Vasile I Parvulescu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5038171/publications.pdf

Version: 2024-02-01

253 papers 12,904 citations

49 h-index

41339

30081 103 g-index

283 all docs 283 docs citations

times ranked

283

13936 citing authors

#	Article	IF	CITATIONS
1	Catalysis in Ionic Liquids. Chemical Reviews, 2007, 107, 2615-2665.	47.7	2,179
2	Catalytic removal of NO. Catalysis Today, 1998, 46, 233-316.	4.4	1,096
3	Catalytic NO _{<i>x</i>} Abatement Systems for Mobile Sources: From Three-Way to Lean Burn after-Treatment Technologies. Chemical Reviews, 2011, 111, 3155-3207.	47.7	643
4	Functionalised heterogeneous catalysts for sustainable biomass valorisation. Chemical Society Reviews, 2018, 47, 8349-8402.	38.1	493
5	Advances in porous and nanoscale catalysts for viable biomass conversion. Chemical Society Reviews, 2019, 48, 2366-2421.	38.1	457
6	Sunflower and rapeseed oil transesterification to biodiesel over different nanocrystalline MgO catalysts. Green Chemistry, 2008, 10, 373-381.	9.0	238
7	Degradation of pharmaceutical compounds in water by non-thermal plasma treatment. Water Research, 2015, 81, 124-136.	11.3	230
8	Degradation of antibiotics in water by non-thermal plasma treatment. Water Research, 2011, 45, 3407-3416.	11.3	211
9	Degradation of pharmaceutical compound pentoxifylline in water by non-thermal plasma treatment. Water Research, 2010, 44, 3445-3453.	11.3	196
10	Photocatalytic degradation of phenol by TiO2 thin films prepared by sputtering. Applied Catalysis B: Environmental, 2000, 25, 83-92.	20.2	151
11	Ceria-based oxides as supports for LaCoO3 perovskite; catalysts for total oxidation of VOC. Applied Catalysis B: Environmental, 2007, 70, 400-405.	20.2	149
12	Recent Progress and Prospects in Catalytic Water Treatment. Chemical Reviews, 2022, 122, 2981-3121.	47.7	139
13	Plasma-assisted catalysis for volatile organic compounds abatement. Applied Catalysis B: Environmental, 2005, 61, 12-20.	20.2	126
14	Improved performance of non-thermal plasma reactor during decomposition of trichloroethylene: Optimization of the reactor geometry and introduction of catalytic electrode. Applied Catalysis B: Environmental, 2007, 74, 270-277.	20.2	118
15	Supported perovskites for total oxidation of toluene. Applied Catalysis B: Environmental, 2005, 60, 33-39.	20.2	115
16	Selective oxidation of 5-hydroxymethyl furfural over non-precious metal heterogeneous catalysts. Applied Catalysis B: Environmental, 2016, 180, 751-757.	20.2	112
17	Visible-light photocatalytic activity of gold nanoparticles supported on template-synthesized mesoporous titania for the decontamination of the chemical warfare agent Soman. Applied Catalysis B: Environmental, 2010, 99, 191-197.	20.2	110
18	Transesterification of vegetable oils on basic large mesoporous alumina supported alkaline fluoridesâ€"Evidences of the nature of the active site and catalytic performances. Journal of Catalysis, 2009, 263, 56-66.	6.2	106

#	Article	IF	CITATIONS
19	Transesterification of vegetable oils over CaO catalysts. Catalysis Today, 2011, 167, 64-70.	4.4	103
20	Degradation of diclofenac in water using a pulsed corona discharge. Chemical Engineering Journal, 2013, 234, 389-396.	12.7	90
21	Total oxidation of toluene on ferrite-type catalysts. Catalysis Today, 2009, 141, 361-366.	4.4	88
22	Nonprecious Metals Catalyzing Hydroamination and C–N Coupling Reactions. Organic Process Research and Development, 2015, 19, 1327-1355.	2.7	88
23	Ru-based magnetic nanoparticles (MNP) for succinic acid synthesis from levulinic acid. Green Chemistry, 2013, 15, 3077.	9.0	85
24	d -Glucose hydrogenation/hydrogenolysis reactions on noble metal (Ru, Pt)/activated carbon supported catalysts. Catalysis Today, 2015, 257, 281-290.	4.4	81
25	The hydrolytic hydrogenation of cellulose to sorbitol over M (Ru, Ir, Pd, Rh)-BEA-zeolite catalysts. Catalysis Today, 2014, 223, 122-128.	4.4	80
26	Preparation of Rhodium Nanoparticles in Carbon Dioxide Induced Ionic Liquids and their Application to Selective Hydrogenation. Angewandte Chemie - International Edition, 2009, 48, 1085-1088.	13.8	76
27	Efficient bio-conversion of glycerol to glycerol carbonate catalyzed by lipase extracted from Aspergillus niger. Green Chemistry, 2012, 14, 478.	9.0	74
28	Characterization and Catalytic-Hydrogenation Behavior of SiO2-Embedded Nanoscopic Pd, Au, and Pd–Au Alloy Colloids. Chemistry - A European Journal, 2006, 12, 2343-2357.	3.3	73
29	Plasma-assisted catalysis total oxidation of trichloroethylene over gold nano-particles embedded in SBA-15 catalysts. Applied Catalysis B: Environmental, 2007, 76, 275-281.	20.2	70
30	Degradation of organic dyes in water by electrical discharges. Plasma Chemistry and Plasma Processing, 2007, 27, 589-598.	2.4	67
31	Degradation of the chlorophenoxyacetic herbicide 2,4-D by plasma-ozonation system. Journal of Hazardous Materials, 2017, 336, 52-56.	12.4	67
32	Efficient glucose dehydration to HMF onto Nb-BEA catalysts. Catalysis Today, 2019, 325, 109-116.	4.4	67
33	NbF ₅ –AlF ₃ Catalysts: Design, Synthesis, and Application in Lactic Acid Synthesis from Cellulose. ACS Catalysis, 2015, 5, 3013-3026.	11.2	66
34	Heterogeneous Gold Catalysts for Efficient Access to Functionalized Lactones. Chemistry - A European Journal, 2008, 14, 9412-9418.	3.3	65
35	Sol–gel-entrapped nano silver catalysts-correlation between active silver species and catalytic behavior. Journal of Catalysis, 2010, 272, 92-100.	6.2	65
36	Surface versus volume effects in luminescent ceria nanocrystals synthesized by an oil-in-water microemulsion method. Physical Chemistry Chemical Physics, 2011, 13, 17135.	2.8	63

#	Article	IF	Citations
37	High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film. Nature Communications, 2015, 6, 8561.	12.8	63
38	Oxidation of 5-hydroxymethyl furfural to 2,5-diformylfuran in aqueous media over heterogeneous manganese based catalysts. Catalysis Today, 2016, 278, 66-73.	4.4	63
39	Graphene from Alginate Pyrolysis as a Metalâ€Free Catalyst for Hydrogenation of Nitro Compounds. ChemSusChem, 2016, 9, 1565-1569.	6.8	62
40	Influence of gold particle size on the photocatalytic activity for acetone oxidation of Au/TiO2 catalysts prepared by dc-magnetron sputtering. Applied Catalysis B: Environmental, 2011, 107, 140-149.	20.2	61
41	High hexitols selectivity in cellulose hydrolytic hydrogenation over platinum (Pt) vs. ruthenium (Ru) catalysts supported on micro/mesoporous carbon. Applied Catalysis B: Environmental, 2017, 214, 1-14.	20.2	57
42	CO2 methanation catalyzed by oriented MoS2 nanoplatelets supported on few layers graphene. Applied Catalysis B: Environmental, 2019, 245, 351-359.	20.2	56
43	Heterogeneous Catalytic Transformation of Citronellal to Menthol in a Single Step on Ir-Beta Zeolite Catalysts. Topics in Catalysis, 2009, 52, 1292-1300.	2.8	55
44	Multifunctional nanocomposites with non-precious metals and magnetic core for 5-HMF oxidation to FDCA. Applied Catalysis B: Environmental, 2020, 278, 119309.	20.2	54
45	Preparation and characterisation of mesoporous zirconium oxide. Applied Catalysis A: General, 2001, 214, 273-287.	4.3	53
46	In situ study of ozone and hybrid plasma Ag–Al catalysts for the oxidation of toluene: Evidence of the nature of the active sites. Applied Catalysis B: Environmental, 2011, 104, 84-90.	20.2	53
47	Hydroxylated magnesium fluorides as environmentally friendly catalysts for glycerol acetylation. Applied Catalysis B: Environmental, 2011, 107, 260-267.	20.2	52
48	Oneâ€Pot Synthesis of Menthol Catalyzed by a Highly Diastereoselective Au/MgF ₂ Catalyst. Angewandte Chemie - International Edition, 2010, 49, 8134-8138.	13.8	50
49	Visible-light C–heteroatom bond cleavage and detoxification of chemical warfare agents using titania-supported gold nanoparticles as photocatalyst. Journal of Materials Chemistry, 2010, 20, 4050.	6.7	50
50	Acid and redox activity of template-free Al-rich H-BEA* and Fe-BEA* zeolites. Journal of Catalysis, 2014, 318, 22-33.	6.2	50
51	N-Doped graphene as a metal-free catalyst for glucose oxidation to succinic acid. Green Chemistry, 2017, 19, 1999-2005.	9.0	50
52	Strategy of cross-linked enzyme aggregates onto magnetic particles adapted to the green design of biocatalytic synthesis of glycerol carbonate. RSC Advances, 2013, 3, 4052.	3.6	48
53	Environmental-friendly strategy for biocatalytic conversion of waste glycerol to glycerol carbonate. Applied Catalysis B: Environmental, 2014, 146, 274-278.	20.2	47
54	Dry reforming of methane on ceria prepared by modified precipitation route. Applied Catalysis A: General, 2015, 494, 29-40.	4.3	47

#	Article	IF	Citations
55	Deoxygenation of oleic acid: Influence of the synthesis route of Pd/mesoporous carbon nanocatalysts onto their activity and selectivity. Applied Catalysis A: General, 2015, 504, 81-91.	4.3	46
56	Improving TiO2 activity in photo-production of hydrogen from sugar industry wastewaters. International Journal of Hydrogen Energy, 2011, 36, 15509-15518.	7.1	45
57	Reducibility of ruthenium in relation with zeolite structure. Applied Surface Science, 1999, 141, 164-176.	6.1	43
58	A polynuclear complex, {[Cu(bpe)2](NO3)}, with interpenetrated diamondoid networks: synthesis, properties and catalytic behavior. Journal of Materials Chemistry, 2005, 15, 4234.	6.7	42
59	Recyclable biocatalytic composites of lipase-linked magnetic macro-/nano-particles for glycerol carbonate synthesis. Applied Catalysis A: General, 2012, 437-438, 90-95.	4.3	42
60	NO decomposition over bicomponent Cu-Sm-ZSM-5 zeolites. Applied Catalysis B: Environmental, 1998, 16, 1-17.	20.2	41
61	Metal-triflate ionic liquid systems immobilized onto mesoporous MS41 materials as new and efficient catalysts for N-acylation. Journal of Catalysis, 2007, 249, 359-369.	6.2	41
62	NO Decomposition over Cu–Sm–ZSM-5 Zeolites Containing Low-Exchanged Copper. Journal of Catalysis, 2000, 191, 445-455.	6.2	40
63	Order and disorder effects in nano-ZrO2 investigated by micro-Raman and spectrally and temporarily resolved photoluminescence. Physical Chemistry Chemical Physics, 2012, 14, 12970.	2.8	40
64	Synthesis of Terephthalic Acid by pâ€Cymene Oxidation using Oxygen: Toward a More Sustainable Production of Bioâ€Polyethylene Terephthalate. ChemSusChem, 2016, 9, 3102-3112.	6.8	40
65	Catalytic Properties of 3D Graphene-Like Microporous Carbons Synthesized in a Zeolite Template. ACS Catalysis, 2018, 8, 1779-1789.	11.2	40
66	M/TiO2/SiO2 (M=Fe, Mn, and V) catalysts in photo-decomposition of sulfur mustard. Applied Catalysis B: Environmental, 2009, 91, 546-553.	20.2	39
67	Synthesis of ceria nanopowders by microwave-assisted hydrothermal method for dry reforming of methane. International Journal of Hydrogen Energy, 2016, 41, 2512-2525.	7.1	39
68	Nâ€Doped Defective Graphene from Biomass as Catalyst for CO ₂ Hydrogenation to Methane. ChemCatChem, 2019, 11, 985-990.	3.7	39
69	Synergism of Activated Carbon and Undoped and Nitrogenâ€doped TiO ₂ in the Photocatalytic Degradation of the Chemical Warfare Agents Soman, VX, and Yperite. ChemSusChem, 2009, 2, 427-436.	6.8	38
70	Oxidation of ethane on high specific surface SmCoO3 and PrCoO3 perovskites. Catalysis Today, 2009, 143, 309-314.	4.4	38
71	Heterogeneous Oxidation of Pyrimidine and Alkyl Thioethers in Ionic Liquids over Mesoporous Ti or Ti/Ge Catalysts. Chemistry - A European Journal, 2004, 10, 4640-4646.	3.3	37
72	Benzylation of benzene with benzyl alcohol on zeolite catalysts. Applied Catalysis A: General, 2011, 393, 206-214.	4.3	37

#	Article	IF	Citations
73	One $\hat{a} \in S$ tep Pyrolysis Preparation of $1.1.1$ Oriented Gold Nanoplatelets Supported on Graphene and Six Orders of Magnitude Enhancement of the Resulting Catalytic Activity. Angewandte Chemie - International Edition, 2016, 55, 607-612.	13.8	37
74	Lignin fragmentation over magnetically recyclable composite Co@Nb2O5@Fe3O4 catalysts. Journal of Catalysis, 2016, 339, 209-227.	6.2	37
75	The activity of yttrium-modified Mg,Al hydrotalcites in the epoxidation of styrene with hydrogen peroxide. Applied Catalysis A: General, 2011, 403, 83-90.	4.3	36
76	Reaction of Hexane, Cyclohexane, and Methylcyclopentane over Gallium-, Indium-, and Thallium-Promoted Sulfated Zirconia Catalysts. Journal of Catalysis, 1998, 180, 66-84.	6.2	35
77	NO decomposition over physical mixtures of Cu-ZSM-5 with zeolites or oxides. Applied Catalysis B: Environmental, 2001, 33, 223-237.	20.2	35
78	Biocatalytic alternative for bio-glycerol conversion with alkyl carbonates via a lipase-linked magnetic nano-particles assisted process. Applied Catalysis B: Environmental, 2014, 145, 120-125.	20.2	34
79	The effect of phosphorus on the catalytic performance of nickel oxide in ethane oxidative dehydrogenation. Catalysis Science and Technology, 2016, 6, 6953-6964.	4.1	34
80	Reduction of Prostaglandin Unsaturated Ketones to Secondary Allylic Alcohols by Hydrogen Transfer over Mesoporous-Supported PtSn Catalysts. Journal of Catalysis, 2002, 206, 218-229.	6.2	32
81	New evidence on the formation of oxidizing species in corona discharge in contact with liquid and their reactions with organic compounds. Chemosphere, 2016, 165, 507-514.	8.2	32
82	Unprecedented Catalytic Wet Oxidation of Glucose to Succinic Acid Induced by the Addition of <i>n</i> êButylamine to a Ru ^{III} Catalyst. ChemSusChem, 2016, 9, 2307-2311.	6.8	32
83	Selective catalytic reduction of NO by H2/C3H6 over Pt/Ce1-xZrxO2-Î: The synergy effect studied by transient techniques. Applied Catalysis B: Environmental, 2017, 206, 308-318.	20.2	32
84	Upgrade of 5-Hydroxymethylfurfural to Dicarboxylic Acids onto Multifunctional-Based Fe ₃ O ₄ @SiO ₂ Magnetic Catalysts. ACS Sustainable Chemistry and Engineering, 2018, 6, 14292-14301.	6.7	31
85	Epoxidation with peroxotungstic acid immobilised onto silica-grafted phosphoramides. Journal of Molecular Catalysis A, 2002, 182-183, 257-266.	4.8	30
86	Isolated centres versus defect associates in Sm ³⁺ -doped CeO ₂ : a spectroscopic investigation. Journal Physics D: Applied Physics, 2013, 46, 275302.	2.8	30
87	Protonated titanate nanotubes as solid acid catalyst for aldol condensation. Journal of Catalysis, 2017, 346, 161-169.	6.2	30
88	Sensitizers on Inorganic Carriers for Decomposition of the Chemical Warfare Agent Yperite. Environmental Science & Environment	10.0	29
89	Gold imidazolium-based ionic liquids, efficient catalysts for cycloisomerization of \hat{I}^3 -acetylenic carboxylic acids. New Journal of Chemistry, 2009, 33, 102-106.	2.8	29
90	Friedel–Crafts alkylations on nanoscopic inorganic fluorides. Applied Catalysis A: General, 2011, 391, 169-174.	4.3	29

#	Article	IF	CITATIONS
91	Catalytic abatement of NO and N2O from nitric acid plants: A novel approach using noble metal-modified perovskites. Journal of Catalysis, 2015, 328, 236-247.	6.2	29
92	Effect of LaCoO3 perovskite deposition on ceria-based supports on total oxidation of VOC. Catalysis Today, 2006, 112, 169-173.	4.4	28
93	Biocatalytic microreactor incorporating HRP anchored on micro-/nano-lithographic patterns for flow oxidation of phenols. Journal of Molecular Catalysis B: Enzymatic, 2011, 69, 133-139.	1.8	28
94	Catalytic hydroprocessing of lignin under thermal and ultrasound conditions. Catalysis Today, 2012, 196, 3-10.	4.4	28
95	Lignin Fragmentation onto Multifunctional Fe ₃ O ₄ @Nb ₂ O ₅ @Co@Re Catalysts: The Role of the Composition and Deposition Route of Rhenium. ACS Catalysis, 2017, 7, 3257-3267.	11.2	28
96	Temperature induced conversion from surface to "bulk―sites in Eu3+-impregnated CeO2 nanocrystals. Journal of Applied Physics, 2012, 112, .	2.5	27
97	Mesostructured vanadia–alumina catalysts for the synthesis of vitamin K3. Catalysis Today, 2015, 254, 29-35.	4.4	27
98	Enhanced photo-degradation of bisphenol pollutants onto gold-modified photocatalysts. Catalysis Today, 2017, 284, 153-159.	4.4	27
99	Preparation and characterization of mesoporous zirconium oxide. Part 2 Microporous and Mesoporous Materials, 2001, 44-45, 221-226.	4.4	25
100	Bifunctional Nanoscopic Catalysts for the One-Pot Synthesis of $(\hat{A}\pm)$ -Menthol from Citral. Topics in Catalysis, 2012, 55, 680-687.	2.8	25
101	Novel ruthenium–terpyridyl complex for direct oxidation of amines to nitriles. Catalysis Science and Technology, 2013, 3, 2646.	4.1	25
102	The Mechanism of Plasma Destruction of Enalapril and Related Metabolites in Water. Plasma Processes and Polymers, 2013, 10, 459-468.	3.0	25
103	Heterocyclic bismuth(<scp>iii</scp>) compounds with transannular Nâ†'Bi interactions as catalysts for the oxidation of thiophenol to diphenyldisulfide. Catalysis Science and Technology, 2017, 7, 5343-5353.	4.1	25
104	First In Situ Raman Study of Vanadium Oxide Based SO2 Oxidation Supported Molten Salt Catalysts. Catalysis Letters, 2002, 78, 209-214.	2.6	24
105	Acylation of alcohols and activated aromatic compounds on silica embedded-triflate catalysts. Applied Catalysis A: General, 2006, 301, 133-137.	4.3	24
106	Band gap effect on the photocatalytic activity of supramolecular structures obtained by entrapping photosensitizers in different inorganic supports. Physical Chemistry Chemical Physics, 2009, 11, 5569.	2.8	24
107	An adamantane-based COF: stability, adsorption capability, and behaviour as a catalyst and support for Pd and Au for the hydrogenation of nitrostyrene. Catalysis Science and Technology, 2016, 6, 8344-8354.	4.1	24
108	Photocatalytic decomposition of acetone over dc-magnetron sputtering supported vanadia/TiO2 catalysts. Catalysis Today, 2009, 142, 165-169.	4.4	23

#	Article	IF	Citations
109	Novel Pd heterogeneous catalysts for cycloisomerisation of acetylenic carboxylic acids. Green Chemistry, 2010, 12, 2145.	9.0	23
110	Snâ€Doped Hydroxylated MgF ₂ Catalysts for the Fast and Selective Saccharification of Cellulose to Glucose. ChemSusChem, 2012, 5, 1708-1711.	6.8	23
111	Photocatalytic Activity and Selectivity of ZnO Materials in the Decomposition of Organic Compounds. ChemCatChem, 2013, 5, 3841-3846.	3.7	23
112	Local structure in CeO2 and CeO2–ZrO2 nanoparticles probed by Eu luminescence. Catalysis Today, 2015, 253, 33-39.	4.4	23
113	Acylation of 2-methoxynaphthalene with acetic anhydride over silica-embedded triflate catalysts. Applied Catalysis A: General, 2006, 306, 159-164.	4.3	22
114	An expeditious synthesis of \hat{l}^2 -pyrimidyl- $\hat{l}\pm,\hat{l}^2$ -didehydro- $\hat{l}\pm$ -amino acid derivatives and pyrano[2,3-d]pyrimidines using microwave-assisted conditions. Tetrahedron, 2009, 65, 8216-8221.	1.9	22
115	Postsynthetic Modification of a Metal–Organic Framework (MOF) Structure for Enantioselective Catalytic Epoxidation. ChemPlusChem, 2013, 78, 443-450.	2.8	22
116	Spirobifluoreneâ€based Porous Organic Polymers as Efficient Porous Supports for Pd and Pt for Selective Hydrogenation. ChemCatChem, 2019, 11, 538-549.	3.7	22
117	Photocatalytic degradation of acetone by Ni-doped titania thin films prepared by dc reactive sputtering. Applied Catalysis B: Environmental, 2005, 60, 155-162.	20.2	21
118	In situ Raman and Time-Resolved Luminescence Investigation of the Local Structure of ZrO2 in the Amorphous to Crystalline Phase Transition. Journal of Physical Chemistry C, 2012, 116, 16776-16783.	3.1	21
119	Chiral supported ionic liquid phase (CSILP) catalysts for greener asymmetric hydrogenation processes. Catalysis Today, 2013, 200, 63-73.	4.4	21
120	Toluene oxidation by non-thermal plasma combined with palladium catalysts. Frontiers in Chemistry, 2013, 1, 7.	3.6	21
121	Biocatalytic epoxidation of \hat{l} ±-pinene to oxy-derivatives over cross-linked lipase aggregates. Journal of Molecular Catalysis B: Enzymatic, 2016, 134, 9-15.	1.8	21
122	High efficiency plasma treatment of water contaminated with organic compounds. Study of the degradation of ibuprofen. Plasma Processes and Polymers, 2018, 15, 1700201.	3.0	21
123	Engineering active sites on reduced graphene oxide by hydrogen plasma irradiation: mimicking bifunctional metal/supported catalysts in hydrogenation reactions. Green Chemistry, 2018, 20, 2611-2623.	9.0	21
124	ZSM-5/SBA-15 versus Al-SBA-15 as supports for the hydrocracking/hydroisomerization of alkanes. Catalysis Today, 2018, 306, 121-127.	4.4	21
125	Support-induced effect on the catalytic properties of Pd particles in water denitrification: Impact of surface and structural features of mesoporous ceria-zirconia support. Applied Catalysis B: Environmental, 2018, 224, 648-659.	20.2	21
126	Alkylation of Phenols and Naphthols on Silica-Immobilized Triflate Derivatives. Catalysis Letters, 2003, 91, 141-144.	2.6	20

#	Article	IF	Citations
127	Epoxidation of cyclohexene and indene with hydrogen peroxide in the presence of WO5 onto hydroxyapatite as catalyst. Applied Catalysis A: General, 2004, 264, 23-32.	4.3	20
128	Direct Synthesis of Sorbitol and Glycerol from Cellulose over Ionic Ru/Magnetite Nanoparticles in the Absence of External Hydrogen. ChemSusChem, 2013, 6, 2090-2094.	6.8	20
129	Evidence of A–B site cooperation in the EuFeO3 perovskite from 151Eu and 57Fe Mössbauer spectroscopy, EXAFS, and toluene catalytic oxidation. Journal of Catalysis, 2014, 316, 130-140.	6.2	20
130	RuCl ₃ Supported on Nâ€Doped Graphene as a Reusable Catalyst for the Oneâ€Step Glucose Oxidation to Succinic Acid. ChemCatChem, 2017, 9, 3314-3321.	3.7	20
131	Nb-Based Zeolites: Efficient bi-Functional Catalysts for the One-Pot Synthesis of Succinic Acid from Glucose. Molecules, 2017, 22, 2218.	3.8	20
132	Tantalum doped titania photocatalysts: Preparation by dc reactive sputtering and catalytic behavior. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 174, 106-112.	3.9	19
133	Selective oxidation of a pyrimidine thioether using supported tantalum catalysts. Journal of Catalysis, 2005, 235, 184-194.	6.2	19
134	In situ structural changes during toluene complete oxidation on supported EuCoO3 monitored with 151Eu Mössbauer spectroscopy. Catalysis Today, 2006, 117, 329-336.	4.4	19
135	Hydrotalcite docked Rh-TPPTS complexes as efficient catalysts for the arylation of 2-cyclohexen-1-one in neat water. Catalysis Today, 2008, 139, 161-167.	4.4	19
136	Photo-degradation of yperite over V, Fe and Mn-doped titania–silica photocatalysts. Physical Chemistry Chemical Physics, 2008, 10, 6562.	2.8	19
137	Heterogeneous Gold Catalyst: Synthesis, Characterization, and Application in 1,4-Addition of Boronic Acids to Enones. ACS Catalysis, 2015, 5, 5060-5067.	11.2	19
138	Direct oxidation of amines to nitriles in the presence of ruthenium-terpyridyl complex immobilized on ILs/SILP. Catalysis Science and Technology, 2015, 5, 2696-2704.	4.1	18
139	New Zn(II) Coordination Polymers Constructed from Amino-Alcohols and Aromatic Dicarboxylic Acids: Synthesis, Structure, Photocatalytic Properties, and Solid-State Conversion to ZnO. Crystal Growth and Design, 2015, 15, 799-811.	3.0	18
140	Mechanochemical versus co-precipitated synthesized lanthanum-doped layered materials for olefin oxidation. Applied Catalysis A: General, 2017, 542, 10-20.	4.3	18
141	Doped ceria prepared by precipitation route for steam reforming of methane. Catalysis Today, 2018, 306, 166-171.	4.4	18
142	Nitrogen-doped graphene as metal free basic catalyst for coupling reactions. Journal of Catalysis, 2019, 376, 238-247.	6.2	18
143	Sonogashira Synthesis of New Porous Aromatic Framework-Entrapped Palladium Nanoparticles as Heterogeneous Catalysts for Suzuki–Miyaura Cross-Coupling. ACS Applied Materials & Diterfaces, 2022, 14, 10428-10437.	8.0	18
144	Heterogeneous hydrogenation of bicyclo[2.2.2]octenes on Rh/TPPTS/LDH catalysts. Journal of Molecular Catalysis A, 2007, 276, 34-40.	4.8	17

#	Article	IF	CITATIONS
145	Heterogeneous Au and Rh catalysts for cycloisomerization reactions of \hat{l}^3 -acetylenic carboxylic acids. Pure and Applied Chemistry, 2009, 81, 2387-2396.	1.9	17
146	Spectrally and temporarily resolved luminescence study of short-range order in nanostructured amorphous ZrO2. Journal of Applied Physics, 2011, 110, .	2.5	17
147	Enhancement of the valorization of renewable glycerol: The effects of the surfactant-enzyme interaction on the biocatalytic synthesis of glycerol carbonate. Catalysis Today, 2017, 279, 71-76.	4.4	17
148	Highly Efficient, Easily Recoverable, and Recyclable Re–SiO2–Fe3O4Catalyst for the Fragmentation of Lignin. ACS Sustainable Chemistry and Engineering, 2018, 6, 9606-9618.	6.7	17
149	Solvent-free ketalization of polyols over germanosilicate zeolites: the role of the nature and strength of acid sites. Catalysis Science and Technology, 2020, 10, 8254-8264.	4.1	17
150	Catalytic behavior of Li-Al-LDH prepared via mechanochemical and co-precipitation routes for cyanoethylation reaction. Catalysis Today, 2021, 366, 227-234.	4.4	17
151	Stereocontrolled hydrogenation of prostaglandin intermediates over Ru–MCM-41 catalysts. Journal of Molecular Catalysis A, 1999, 146, 247-256.	4.8	16
152	Efficient magnetic and recyclable SBILC (supported basic ionic liquid catalyst)-based heterogeneous organocatalysts for the asymmetric epoxidation of trans-methylcinnamate. Catalysis Science and Technology, 2015, 5, 729-737.	4.1	16
153	Oriented Au nanoplatelets on graphene promote Suzuki-Miyaura coupling with higher efficiency and different reactivity pattern than supported palladium. Journal of Catalysis, 2017, 352, 59-66.	6.2	16
154	Peroxidase-based biocatalysis in a two-phase system for allylic oxidation of \hat{l}_{\pm} -pinene. Catalysis Today, 2018, 306, 199-206.	4.4	16
155	Co–Fe Clusters Supported on N-Doped Graphitic Carbon as Highly Selective Catalysts for Reverse Water Gas Shift Reaction. ACS Sustainable Chemistry and Engineering, 2021, 9, 9264-9272.	6.7	16
156	Heterogeneous amination of bromobenzene over titania-supported gold catalysts. Journal of Catalysis, 2012, 296, 43-54.	6.2	15
157	A Robust Metal–Organic Framework Constructed from Alkoxo-Bridged Binuclear Nodes and Hexamethylenetetramine Spacers: Crystal Structure and Sorption Studies. Inorganic Chemistry, 2012, 51, 7954-7956.	4.0	15
158	Phase Control in Hafnia: New Synthesis Approach and Convergence of Average and Local Structure Properties. ACS Omega, 2019, 4, 8881-8891.	3.5	15
159	Catalytic transformation of the marine polysaccharide ulvan into rare sugars, tartaric and succinic acids. Catalysis Today, 2022, 383, 345-357.	4.4	15
160	Sequential deracemization of sulfoxides via whole-cell resolution and heterogeneous oxidation. Applied Catalysis A: General, 2012, 441-442, 42-46.	4.3	14
161	Spectroscopic Investigation of Iron Substitution in EuCoO ₃ : Related Impact on the Catalytic Properties in the High-Temperature N ₂ O Decomposition. Journal of Physical Chemistry C, 2013, 117, 13989-13999.	3.1	14
162	C–N cross-coupling on supported copper catalysts: The effect of the support, oxidation state, base and solvent. Journal of Catalysis, 2016, 341, 205-220.	6.2	14

#	Article	IF	CITATIONS
163	Efficient magnetic recoverable acid-functionalized-carbon catalysts for starch valorization to multiple bio-chemicals. Catalysis Today, 2017, 279, 45-55.	4.4	14
164	Sequential biocatalytic decomposition of BHET as valuable intermediator of PET recycling strategy. Catalysis Today, 2021, 366, 177-184.	4.4	14
165	Preparation, characterization and catalytic properties of Co–Nb2O5–SiO2 catalysts. Catalysis Today, 2000, 57, 193-199.	4.4	13
166	Vanadia?silica and vanadia?cesium?silica catalysts for oxidation of SO2. Journal of Catalysis, 2004, 225, 24-36.	6.2	13
167	Unusual Behavior of a Novel Heterogeneous Chiral Dimer Cr(III)â^'Salen Complex in the Epoxidation/Epoxide Ring-Opening Reaction of trans-Methylcinnamate Ester. Journal of Physical Chemistry C, 2011, 115, 1112-1122.	3.1	13
168	Heterogeneous catalysis based on supramolecular association. Catalysis Science and Technology, 2018, 8, 4834-4857.	4.1	13
169	Peculiar kinetic properties of Cu-doped Pd/CexZr1-xO2 in water denitrification: Impact of Pd-Cu interaction vs structural properties of $CexZr1-xO2$. Applied Catalysis B: Environmental, 2019, 253, 391-400.	20.2	13
170	Mechano-chemical versus co-precipitation for the preparation of Y-modified LDHs for cyclohexene oxidation and Claisen-Schmidt condensations. Applied Catalysis A: General, 2020, 605, 117797.	4.3	13
171	Preparation, characterisation and catalytic behaviour of cobalt–niobia catalysts. Journal of Molecular Catalysis A, 1998, 135, 75-88.	4.8	12
172	Diastereoselective Hydrogenation of some Prostaglandins Intermediates and Compounds over MCM-41 Supported Ru. Studies in Surface Science and Catalysis, 1998, 117, 501-508.	1.5	12
173	Silica-Embedded tert-Butyldimethylsilyltrifluoromethanesulfonate Catalysts as New Solid Acid Catalysts. Journal of Catalysis, 2001, 202, 319-323.	6.2	12
174	Synthesis, characterization and catalytic behavior of SnTf/MCM-41 and SnTf/UVM-7 as new green catalysts for etherification reactions. Journal of Materials Science, 2009, 44, 6693-6700.	3.7	12
175	Oneâ€Pot Hydroacetylation of Menadione (Vitamin K ₃) to Menadiol Diacetate (Vitamin) Tj ETQq1 1	0.784314 4.3	rgBT /Over
176	Enhancing Oxidative Dehydrogenation Selectivity of Ceriaâ€Based Catalysts with Phosphorus as Additive. ChemCatChem, 2013, 5, 757-765.	3.7	12
177	Magnetic nanocomposites for an efficient valorization of biomass. Journal of Applied Physics, 2015, 117, 17D724.	2.5	12
178	Hydrogenation of Condensed Aromatic Compounds over Mesoporous Bifunctional Catalysts Following a Diels–Alder Adduct Pathway. ChemCatChem, 2016, 8, 1146-1156.	3.7	12
179	Engineering hydrogenation active sites on graphene oxide and N-doped graphene by plasma treatment. Applied Catalysis B: Environmental, 2021, 287, 119962.	20.2	12
180	Co–Fe Nanoparticles Wrapped on N-Doped Graphitic Carbons as Highly Selective CO ₂ Methanation Catalysts. ACS Applied Materials & Description (1988) (1	8.0	12

#	Article	IF	CITATIONS
181	Comparative behavior of silica-embedded tert-butyldimethylsilyltrifluoro-methanesulfonate and lanthanum triflate catalysts. Catalysis Today, 2002, 73, 177-185.	4.4	11
182	Iron oxide colloids and their heterogenization by silica sol–gel entrapment: Catalytic and magnetic properties. Applied Catalysis A: General, 2008, 346, 28-35.	4.3	11
183	Cellulose Capitalization to Bio-chemicals in the Presence of Magnetic Nanoparticle Catalysts. Topics in Catalysis, 2014, 57, 1463-1469.	2.8	11
184	Bifunctional carbohydrate biopolymers entrapped lipase as catalyst for the two consecutive conversions of α-pinene to oxy-derivatives. Carbohydrate Polymers, 2016, 152, 726-733.	10.2	11
185	Direct conversion of cellulose to \hat{l}_{\pm} -hydroxy acids (AHAs) over Nb2O5-SiO2-coated magnetic nanoparticles. Green Processing and Synthesis, 2017, 6, .	3.4	11
186	Isotopic H/D exchange on graphenes. A combined experimental and theoretical study. Applied Catalysis A: General, 2017, 547, 52-59.	4.3	11
187	SCILLs as selective catalysts for the oxidation of aromatic alcohols. Catalysis Today, 2019, 333, 140-146.	4.4	11
188	Optimized Nb-Based Zeolites as Catalysts for the Synthesis of Succinic Acid and FDCA. Molecules, 2020, 25, 4885.	3.8	11
189	Diastereoselective hydrogenation of a prostaglandin intermediate over ru supported on different molecular sieves. Studies in Surface Science and Catalysis, 1997, , 207-214.	1.5	10
190	Chemoselective oxidation of 2-thiomethyl-4,6-dimethyl-pyrimidine and 2-thiobenzyl-4,6-dimethyl-pyrimidine over titania-silica catalysts. Applied Catalysis A: General, 2003, 242, 77-84.	4.3	10
191	Replacing benzyl chloride with benzyl alcohol in heterogeneous catalytic benzylation of aromatic compounds. Pure and Applied Chemistry, 2012, 84, 427-437.	1.9	10
192	Convenient synthesis of 2-alkynylbenzazoles through Sonogashira cross-coupling reaction between thioethers and terminal alkynes. Tetrahedron Letters, 2015, 56, 5349-5352.	1.4	10
193	Mesoporous Tantalum Oxide Photocatalyst: Structure and Activity Evaluation. ChemistrySelect, 2017, 2, 421-427.	1.5	10
194	Mesoporous Pt–SiO2 and Pt–SiO2–Ta2O5 Catalysts Prepared Using Pt Colloids as Templates. ChemPhysChem, 2007, 8, 666-678.	2.1	9
195	Photocatalysis in green chemistry and destruction of very toxic compounds. Catalysis, 0, , 204-252.	1.0	9
196	Efficient Sc triflate mesoporous-based catalysts for the synthesis of $4,4\hat{a}\in^2$ -methylenedianiline from aniline and 4-aminobenzylalcohol. Journal of Catalysis, 2012, 287, 76-85.	6.2	9
197	Levulinate-intercalated LDH: A potential heterogeneous organocatalyst for the green epoxidation of $\hat{l}\pm,\hat{l}^2$ -unsaturated esters. Catalysis Today, 2018, 306, 154-165.	4.4	9
198	Catalytic features of Nb-based nanoscopic inorganic fluorides for an efficient one-pot conversion of cellulose to lactic acid. Catalysis Today, 2018, 306, 102-110.	4.4	9

#	Article	IF	Citations
199	One-Pot Enzymatic Production of Lignin-Composites. Frontiers in Chemistry, 2018, 6, 124.	3.6	9
200	Synergistic B Al interaction in SBA-15 affording an enhanced activity for the hydro-isomerization of heptane over Pt B Al-SBA-15 catalysts. Microporous and Mesoporous Materials, 2019, 281, 142-147.	4.4	9
201	Metal Triflates Incorporated in Mesoporous Catalysts for Green Synthesis of Fine Chemicals. Topics in Catalysis, 2009, 52, 571-578.	2.8	8
202	Heterogeneous Catalysis for Biodiesel Production. , 2013, , 93-136.		8
203	Comparative hydroamination of aniline and substituted anilines with styrene on different zeolites, triflate based catalysts and their physical mixtures. Applied Catalysis A: General, 2014, 474, 230-235.	4.3	8
204	Impact of Deactivation Phenomena on Kinetics of the C–N Coupling Reaction over Supported Cu2O Catalysts in Continuous-Flow Conditions. Journal of Physical Chemistry C, 2015, 119, 18422-18433.	3.1	8
205	Intermediate selectivity in the oxidation of phenols using plasmonic Au/ZnO photocatalysts. Nanoscale, 2017, 9, 9359-9364.	5.6	8
206	Graphene oxide as a catalyst for the diastereoselective transfer hydrogenation in the synthesis of prostaglandin derivatives. Chemical Communications, 2017, 53, 10271-10274.	4.1	8
207	Doped microporous graphitic carbons as metal-free catalysts for the selective hydrogenation of alkynes to alkenes. Journal of Catalysis, 2022, 405, 355-362.	6.2	8
208	Synthesis, characterization and catalytic behavior of AlTf/UVM-7 as new green catalysts for the glycols etherification reactions. Applied Catalysis A: General, 2010, 372, 58-66.	4.3	7
209	AlTf-UVM-7—Highly active catalysts for the synthesis of long chain symmetrical ethers and non-ionic surfactant structures. Chemical Engineering Journal, 2010, 161, 363-370.	12.7	7
210	Synthesis of New Alkynyl-Bridged 2,5-Disubstituted 1,3,4-Oxadiazoles. Synthesis, 2016, 48, 606-614.	2.3	7
211	Peroxidase-based oxidative polymerization of monolignols. Comptes Rendus Chimie, 2018, 21, 362-368.	0.5	7
212	Niobia-based magnetic nanocomposites: Design and application in direct glucose dehydration to HMF. Catalysis Today, 2021, 366, 48-56.	4.4	7
213	Improvement of catalytic activity of graphene oxide by plasma treatment. Catalysis Today, 2021, 366, 2-9.	4.4	7
214	Rh-TPPTS/LDH $\hat{a} \in \text{``}$ A new heterogeneous catalyst for the synthesis of functionalized \hat{l}^3 -lactone. Studies in Surface Science and Catalysis, 2008, 174, 1057-1062.	1.5	6
215	Structural changes during toluene complete oxidation on supported EuFeO3 monitored by in situ 151Eu and 57Fe Mössbauer spectroscopy. Catalysis Today, 2013, 208, 56-59.	4.4	6
216	Arylation of alkynes over hydrotalcite docked Rh-m-TPPTC complex. Catalysis Today, 2015, 247, 155-162.	4.4	6

#	Article	IF	Citations
217	From Glucose Direct to Succinic Acid: an Optimized Recyclable Bi-functional Ru@MNP-MWCNT Catalyst. Topics in Catalysis, 2018, 61, 1866-1876.	2.8	6
218	Selective hydrogenation of nitroderivatives over Au/TiO2/UVM-7 composite catalyst. Catalysis Today, 2020, 355, 893-902.	4.4	6
219	Magnetic Fe@Y Composites as Efficient Recoverable Catalysts for the Valorization of the Recalcitrant Marine Sulfated Polysaccharide Ulvan. ACS Sustainable Chemistry and Engineering, 2020, 8, 319-328.	6.7	6
220	High C2-C4 selectivity in CO2 hydrogenation by particle size control of Co-Fe alloy nanoparticles wrapped on N-doped graphitic carbon. IScience, 2022, 25, 104252.	4.1	6
221	Title is missing!. Catalysis Letters, 1998, 52, 231-238.	2.6	5
222	Impact of SCILL catalysts for the S–S coupling of thiols to disulfides. Faraday Discussions, 2018, 206, 535-547.	3.2	5
223	New organic-inorganic LDH composites: Synthesis, characterization and catalytic behavior in the green epoxidation of \hat{l}_{\pm} , \hat{l}_{-}^{2} -unsaturated esters. Inorganica Chimica Acta, 2018, 475, 127-132.	2.4	5
224	Nanometer-thick films of antimony oxide nanoparticles grafted on defective graphenes as heterogeneous base catalysts for coupling reactions. Journal of Catalysis, 2020, 390, 135-149.	6.2	5
225	Hierarchically MOx@Nb-zeolites for the selective oxidation of HMF to HMFCA. Catalysis Today, 2022, 405-406, 267-276.	4.4	5
226	Unexpected kinetic behavior of structured Pd/CeO2â€"ZrO2 toward undesired ammonia formation and consumption during nitrites reduction: Role of the reactivity of oxygen from ceria. Catalysis Today, 2022, 383, 330-338.	4.4	4
227	â^ž3[Cu2(mand)2(hmt)]–MOF: A Synergetic Effect between Cu(II) and Hexamethylenetetramine in the Henry Reaction. Chemistry, 2020, 2, 50-62.	2.2	4
228	Hypercoordinated diorganoantimony(III) compounds of types [2â€(Me 2 NCH 2)C 6 H 4] 2 SbL and [PhCH 2 N(CH 2 C 6 H 4) 2]SbL (L = Cl, ONO 2 , OSO 2 CF 3). Synthesis, structure and catalytic behaviou. Applied Organometallic Chemistry, 2020, 34, e5393.	3.5	4
229	Cascade Biocatalysis Designed for the Allylic Oxidation of α-Pinene. Catalysts, 2021, 11, 134.	3.5	4
230	Heterogeneous Diastereoselective Catalysis - A Powerful Strategy Toward C(15) Stereoselectivity from PGF _{2α} Analogues Structure. Current Pharmaceutical Design, 2015, 21, 5558-5572.	1.9	4
231	Sol–gel synthesis of colloid and triflates containing hybrid type catalysts. Studies in Surface Science and Catalysis, 2000, , 177-184.	1.5	3
232	Chemoselective reduction of prostaglandin intermediates by liquid-phase hydrogen transfer on Ptâ€"Sn/MCM-41 catalysts. Microporous and Mesoporous Materials, 2001, 44-45, 477-482.	4.4	3
233	A new chiral dimanganese(<scp>iii</scp>) complex: synthesis, crystal structure, spectroscopic, magnetic, and catalytic properties. RSC Advances, 2016, 6, 86569-86574.	3.6	3
234	Bimetallic Oriented (Au/Cu ₂ O) vs. Monometallic 1.1.1 Au (0) or 2.0.0 Cu ₂ O Graphene‣upported Nanoplatelets as Very Efficient Catalysts for Michael and Henry Additions. European Journal of Organic Chemistry, 2018, 2018, 6185-6190.	2.4	3

#	Article	IF	CITATIONS
235	Graphene Film-Supported Oriented 1.1.1 Gold(0) Versus 2.0.0 Copper(I) Nanoplatelets as Very Efficient Catalysts for Coupling Reactions. Topics in Catalysis, 2018, 61, 1449-1457.	2.8	3
236	Alternative lignopolymer-based composites useful as enhanced functionalized support for enzymes immobilization. Catalysis Today, 2021, 379, 222-229.	4.4	3
237	Valmet Chiral Schiffâ€Base Ligands And Their Copper(II) Complexes as Organo, Homogeneous and Heterogeneous Catalysts for Henry, Cyanosilylation and Aldol Coupling Reactions. ChemCatChem, 0, , .	3.7	3
238	Hydrogenation of prostaglandin unsaturated ketones over Ru-containing *BEA zeolites. Studies in Surface Science and Catalysis, 2004, , 2696-2702.	1.5	2
239	Investigation of acidic properties of Ir-*BEA zeolites by Py-, DTBP-, and Qu-FTIR. Studies in Surface Science and Catalysis, 2005, 158, 909-916.	1.5	2
240	Liquid-phase oxidation with hydrogen peroxide of benzyl alcohol and xylenes on Ca10(PO4)6(OH)2 – CaWO4. Comptes Rendus Chimie, 2016, 19, 1156-1165.	0.5	2
241	An Advanced Approach for MgZnAl-LDH Catalysts Synthesis Used in Claisen-Schmidt Condensation. Catalysts, 2022, 12, 759.	3.5	2
242	Co-Nb2O5/SiO2 sol-gel catalysts: preparation implications on the texture and acidity of the support and dimension of the metal particle. Studies in Surface Science and Catalysis, 1998, 118, 691-698.	1.5	1
243	Preparation and characterization of WOx-CeO2 catalysts. Studies in Surface Science and Catalysis, 2000, 143, 337-344.	1.5	1
244	Current Heterogeneous Catalytic Processes for Environmental Remediation of Air, Water, and Soil., 2013, , 487-534.		1
245	Mesoporous Materials Incorporating Metal Triflates. , 2016, , 219-271.		1
246	Cross-coupling of p-xylene to $2,2\hat{a}\in {}^2,5,5\hat{a}\in {}^2$ -tetramethyl $1,1\hat{a}\in {}^2$ -biphenyl on supported vanadia catalysts. Applied Catalysis A: General, 2016, 514, 71-82.	4.3	1
247	Batch versus flow stereoselective hydrogenation of \hat{l} ±-acetamido-cinnamic acid catalyzed by an Au(I) complex. Molecular Catalysis, 2019, 474, 110420.	2.0	1
248	Advances in Heterogeneous Catalysis: Concepts of Nanocatalysis and Single-Atom Catalysis. ACS Symposium Series, 2020, , 1-49.	0.5	1
249	Core-Magnetic Composites Catalysts for the Valorization and Up-grading of the Renewable Feedstocks: A Minireview. Current Catalysis, 2019, 8, 2-19.	0.5	1
250	Layered materials of LDH-type containing Zn ions: Dielectric measurements show rotational fluctuations of water molecules. , 2015, , .		0
251	Impact of structured catalysts in amine oxidation under mild conditions. Catalysis Today, 2016, 273, 266-272.	4.4	0
252	Diastereoselective hydrogenation of Formoterol intermediate over M(Ir, Pd, Pt, Rh, Ru)/BEA zeolite catalysts. Catalysis Today, 2020, 354, 100-108.	4.4	0

#	Article	IF	CITATIONS
253	Cold-Active Lipase-Based Biocatalysts for Silymarin Valorization through Biocatalytic Acylation of Silybin. Catalysts, 2021, 11, 1390.	3.5	0