Carolina Chaya Romero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5037944/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insights on the effect of age and gender on in-mouth volatile release during wine tasting. Food Research International, 2022, 155, 111100.	6.2	3
2	Emotion in beverages. , 2021, , 731-771.		2
3	Exploring young consumers' attitudes and emotions to sensory and physicochemical properties of different red wines. Food Research International, 2021, 143, 110303.	6.2	15
4	The impact of COVID-19 lockdown on food priorities. Results from a preliminary study using social media and an online survey with Spanish consumers. Food Quality and Preference, 2020, 86, 104028.	4.6	219
5	Sustainable and health claims vs sensory properties: Consumers' opinions and choices using a vegetable dip as example product. Food Research International, 2020, 137, 109521.	6.2	14
6	Influence of gastronomic improvement of a menu on consumers' perceived wellbeing in a real context study. International Journal of Gastronomy and Food Science, 2020, 21, 100219.	3.0	2
7	Comparison of methods to develop an emotional lexicon of wine: Conventional vs rapid-method approach. Food Quality and Preference, 2020, 83, 103920.	4.6	16
8	Improvement of an emotional lexicon for the evaluation of beers. Food Quality and Preference, 2019, 71, 158-162.	4.6	28
9	Effect of saliva composition and flow on inter-individual differences in the temporal perception of retronasal aroma during wine tasting. Food Research International, 2019, 126, 108677.	6.2	23
10	Effect of personality on the emotional response elicited by wines. Food Quality and Preference, 2019, 76, 39-46.	4.6	18
11	A new index for predicting differences in repeatability of Time-Intensity curves: Time-Intensity Reliability Index (TI-RI). Food Quality and Preference, 2019, 76, 33-38.	4.6	4
12	Individual differences and effect of phenolic compounds in the immediate and prolonged in-mouth aroma release and retronasal aroma intensity during wine tasting. Food Chemistry, 2019, 285, 147-155.	8.2	53
13	Comparing a full and reduced version of a consumerâ€led lexicon to measure emotional response to beer. Journal of Sensory Studies, 2019, 34, e12481.	1.6	14
14	Emotional response to wine: Sensory properties, age and gender as drivers of consumers' preferences. Food Quality and Preference, 2018, 66, 19-28.	4.6	87
15	The impact of PROP and thermal taster status on the emotional response to beer. Food Quality and Preference, 2018, 68, 420-430.	4.6	31
16	Internal preference mapping of milk–fruit beverages: Influence of color and appearance on its acceptability. Food Science and Nutrition, 2018, 6, 27-35.	3.4	11
17	Effect of water regime change in a mature Arundo donax crop under a Xeric Mediterranean climate. Biomass and Bioenergy, 2018, 115, 203-209.	5.7	8
18	A comparison of self-reported emotional and implicit responses to aromas in beer. Food Quality and Preference, 2017, 59, 68-80.	4.6	46

Carolina Chaya Romero

#	Article	IF	CITATIONS
19	Influence of first position effect on emotional response. Food Quality and Preference, 2016, 49, 189-196.	4.6	48
20	The impact of using a written scenario when measuring emotional response to beer. Food Quality and Preference, 2016, 50, 38-47.	4.6	76
21	Measuring the Emotional Response to Beer and the Relative Impact of Sensory and Packaging Cues. Journal of the American Society of Brewing Chemists, 2015, 73, 49-60.	1.1	33
22	Developing a reduced consumer-led lexicon to measure emotional response to beer. Food Quality and Preference, 2015, 45, 100-112.	4.6	85
23	Impact of Using New Commercial Glutathione Enriched Inactive Dry Yeast Oenological Preparations on the Aroma and Sensory Properties of Wines. International Journal of Food Properties, 2014, 17, 987-1001.	3.0	23
24	The influence of sensory and packaging cues on both liking and emotional, abstract and functional conceptualisations. Food Quality and Preference, 2013, 29, 146-156.	4.6	115
25	Beyond liking: Comparing the measurement of emotional response using EsSense Profile and consumer defined check-all-that-apply methodologies. Food Quality and Preference, 2013, 28, 193-205.	4.6	244
26	Testing a Spanish-version of the Food Neophobia Scale. Food Quality and Preference, 2013, 28, 222-225.	4.6	75
27	Regional Embeddedness Segments Across Fifteen Countries. Journal of Culinary Science and Technology, 2013, 11, 322-335.	1.4	6
28	Using quantitative descriptive analysis and temporal dominance of sensations analysis as complementary methods for profiling commercial blackcurrant squashes. Food Quality and Preference, 2012, 25, 121-134.	4.6	90
29	Alveoconsistograph evaluation of rheological properties of rye doughs. Spanish Journal of Agricultural Research, 2009, 7, 638.	0.6	5
30	Effects of Geographical Stratification in a Farm Accountancy Data Network on the Accuracy of the Estimates. Journal of Agricultural Economics, 2008, 50, 388-399.	3.5	2
31	l-(â^')-Malic Acid Production bySaccharomycesspp. during the Alcoholic Fermentation of Wine (1). Journal of Agricultural and Food Chemistry, 2007, 55, 912-919.	5.2	27
32	EFFECT OF HEATING CONTROL STRATEGIES ON GREENHOUSE ENERGY EFFICIENCY: EXPERIMENTAL RESULTS AND MODELING. Transactions of the ASABE, 2006, 49, 143-155.	1.1	11
33	Stratification and sample size of data sources for agricultural mathematical programming models. Mathematical and Computer Modelling, 2006, 43, 530-535.	2.0	6
34	Comparação do Coeficiente Global de Perdas de Calor para casa de vegetação aquecida usando diferentes técnicas para eficiência energética. Engenharia Agricola, 2006, 26, 354-364.	0.7	2
35	Use of the STATIS method to analyze time-intensity profiling data. Food Quality and Preference, 2004, 15, 3-12.	4.6	20
36	Internal Quality Characterization of Fresh Tomato Fruits. Hortscience: A Publication of the American Society for Hortcultural Science, 2004, 39, 339-345.	1.0	27

#	Article	IF	CITATIONS
37	Effects of the measures envisaged in "Agenda 2000―on arable crop producers and beef and veal producers: an application of Positive Mathematical Programming to representative farms of a Spanish region. Agricultural Systems, 2001, 67, 121-138.	6.1	38