <i>Applied Soft Computing Journal</i> , 2012 , 12, 626-639	7.5	43	
193	A comparative study between dynamic adapted PSO and VNS for the vehicle routing problem with dynamic requests. <i>Applied Soft Computing Journal</i> , 2012 , 12, 1426-1439	7.5	79	
192	Local Optima Networks, Landscape Autocorrelation and Heuristic Search Performance. <i>Lecture Notes in Computer Science</i> , 2012 , 337-347	0.9	20	
191	Why six informants is optimal in PSO 2012 ,		6	
190	Evolutionary algorithm for prioritized pairwise test data generation 2012,		16	
189	Exact computation of the expectation curves for uniform crossover 2012,		1	
188	Towards the Design of Systolic Genetic Search 2012 ,		9	
187	Robust solutions for the software project scheduling problem: a preliminary analysis. <i>International Journal of Metaheuristics</i> , 2012 , 2, 56	0.8	7	
186	Ant Algorithm for Optimal Sensor Deployment. Studies in Computational Intelligence, 2012, 21-29	0.8	22	
185	Exploring the Accuracy of a Parallel Cooperative Model for Trajectory-Based Metaheuristics. Lecture Notes in Computer Science, 2012, 319-326	0.9	1	

184	Systolic Optimization on GPU Platforms. Lecture Notes in Computer Science, 2012, 375-383	0.9	4
183	On the Application of SAT Solvers to the Test Suite Minimization Problem. <i>Lecture Notes in Computer Science</i> , 2012 , 45-59	0.9	8
182	Influence of the Migration Period in Parallel Distributed GAs for Dynamic Optimization. <i>Lecture Notes in Computer Science</i> , 2012 , 343-348	0.9	1
181	Benchmarking CHC on a New Application: The Software Project Scheduling Problem. <i>Lecture Notes in Computer Science</i> , 2012 , 448-457	0.9	
180	Exact Computation of the Fitness-Distance Correlation for Pseudoboolean Functions with One Global Optimum. <i>Lecture Notes in Computer Science</i> , 2012 , 111-123	0.9	3
179	Analyzing the Behaviour of Population-Based Algorithms Using Rayleigh Distribution. <i>Lecture Notes in Computer Science</i> , 2012 , 417-427	0.9	1
178	Performance analysis of optimized VANET protocols in real world tests 2011,		6
177	Parallel Genetic Algorithms. Studies in Computational Intelligence, 2011,	0.8	75
176	An efficient routing protocol for green communications in vehicular ad-hoc networks 2011,		10
175	Optimizing OLSR in VANETS with differential evolution 2011,		4
174	Using multi-objective metaheuristics to solve the software project scheduling problem 2011,		25
173	Distributed evolutionary algorithms with adaptive migration period 2011 ,		7
172	Parallel Models for Genetic Algorithms. Studies in Computational Intelligence, 2011, 15-30	0.8	7
171	Elementary landscape decomposition of the frequency assignment problem. <i>Theoretical Computer Science</i> , 2011 , 412, 6002-6019	1.1	7
170	A study of the bi-objective next release problem. Empirical Software Engineering, 2011, 16, 29-60	3.3	49
169	Restart particle swarm optimization with velocity modulation: a scalability test. <i>Soft Computing</i> , 2011 , 15, 2221-2232	3.5	41
168	Optimization algorithms for large-scale real-world instances of the frequency assignment problem. <i>Soft Computing</i> , 2011 , 15, 975-990	3.5	25
167	Time analysis of standard evolutionary algorithms as software programs 2011,		4

166	Enhancing the urban road traffic with Swarm Intelligence: A case study of Cfdoba city downtown 2011 ,		3
165	An efficient local improvement operator for the multi-objective wireless sensor network deployment problem. <i>Engineering Optimization</i> , 2011 , 43, 1115-1139	2	3
164	Multi-environmental Cooperative Parallel Metaheuristics for Solving Dynamic Optimization Problems 2011 ,		8
163	Location discovery in Wireless Sensor Networks using metaheuristics. <i>Applied Soft Computing Journal</i> , 2011 , 11, 1223-1240	7.5	32
162	Using landscape measures for the online tuning of heterogeneous distributed gas 2011,		2
161	Exact computation of the expectation curves of the bit-flip mutation using landscapes theory 2011 ,		8
160	Bitwise operations for GPU implementation of genetic algorithms 2011 ,		9
159	A methodology to find the elementary landscape decomposition of combinatorial optimization problems. <i>Evolutionary Computation</i> , 2011 , 19, 597-637	4.3	24
158	Empirical computation of the quasi-optimal number of informants in particle swarm optimization 2011 ,		5
157	Flexible Variable Neighborhood Search in Dynamic Vehicle Routing. <i>Lecture Notes in Computer Science</i> , 2011 , 344-353	0.9	6
156	Comparing Metaheuristic Algorithms for Error Detection in Java Programs. <i>Lecture Notes in Computer Science</i> , 2011 , 82-96	0.9	7
155	Elementary Landscape Decomposition of the Test Suite Minimization Problem. <i>Lecture Notes in Computer Science</i> , 2011 , 48-63	0.9	6
154	Distribution of Computational Effort in Parallel MOEA/D. Lecture Notes in Computer Science, 2011, 488-	502)	12
153	Benchmark Generator for Software Testers. <i>International Federation for Information Processing</i> , 2011 , 378-388		1
152	Multi-Swarm Optimization for Dynamic Combinatorial Problems: A Case Study on Dynamic Vehicle Routing Problem. <i>Lecture Notes in Computer Science</i> , 2010 , 227-238	0.9	18
151	On the Velocity Update in Multi-Objective Particle Swarm Optimizers. <i>Studies in Computational Intelligence</i> , 2010 , 45-62	0.8	2
150	The jMetal framework for multi-objective optimization: Design and architecture 2010,		160
149	Metaheuristic assemblers of DNA strands: Noiseless and noisy cases 2010,		13

148	CHC and SA applied to wind energy optimization using real data 2010,		12
147	Automatic Parameter Tuning with Metaheuristics of the AODV Routing Protocol for Vehicular Ad-Hoc Networks. <i>Lecture Notes in Computer Science</i> , 2010 , 21-30	0.9	24
146	Selection pressure and takeover time of distributed evolutionary algorithms 2010,		4
145	Today/future importance analysis 2010 ,		15
144	Elementary landscape decomposition of the quadratic assignment problem 2010,		8
143	Statistical Study about Existing OWL Ontologies from a Significant Sample as Previous Step for their Alignment 2010 ,		1
142	Cellular Genetic Algorithm on Graphic Processing Units. Studies in Computational Intelligence, 2010, 223	-2332	17
141	ABC, a new performance tool for algorithms solving dynamic optimization problems 2010,		11
140	Evolutionary algorithms for solving the automatic cell planning problem: a survey. <i>Engineering Optimization</i> , 2010 , 42, 671-690	2	16
139	A multi-GPU implementation of a Cellular Genetic Algorithm 2010 ,		19
138	Elementary landscapes of frequency assignment problems 2010,		4
137	Automatic tuning of communication protocols for vehicular ad hoc networks using metaheuristics. <i>Engineering Applications of Artificial Intelligence</i> , 2010 , 23, 795-805	7.2	32
136	Algorithm::Evolutionary, a flexible Perl module for evolutionary computation. <i>Soft Computing</i> , 2010 , 14, 1091-1109	3.5	17
135	Heterogeneous computing scheduling with evolutionary algorithms. Soft Computing, 2010, 15, 685-701	3.5	30
134	. IEEE Transactions on Evolutionary Computation, 2010 , 14, 618-635	15.6	83
133	Convergence speed in multi-objective metaheuristics: Efficiency criteria and empirical study. <i>International Journal for Numerical Methods in Engineering</i> , 2010 , 84, 1344-1375	2.4	24
132	Measuring Fitness Degradation in Dynamic Optimization Problems. <i>Lecture Notes in Computer Science</i> , 2010 , 572-581	0.9	17
131	Hybrid ACO Algorithm for the GPS Surveying Problem. <i>Lecture Notes in Computer Science</i> , 2010 , 318-32.	50.9	7

130	A Scatter Search Approach for Solving the Automatic Cell Planning Problem. <i>Lecture Notes in Computer Science</i> , 2010 , 334-342	0.9	1
129	Iterated Local Search for de Novo Genomic Sequencing. Lecture Notes in Computer Science, 2010, 428-4	13 6 .9	1
128	A New Parallel Cooperative Model for Trajectory Based Metaheuristics. <i>Advances in Intelligent and Soft Computing</i> , 2010 , 559-567		3
127	Distributed Approach for Solving Time-Dependent Problems in Multimodal Transport Networks. <i>Advances in Operations Research</i> , 2009 , 2009, 1-15	1.3	13
126	A Study of the Multi-objective Next Release Problem 2009 ,		35
125	An asynchronous parallel implementation of a cellular genetic algorithm for combinatorial optimization 2009 ,		6
124	Dealing with inheritance in OO evolutionary testing 2009 ,		4
123	MOCell: A cellular genetic algorithm for multiobjective optimization. <i>International Journal of Intelligent Systems</i> , 2009 , 24, 726-746	8.4	176
122	Sensitivity and specificity based multiobjective approach for feature selection: Application to cancer diagnosis. <i>Information Processing Letters</i> , 2009 , 109, 887-896	0.8	72
121	Benchmarking a Wide Spectrum of Metaheuristic Techniques for the Radio Network Design Problem. <i>IEEE Transactions on Evolutionary Computation</i> , 2009 , 13, 1133-1150	15.6	23
120	Simulated Annealing for Optimization of Wind Farm Annual Profit 2009,		32
119	Multi-Objective Particle Swarm Optimizers: An Experimental Comparison. <i>Lecture Notes in Computer Science</i> , 2009 , 495-509	0.9	73
118	Hybrid DE-SVM Approach for Feature Selection: Application to Gene Expression Datasets 2009,		4
117	Experimental Study of GA-Based Schedulers in Dynamic Distributed Computing Environments 2009 , 423-441		3
116	Evaluating New Advanced Multiobjective Metaheuristics 2009 , 63-82		
115	Metaheuristics in Bioinformatics: DNA Sequencing and Reconstruction 2009 , 265-286		2
114	Analyzing Parallel Cellular Genetic Algorithms 2009 , 49-62		1
113	Canonical Metaheuristics for Dynamic Optimization Problems 2009 , 83-100		1

Optimal Location of Antennas in Telecommunication Networks **2009**, 287-307

Greedy Seeding and Problem-Specific Operators for GAs Solution of Strip Packing Problems **2009**, 385-405

110 Remote Optimization Service **2009**, 443-456

109	Generating Automatic Projections by Means of Genetic Programming 2009, 1-14		
108	On the Effect of the Steady-State Selection Scheme in Multi-Objective Genetic Algorithms. <i>Lecture Notes in Computer Science</i> , 2009 , 183-197	0.9	35
107	Optimizing the DFCN Broadcast Protocol with a Parallel Cooperative Strategy of Multi-Objective Evolutionary Algorithms. <i>Lecture Notes in Computer Science</i> , 2009 , 305-319	0.9	6
106	Location Discovery in Wireless Sensor Networks Using a Two-Stage Simulated Annealing. <i>Lecture Notes in Computer Science</i> , 2009 , 11-20	0.9	
105	Impact of Frequency and Severity on Non-Stationary Optimization Problems. <i>Lecture Notes in Computer Science</i> , 2009 , 755-761	0.9	
104	Accuracy and Efficiency in Simulating VANETs. <i>Communications in Computer and Information Science</i> , 2008 , 568-578	0.3	7
103	AbYSS: Adapting Scatter Search to Multiobjective Optimization. <i>IEEE Transactions on Evolutionary Computation</i> , 2008 , 12, 439-457	15.6	230
102	Hybrid Ant Colony System to Solve a 2-Dimensional Strip Packing Problem 2008,		1
101	Wireless Sensor Network Deployment Using a Memetic Simulated Annealing 2008,		11
100	Variable Neighborhood Search as Genetic Algorithm Operator for DNA Fragment Assembling Problem 2008 ,		5
99	. Parallel and Distributed Processing Symposium (IPDPS), Proceedings of the International Conference on, 2008 ,		40
98	Finding liveness errors with ACO 2008 ,		7
97	Metaheuristics for solving a real-world frequency assignment problem in GSM networks 2008,		20
96	OPTIMAL INTERCONNECTION OF AD HOC INJECTION NETWORKS. <i>Journal of Interconnection Networks</i> , 2008 , 09, 277-297	0.4	4
95	A self-adaptive cellular memetic algorithm for the DNA fragment assembly problem 2008,		12

94	A comparative study of the effect of parameter scalability in multi-objective metaheuristics 2008,		15
93	Using Variable Neighborhood Search to improve the Support Vector Machine performance in embedded automotive applications 2008 ,		6
92	Design and evaluation of tabu search method for job scheduling in distributed environments. <i>Parallel and Distributed Processing Symposium (IPDPS), Proceedings of the International Conference on</i> , 2008 ,		10
91	Solving large-scale real-world telecommunication problems using a grid-based genetic algorithm. <i>Engineering Optimization</i> , 2008 , 40, 1067-1084	2	19
90	Island Based Distributed Differential Evolution: An Experimental Study on Hybrid Testbeds 2008,		31
89	DNA fragment assembly using a grid-based genetic algorithm. <i>Computers and Operations Research</i> , 2008 , 35, 2776-2790	4.6	30
88	Ant colony optimization with partial order reduction for discovering safety property violations in concurrent models. <i>Information Processing Letters</i> , 2008 , 106, 221-231	0.8	22
87	Seeding strategies and recombination operators for solving the DNA fragment assembly problem. <i>Information Processing Letters</i> , 2008 , 108, 94-100	0.8	14
86	Efficient Batch Job Scheduling in Grids Using Cellular Memetic Algorithms. <i>Mathematical Modelling and Algorithms</i> , 2008 , 7, 217-236		33
85	Observations in using parallel and sequential evolutionary algorithms for automatic software testing. <i>Computers and Operations Research</i> , 2008 , 35, 3161-3183	4.6	39
84	Analysis of Distributed Genetic Algorithms for Solving a Strip Packing Problem. <i>Lecture Notes in Computer Science</i> , 2008 , 609-617	0.9	
83	Efficient Batch Job Scheduling in Grids Using Cellular Memetic Algorithms. <i>Studies in Computational Intelligence</i> , 2008 , 273-299	0.8	12
82	A Hybrid Genetic Algorithm for the DNA Fragment Assembly Problem. <i>Studies in Computational Intelligence</i> , 2008 , 101-112	0.8	8
81	A Hybrid Cellular Genetic Algorithm for the Capacitated Vehicle Routing Problem. <i>Studies in Computational Intelligence</i> , 2008 , 379-422	0.8	11
80	New Research in Nature Inspired Algorithms for Mobility Management in GSM Networks. <i>Lecture Notes in Computer Science</i> , 2008 , 1-10	0.9	22
79	Optimal Wireless Sensor Network Layout with Metaheuristics: Solving a Large Scale Instance. Lecture Notes in Computer Science, 2008, 527-535	0.9	8
78	Solving Three-Objective Optimization Problems Using a New Hybrid Cellular Genetic Algorithm. <i>Lecture Notes in Computer Science</i> , 2008 , 661-670	0.9	29
77	A Study of Convergence Speed in Multi-objective Metaheuristics. <i>Lecture Notes in Computer Science</i> , 2008 , 763-772	0.9	18

76	Introduction to Cellular Genetic Algorithms. <i>Operations Research/ Computer Science Interfaces Series</i> , 2008 , 3-20	0.3	41
75	The State of the Art in Cellular Evolutionary Algorithms. <i>Operations Research/Computer Science Interfaces Series</i> , 2008 , 21-34	0.3	6
74	Design of Cellular Memetic Algorithms. <i>Operations Research/ Computer Science Interfaces Series</i> , 2008 , 101-114	0.3	2
73	A cellular multi-objective genetic algorithm for optimal broadcasting strategy in metropolitan MANETs. <i>Computer Communications</i> , 2007 , 30, 685-697	5.1	64
72	Parallel Metaheuristics for Workforce Planning. Mathematical Modelling and Algorithms, 2007, 6, 509-5	28	13
71	Multi-Objective Optimization using Grid Computing. Soft Computing, 2007, 11, 531-540	3.5	22
70	Nature-inspired distributed computing. Computer Communications, 2007, 30, 653-655	5.1	2
69	Design Issues in a Multiobjective Cellular Genetic Algorithm 2007 , 126-140		41
68	ACOhg 2007 ,		22
67	Using metaheuristic algorithms remotely via ROS 2007 ,		3
67 66	Using metaheuristic algorithms remotely via ROS 2007, Optimal design of ad hoc injection networks by using genetic algorithms 2007,		3
ĺ		2	
66	Optimal design of ad hoc injection networks by using genetic algorithms 2007 , Evolutionary algorithms applied to reliable communication network design. <i>Engineering</i>	2	3
66	Optimal design of ad hoc injection networks by using genetic algorithms 2007, Evolutionary algorithms applied to reliable communication network design. Engineering Optimization, 2007, 39, 831-855 MALLBA: a software library to design efficient optimisation algorithms. International Journal of		3 7
666564	Optimal design of ad hoc injection networks by using genetic algorithms 2007, Evolutionary algorithms applied to reliable communication network design. Engineering Optimization, 2007, 39, 831-855 MALLBA: a software library to design efficient optimisation algorithms. International Journal of Innovative Computing and Applications, 2007, 1, 74 A comparison of PSO and GA approaches for gene selection and classification of microarray data		3757
66656463	Optimal design of ad hoc injection networks by using genetic algorithms 2007, Evolutionary algorithms applied to reliable communication network design. Engineering Optimization, 2007, 39, 831-855 MALLBA: a software library to design efficient optimisation algorithms. International Journal of Innovative Computing and Applications, 2007, 1, 74 A comparison of PSO and GA approaches for gene selection and classification of microarray data 2007,		37577
6665646362	Optimal design of ad hoc injection networks by using genetic algorithms 2007, Evolutionary algorithms applied to reliable communication network design. Engineering Optimization, 2007, 39, 831-855 MALLBA: a software library to design efficient optimisation algorithms. International Journal of Innovative Computing and Applications, 2007, 1, 74 A comparison of PSO and GA approaches for gene selection and classification of microarray data 2007, ACO vs EAs for solving a real-world frequency assignment problem in GSM networks 2007,		3757731

(2006-2007)

58	Two models of parallel ACO algorithms for the minimum tardy task problem. <i>International Journal of High Performance Systems Architecture</i> , 2007 , 1, 50	0.9	6
57	Evaluation of Different Metaheuristics Solving the RND Problem 2007 , 101-110		8
56	Gene selection in cancer classification using PSO/SVM and GA/SVM hybrid algorithms 2007,		98
55	A New Local Search Algorithm for the DNA Fragment Assembly Problem. <i>Lecture Notes in Computer Science</i> , 2007 , 1-12	0.9	24
54	Efficient Batch Job Scheduling in Grids using Cellular Memetic Algorithms 2007,		10
53	A Study of Canonical GAs for NSOPs 2007 , 245-260		5
52	Evolutionary Algorithms for Real-World Instances of the Automatic Frequency Planning Problem in GSM Networks. <i>Lecture Notes in Computer Science</i> , 2007 , 108-120	0.9	8
51	Using Omnidirectional BTS and Different Evolutionary Approaches to Solve the RND Problem 2007 , 85	3-860	4
50	The Influence of Data Implementation in the Performance of Evolutionary Algorithms 2007, 764-771		4
49	Optimal Placement of Antennae Using Metaheuristics 2006 , 214-222		6
48	Parallel Evolutionary Multiobjective Optimization 2006 , 33-56		8
47	Hierarchical Cellular Genetic Algorithm. <i>Lecture Notes in Computer Science</i> , 2006 , 111-122	0.9	13
46	A Parallel Island Model for Estimation of Distribution Algorithms. <i>Studies in Fuzziness and Soft Computing</i> , 2006 , 159-186	0.7	5
45	Analysis of distributed genetic algorithms for solving cutting problems. <i>International Transactions in Operational Research</i> , 2006 , 13, 403-423	2.9	4
44	Computing nine new best-so-far solutions for Capacitated VRP with a cellular Genetic Algorithm. <i>Information Processing Letters</i> , 2006 , 98, 225-230	0.8	57
43	Natural language tagging with genetic algorithms. <i>Information Processing Letters</i> , 2006 , 100, 173-182	0.8	20
42	Observations in using Grid-enabled technologies for solving multi-objective optimization problems. <i>Parallel Computing</i> , 2006 , 32, 377-393	1	21
41	Efficient parallel LAN/WAN algorithms for optimization. The mallba project. <i>Parallel Computing</i> , 2006 , 32, 415-440	1	50

40	Comparative analysis of modern optimization tools for the p-median problem. <i>Statistics and Computing</i> , 2006 , 16, 251-260	1.8	14
39	Software Testing with Evolutionary Strategies. Lecture Notes in Computer Science, 2006, 50-65	0.9	5
38	Performance of Distributed GAs on DNA Fragment Assembly 2006 , 97-115		2
37	A Parallel Island Model for Estimation of Distribution Algorithms 2006 , 159-186		
36	. IEEE Transactions on Evolutionary Computation, 2005 , 9, 126-142	15.6	294
35	Selection intensity in cellular evolutionary algorithms for regular lattices. <i>IEEE Transactions on Evolutionary Computation</i> , 2005 , 9, 489-505	15.6	70
34	An Introduction to Metaheuristic Techniques 2005 , 1-42		10
33	Parallel Metaheuristics in Telecommunications 2005 , 495-515		
32	Parallel Multiobjective Optimization 2005 , 371-394		12
31	Parallel Heterogeneous Metaheuristics 2005 , 395-422		5
30	Parallel Estimation of Distribution Algorithms 2005 , 203-222		4
29	Assembling DNA Fragments with a Distributed Genetic Algorithm 2005 , 285-302		2
28	New Technologies in Parallelism 2005 , 63-78		1
27	Metaheuristics and Parallelism 2005 , 79-103		16
26	Parallel Hybrid Metaheuristics 2005 , 347-370		16
25	New Ideas in Applying Scatter Search to Multiobjective Optimization. <i>Lecture Notes in Computer Science</i> , 2005 , 443-458	0.9	15
24	Advanced models of cellular genetic algorithms evaluated on SAT 2005,		7
23	ON THE BEHAVIOR OF PARALLEL GENETIC ALGORITHMS FOR OPTIMAL PLACEMENT OF ANTENNAE IN TELECOMMUNICATIONS. <i>International Journal of Foundations of Computer Science</i> , 2005 , 16, 343-359	0.6	22

22	Measuring the Performance of Parallel Metaheuristics 2005 , 43-62		11
21	Parallel Genetic Algorithms 2005 , 105-125		12
20	Decentralized Cellular Evolutionary Algorithms. <i>Chapman & Hall/CRC Computer and Information Science Series</i> , 2005 , 7-103-7-120		4
19	Metaheuristics for the DNA Fragment Assembly Problem. <i>International Journal of Computational Intelligence Research</i> , 2005 , 1,	Ο	11
18	Parallel heterogeneous genetic algorithms for continuous optimization. <i>Parallel Computing</i> , 2004 , 30, 699-719	1	39
17	Growth Curves and Takeover Time in Distributed Evolutionary Algorithms. <i>Lecture Notes in Computer Science</i> , 2004 , 864-876	0.9	10
16	Sequential and Distributed Evolutionary Algorithms for Combinatorial Optimization Problems. <i>Studies in Fuzziness and Soft Computing</i> , 2003 , 211-233	0.7	1
15	Heterogeneous Computing and Parallel Genetic Algorithms. <i>Journal of Parallel and Distributed Computing</i> , 2002 , 62, 1362-1385	4.4	65
14	Parallel evolutionary algorithms can achieve super-linear performance. <i>Information Processing Letters</i> , 2002 , 82, 7-13	0.8	112
13	. Statistics and Computing, 2002 , 12, 91-114	1.8	52
12	. IEEE Transactions on Evolutionary Computation, 2002 , 6, 443-462	15.6	513
11	.NET as a Platform for Implementing Concurrent Objects. Lecture Notes in Computer Science, 2002, 125	-12.9	
10	Comparing Synchronous and Asynchronous Cellular Genetic Algorithms. <i>Lecture Notes in Computer Science</i> , 2002 , 601-610	0.9	10
9	Analyzing synchronous and asynchronous parallel distributed genetic algorithms. <i>Future Generation Computer Systems</i> , 2001 , 17, 451-465	7.5	108
8	Influence of the Migration Policy in Parallel Distributed GAs with Structured and Panmictic Populations. <i>Applied Intelligence</i> , 2000 , 12, 163-181	4.9	47
7	Cellular Evolutionary Algorithms: Evaluating the Influence of Ratio. <i>Lecture Notes in Computer Science</i> , 2000 , 29-38	0.9	27
6	A survey of parallel distributed genetic algorithms. <i>Complexity</i> , 1999 , 4, 31-52	1.6	186
5	An analysis of synchronous and asynchronous parallel distributed genetic algorithms with structured and panmictic Islands. <i>Lecture Notes in Computer Science</i> , 1999 , 248-256	0.9	19

Utilizing dynastically optimal forma recombination in hybrid genetic algorithms. Lecture Notes in Computer Science, 1998, 305-314

DNA Fragment Assembly Using Grid Systems357-374

Applying Evolutionary Algorithms to Solve the Automatic Frequency Planning Problem271-286

Nature-Inspired Informatics for Telecommunication Network Design323-371

1