
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5038815/publications.pdf Version: 2024-02-01

FOWARD & FON

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
3	Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature, 2014, 510, 162-166.	13.7	1,185
4	A new pathway for mitochondrial quality control: mitochondrialâ€derived vesicles. EMBO Journal, 2014, 33, 2142-2156.	3.5	641
5	A Vesicular Transport Pathway Shuttles Cargo from Mitochondria to Lysosomes. Current Biology, 2012, 22, 135-141.	1.8	589
6	Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Reports, 2012, 13, 378-385.	2.0	558
7	Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO Journal, 2014, 33, n/a-n/a.	3.5	546
8	Mitochondrial dysfunction and mitophagy in Parkinson's: from familial to sporadic disease. Trends in Biochemical Sciences, 2015, 40, 200-210.	3.7	444
9	Structure of Parkin Reveals Mechanisms for Ubiquitin Ligase Activation. Science, 2013, 340, 1451-1455.	6.0	440
10	A regulated interaction with the UIM protein Eps15 implicates parkin in EGF receptor trafficking and PI(3)K–Akt signalling. Nature Cell Biology, 2006, 8, 834-842.	4.6	325
11	The three  P's of mitophagy: PARKIN, PINK1, and post-translational modifications. Genes and Development, 2015, 29, 989-999.	2.7	324
12	<scp>USP</scp> 8 regulates mitophagy by removing <scp>K</scp> 6â€linked ubiquitin conjugates from parkin. EMBO Journal, 2014, 33, 2473-2491.	3.5	298
13	Mfn2 ubiquitination by PINK1/parkin gates the p97-dependent release of ER from mitochondria to drive mitophagy. ELife, 2018, 7, .	2.8	261
14	Most genome-wide significant susceptibility loci for schizophrenia and bipolar disorder reported to date cross-traditional diagnostic boundaries. Human Molecular Genetics, 2011, 20, 387-391.	1.4	233
15	Syntaxin-17 delivers PINK1/parkin-dependent mitochondrial vesicles to the endolysosomal system. Journal of Cell Biology, 2016, 214, 275-291.	2.3	181
16	Parkin and CASK/LIN-2 Associate via a PDZ-mediated Interaction and Are Co-localized in Lipid Rafts and Postsynaptic Densities in Brain. Journal of Biological Chemistry, 2002, 277, 486-491.	1.6	162
17	Endocytic membrane trafficking and neurodegenerative disease. Cellular and Molecular Life Sciences, 2016, 73, 1529-1545.	2.4	130
18	The Machado–Joseph disease-associated mutant form of ataxin-3 regulates parkin ubiquitination and stability. Human Molecular Genetics, 2011, 20, 141-154.	1.4	129

#	Article	IF	CITATIONS
19	Parkin-mediated Monoubiquitination of the PDZ Protein PICK1 Regulates the Activity of Acid-sensing Ion Channels. Molecular Biology of the Cell, 2007, 18, 3105-3118.	0.9	122
20	SH3 Domains from a Subset of BAR Proteins Define a Ubl-Binding Domain and Implicate Parkin in Synaptic Ubiquitination. Molecular Cell, 2009, 36, 1034-1047.	4.5	121
21	Parkin- and PINK1-Dependent Mitophagy in Neurons: Will the Real Pathway Please Stand Up?. Frontiers in Neurology, 2013, 4, 100.	1.1	111
22	Structure and Function of Parkin, PINK1, and DJ-1, the Three Musketeers of Neuroprotection. Frontiers in Neurology, 2013, 4, 38.	1.1	110
23	Defending the mitochondria: The pathways of mitophagy and mitochondrial-derived vesicles. International Journal of Biochemistry and Cell Biology, 2016, 79, 427-436.	1.2	98
24	Canadian guideline for Parkinson disease. Cmaj, 2019, 191, E989-E1004.	0.9	90
25	<i>SMPD1</i> mutations, activity, and αâ€synuclein accumulation in Parkinson's disease. Movement Disorders, 2019, 34, 526-535.	2.2	81
26	Structure-guided mutagenesis reveals a hierarchical mechanism of Parkin activation. Nature Communications, 2017, 8, 14697.	5.8	74
27	Mitochondrial quality control in health and in Parkinson's disease. Physiological Reviews, 2022, 102, 1721-1755.	13.1	70
28	Genetic, Structural, and Functional Evidence Link <i>TMEM175</i> to Synucleinopathies. Annals of Neurology, 2020, 87, 139-153.	2.8	65
29	Ataxin-3 Deubiquitination Is Coupled to Parkin Ubiquitination via E2 Ubiquitin-conjugating Enzyme. Journal of Biological Chemistry, 2012, 287, 531-541.	1.6	64
30	The landscape of Parkin variants reveals pathogenic mechanisms and therapeutic targets in Parkinson's disease. Human Molecular Genetics, 2019, 28, 2811-2825.	1.4	61
31	Rab7A regulates tau secretion. Journal of Neurochemistry, 2017, 141, 592-605.	2.1	54
32	<scp>LRRK</scp> 2 localizes to endosomes and interacts with clathrinâ€light chains to limit Rac1 activation. EMBO Reports, 2015, 16, 79-86.	2.0	53
33	Disruption of CRIN2B Impairs Differentiation in Human Neurons. Stem Cell Reports, 2018, 11, 183-196.	2.3	53
34	Pleiotropic effects for Parkin and LRRK2 in leprosy type-1 reactions and Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15616-15624.	3.3	50
35	Mechanism of PINK1 activation by autophosphorylation and insights into assembly on the TOM complex. Molecular Cell, 2022, 82, 44-59.e6.	4.5	42
36	A Multistep Workflow to Evaluate Newly Generated iPSCs and Their Ability to Generate Different Cell Types. Methods and Protocols, 2021, 4, 50.	0.9	40

#	Article	IF	CITATIONS
37	Fineâ€Mapping of <i>SNCA</i> in Rapid Eye Movement Sleep Behavior Disorder and Overt Synucleinopathies. Annals of Neurology, 2020, 87, 584-598.	2.8	39
38	Analysis of Heterozygous <scp> <i>PRKN </i> </scp> Variants and Copyâ€Number Variations in Parkinson's Disease. Movement Disorders, 2021, 36, 178-187.	2.2	39
39	Midbrain organoids with an <i>SNCA</i> gene triplication model key features of synucleinopathy. Brain Communications, 2021, 3, fcab223.	1.5	37
40	Mutant ataxin-3 promotes the autophagic degradation of parkin. Autophagy, 2011, 7, 233-234.	4.3	35
41	The Quebec Parkinson Network: A Researcher-Patient Matching Platform and Multimodal Biorepository. Journal of Parkinson's Disease, 2020, 10, 301-313.	1.5	35
42	The E3 Ubiquitin Ligase Parkin Is Recruited to the 26 S Proteasome via the Proteasomal Ubiquitin Receptor Rpn13. Journal of Biological Chemistry, 2015, 290, 7492-7505.	1.6	32
43	Bcl-2-associated athanogene 5 (BAG5) regulates Parkin-dependent mitophagy and cell death. Cell Death and Disease, 2019, 10, 907.	2.7	32
44	Short Mitochondrial ARF Triggers Parkin/PINK1-dependent Mitophagy. Journal of Biological Chemistry, 2014, 289, 29519-29530.	1.6	31
45	Full sequencing and haplotype analysis of <i>MAPT</i> in Parkinson's disease and rapid eye movement sleep behavior disorder. Movement Disorders, 2018, 33, 1016-1020.	2.2	31
46	Targeted sequencing of Parkinson's disease loci genes highlights <i>SYT11, FGF20</i> and other associations. Brain, 2021, 144, 462-472.	3.7	31
47	Ataxin-3 and Its E3 Partners: Implications for Machado–Joseph Disease. Frontiers in Neurology, 2013, 4, 46.	1.1	28
48	Long-Term Potentiation in Isolated Dendritic Spines. PLoS ONE, 2009, 4, e6021.	1.1	24
49	MFN2 retrotranslocation boosts mitophagy by uncoupling mitochondria from the ER. Autophagy, 2018, 14, 1658-1660.	4.3	24
50	Presenting mitochondrial antigens: PINK1, Parkin and MDVs steal the show. Cell Research, 2016, 26, 1180-1181.	5.7	23
51	Common and rare GCH1 variants are associated with Parkinson'sÂdisease. Neurobiology of Aging, 2019, 73, 231.e1-231.e6.	1.5	20
52	One Step Into the Future: New iPSC Tools to Advance Research in Parkinson's Disease and Neurological Disorders. Journal of Parkinson's Disease, 2019, 9, 265-281.	1.5	19
53	Analysis of common and rare <i>VPS13C</i> variants in late-onset Parkinson disease. Neurology: Genetics, 2020, 6, 385.	0.9	19
54	Association study of DNAJC13, UCHL1, HTRA2, GIGYF2, and EIF4G1 with Parkinson's disease. Neurobiology of Aging, 2021, 100, 119.e7-119.e13.	1.5	19

#	Article	IF	CITATIONS
55	Development of an α-synuclein knockdown peptide and evaluation of its efficacy in Parkinson's disease models. Communications Biology, 2021, 4, 232.	2.0	18
56	Stimulation of L-type calcium channels increases tyrosine hydroxylase and dopamine in ventral midbrain cells induced from somatic cells. Stem Cells Translational Medicine, 2020, 9, 697-712.	1.6	17
57	Clearance of intracellular tau protein from neuronal cells via VAMP8-induced secretion. Journal of Biological Chemistry, 2020, 295, 17827-17841.	1.6	17
58	Sequencing of the GBA coactivator, Saposin C, in Parkinson disease. Neurobiology of Aging, 2018, 72, 187.e1-187.e3.	1.5	16
59	Quantitative expansion microscopy for the characterization of the spectrin periodic skeleton of axons using fluorescence microscopy. Scientific Reports, 2020, 10, 2917.	1.6	15
60	Microfabricated disk technology: Rapid scale up in midbrain organoid generation. Methods, 2022, 203, 465-477.	1.9	15
61	Proteomic Profiling of Mitochondrial-Derived Vesicles in Brain Reveals Enrichment of Respiratory Complex Sub-assemblies and Small TIM Chaperones. Journal of Proteome Research, 2021, 20, 506-517.	1.8	14
62	Variants in the Niemann–Pick type C gene NPC1 are not associated with Parkinson's disease. Neurobiology of Aging, 2020, 93, 143.e1-143.e4.	1.5	13
63	Pharmacological Inhibition of Brain EGFR Activation By a BBB-penetrating Inhibitor, AZD3759, Attenuates I±-synuclein Pathology in a Mouse Model of α-Synuclein Propagation. Neurotherapeutics, 2021, 18, 979-997.	2.1	13
64	Structural basis for feedforward control in the PINK1/Parkin pathway. EMBO Journal, 2022, 41, e109460.	3.5	13
65	Hallmarks and Molecular Tools for the Study of Mitophagy in Parkinson's Disease. Cells, 2022, 11, 2097.	1.8	13
66	Clinical perception and management of Parkinson's disease during the COVID-19 pandemic: A Canadian experience. Parkinsonism and Related Disorders, 2021, 91, 66-76.	1.1	12
67	A light-inducible protein clustering system for in vivo analysis of α-synuclein aggregation in Parkinson disease. PLoS Biology, 2022, 20, e3001578.	2.6	12
68	TOX3 Variants Are Involved in Restless Legs Syndrome and Parkinson's Disease with Opposite Effects. Journal of Molecular Neuroscience, 2018, 64, 341-345.	1.1	11
69	Selective localization of Mfn2 near PINK1 enables its preferential ubiquitination by Parkin on mitochondria. Open Biology, 2022, 12, 210255.	1.5	10
70	Beyond ER: Regulating TOM-Complex-Mediated Import by Ubx2. Trends in Cell Biology, 2019, 29, 687-689.	3.6	9
71	Cell Death: N-degrons Fine-Tune Pyroptotic Cell Demise. Current Biology, 2019, 29, R588-R591.	1.8	9
72	Formylation of Eukaryotic Cytoplasmic Proteins: Linking Stress to Degradation. Trends in Biochemical Sciences, 2019, 44, 181-183.	3.7	8

EDWARD A FON

#	Article	IF	CITATIONS
73	Decreased Penetrance of Parkinson's Disease in Elderly Carriers of Glucocerebrosidase Gene L444P/R Mutations: A Communityâ€Based 10‥ear Longitudinal Study. Movement Disorders, 2020, 35, 672-678.	2.2	8
74	Principles of mitochondrial vesicle transport. Current Opinion in Physiology, 2018, 3, 25-33.	0.9	7
75	Generation of human midbrain organoids from induced pluripotent stem cells. MNI Open Research, O, 3, 1.	1.0	7
76	Fine-Tuning TOM-Mitochondrial Import via Ubiquitin. Trends in Cell Biology, 2020, 30, 425-427.	3.6	6
77	Generation of homozygous PRKN, PINK1 and double PINK1/PRKN knockout cell lines from healthy induced pluripotent stem cells using CRISPR/Cas9 editing. Stem Cell Research, 2022, 62, 102806.	0.3	6
78	When Degradation Elicits the Alarm: N-Terminal Degradation of NLRP1B Unleashes Its Inflammasome Activity. Molecular Cell, 2019, 74, 637-639.	4.5	5
79	Co-registration of Imaging Modalities (MRI, CT and PET) to Perform Frameless Stereotaxic Robotic Injections in the Common Marmoset. Neuroscience, 2022, 480, 143-154.	1.1	5
80	An approach to measuring protein turnover in human induced pluripotent stem cell organoids by mass spectrometry. Methods, 2022, 203, 17-27.	1.9	5
81	FOXG1 dose tunes cell proliferation dynamics in human forebrain progenitor cells. Stem Cell Reports, 2022, 17, 475-488.	2.3	4
82	Standardized Quality Control Workflow to Evaluate the Reproducibility and Differentiation Potential of Human iPSCs into Neurons. SSRN Electronic Journal, 0, , .	0.4	2