Konstantin V Mikhaylov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5037838/publications.pdf Version: 2024-02-01

6

#	Article	IF	CITATIONS
1	LPWAN Coverage Assessment Planning Without Explicit Knowledge of Base Station Locations. IEEE Internet of Things Journal, 2022, 9, 4031-4050.	5.5	4
2	Enabling mMTC in Remote Areas: LoRaWAN and LEO Satellite Integration for Offshore Wind Farm Monitoring. IEEE Transactions on Industrial Informatics, 2022, 18, 3744-3753.	7.2	21
3	Analysis and Simulation of LoRaWAN LR-FHSS for Direct-to-Satellite Scenario. IEEE Wireless Communications Letters, 2022, 11, 548-552.	3.2	12
4	Insights into the Issue of Deploying a Private LoRaWAN. Sensors, 2022, 22, 2042.	2.1	7
5	Emerging Technologies for Next Generation Remote Health Care and Assisted Living. IEEE Access, 2022, 10, 56094-56132.	2.6	17
6	Situational Awareness for Autonomous Ships in the Arctic: mMTC Direct-to-Satellite Connectivity. IEEE Communications Magazine, 2022, 60, 32-38.	4.9	7
7	LoRaWANSim: A Flexible Simulator for LoRaWAN Networks. Sensors, 2021, 21, 695.	2.1	29
8	Understanding UAV-Based WPCN-Aided Capabilities for Offshore Monitoring Applications. IEEE Wireless Communications, 2021, 28, 114-120.	6.6	7
9	Machine type communications: key drivers and enablers towards the 6G era. Eurasip Journal on Wireless Communications and Networking, 2021, 2021, .	1.5	42
10	Testbed for LoRaWAN Security: Design and Validation through Man-in-the-Middle Attacks Study. Applied Sciences (Switzerland), 2021, 11, 7642.	1.3	9
11	Massive Machine-Type Communication and Satellite Integration for Remote Areas. IEEE Wireless Communications, 2021, 28, 74-80.	6.6	17
12	On the Uplink Traffic Distribution in Time for Duty-cycle Constrained LoRaWAN Networks. , 2021, , .		0
13	Investigation of the Performance of TDoA-Based Localization Over LoRaWAN in Theory and Practice. Sensors, 2020, 20, 5464.	2.1	12
14	LoRaWAN for Smart Campus: Deployment and Long-Term Operation Analysis. Sensors, 2020, 20, 6721.	2.1	10
15	Wake-up radio enabled BLE wearables: empirical and analytical evaluation of energy efficiency. , 2020, ,		4
16	Communication Performance of a Real-Life Wide-Area Low-Power Network Based on Sigfox Technology. , 2020, , .		5
17	Accuracy Assessment and Cross-Validation of LPWAN Propagation Models in Urban Scenarios. IEEE Access, 2020, 8, 154625-154636.	2.6	17

18 Unmanned Aerial Base Stations for NB-IoT: Trajectory Design and Performance Analysis. , 2020, , .

#	Article	IF	CITATIONS
19	Unifying Multi-Radio Communication Technologies to Enable mMTC Applications in B5G Networks. , 2020, , .		6
20	Beyond 5G Low-Power Wide-Area Networks: A LoRaWAN Suitability Study. , 2020, , .		8
21	NB-IoT Micro-Operator for Smart Campus: Performance and Lessons Learned in 5GTN. , 2020, , .		4
22	On the Performance of Multi-Gateway LoRaWAN Deployments: An Experimental Study. , 2020, , .		9
23	Security in low-power wide-area networks: state-of-the-art and development toward the 5G. , 2020, , 373-396.		6
24	Performance Evaluation of Bluetooth Low Energy Technology Under Interference. EAI/Springer Innovations in Communication and Computing, 2020, , 147-156.	0.9	7
25	Simulating LoRaWAN: On Importance of Inter Spreading Factor Interference and Collision Effect. , 2019, , .		17
26	Energy Attack in LoRaWAN. , 2019, , .		14
27	Energy Efficiency of Multi-Radio Massive Machine-Type Communication (MR-MMTC): Applications, Challenges, and Solutions. IEEE Communications Magazine, 2019, 57, 100-106.	4.9	35
28	On Spatial Diversity for LoRaWAN: Experimental Evaluation of Performance of a Dual-Gateway Network With and Without Downlink. , 2019, , .		3
29	Multi-Radio Perspectives for Massive MTC Localization: Energy Consumption and Utility. , 2019, , .		3
30	Improving the Energy Efficiency of a LoRaWAN by a UAV-based Gateway. , 2019, , .		9
31	Wireless power transfer from unmanned aerial vehicle to low-power wide area network nodes: Performance and business prospects for LoRaWAN. International Journal of Distributed Sensor Networks, 2019, 15, 155014771988816.	1.3	5
32	Wireless Energy Transfer Powered Wireless Sensor Node for Green IoT: Design, Implementation and Evaluation. Sensors, 2019, 19, 90.	2.1	19
33	When IoT Keeps People in the Loop: A Path Towards a New Global Utility. IEEE Communications Magazine, 2019, 57, 114-121.	4.9	57
34	Experimental Performance Evaluation of BLE 4 Versus BLE 5 in Indoors and Outdoors Scenarios. Internet of Things, 2019, , 235-251.	1.3	17
35	LoRa WAN for Wind Turbine Monitoring: Prototype and Practical Deployment. , 2018, , .		6
36	Method of Assigning Spreading Factor to Improve the Scalability of the LoRaWan Wide Area Network. , 2018, , .		22

KONSTANTIN V MIKHAYLOV

#	Article	IF	CITATIONS
37	Tailoring NB-IoT for Mass Market Applications: A Mobile Operator's Perspective. , 2018, , .		10
38	Effect of Downlink Traffic on Performance of LoRaWAN LPWA Networks: Empirical Study. , 2018, , .		16
39	Combining IoT Deployment and Data Visualization: experiences within campus maintenance use-case. , 2018, , .		9
40	Large and Dense LoRaWAN Deployment to Monitor Real Estate Conditions and Utilization Rate. , 2018, , .		12
41	Experimental Validation of Peer-to-Peer Distributed Voltage Control System. Energies, 2018, 11, 1304.	1.6	11
42	On Track of Sigfox Confidentiality with End-to-End Encryption. , 2018, , .		26
43	Automatic charging of an energy harvesting powered sensor node from controllable energy source. , 2018, , .		1
44	Multi-RAT LPWAN in Smart Cities: Trial of LoRaWAN and NB-IoT Integration. , 2018, , .		31
45	Wirelessly Powered Urban Crowd Sensing over Wearables: Trading Energy for Data. IEEE Wireless Communications, 2018, 25, 140-149.	6.6	26
46	Impact of IEEE 802.15.4 Communication Settings on Performance in Asynchronous Two Way UWB Ranging. International Journal of Wireless Information Networks, 2017, 24, 124-139.	1.8	6
47	Evaluation of LoRa LPWAN Technology for Indoor Remote Health and Wellbeing Monitoring. International Journal of Wireless Information Networks, 2017, 24, 153-165.	1.8	104
48	Design and Implementation of The Plug&Play Enabled Flexible Modular Wireless Sensor and Actuator Network Platform. Asian Journal of Control, 2017, 19, 1392-1412.	1.9	22
49	Performance of a low-power wide-area network based on LoRa technology: Doppler robustness, scalability, and coverage. International Journal of Distributed Sensor Networks, 2017, 13, 155014771769941.	1.3	225
50	On LoRaWAN scalability: Empirical evaluation of susceptibility to inter-network interference. , 2017, , .		64
51	Experimental RF-signal based wireless energy transmission. , 2017, , .		4
52	D2D communications in LoRaWAN Low Power Wide Area Network: From idea to empirical validation. , 2017, , .		20
53	On the integration of LoRaWAN with the 5G test network. , 2017, , .		32

14

#	Article	IF	CITATIONS
55	Superregenerative Wake-Up Receiver with 20 $\hat{A}\mu W$ Power Consumption for Human Body Communications. , 2016, , .		1
56	On the human body communications: wake-up receiver design and channel characterization. Eurasip Journal on Wireless Communications and Networking, 2016, 2016, .	1.5	16
57	On feasibility of 5C-grade dedicated RF charging technology for wireless-powered wearables. IEEE Wireless Communications, 2016, 23, 28-37.	6.6	51
58	On the selection of protocol and parameters for UWB-based wireless indoors localization. , 2016, , .		12
59	Evaluation of LoRa LPWAN technology for remote health and wellbeing monitoring. , 2016, , .		108
60	Mechanisms for improving throughput and energy efficiency of Bluetooth Low Energy for multi node environment. Journal of High Speed Networks, 2015, 21, 165-180.	0.6	8
61	WBAN Energy Efficiency and Dependability Improvement Utilizing Wake-Up Receiver. IEICE Transactions on Communications, 2015, E98.B, 535-542.	0.4	9
62	Live demonstration: Modular multi-radio wireless sensor platform with plug&play modules connection. , 2015, , .		0
63	Enabling modular plug&play wireless sensor and actuator network nodes: Software architecture. , 2015, , .		5
64	On the coverage of LPWANs: range evaluation and channel attenuation model for LoRa technology. , 2015, , .		416
65	Loose synchronization method for low-power superregenerative wake-up receiver. , 2015, , .		1
66	Extensible modular wireless sensor and actuator network and IoT platform with plug&play module connection. , 2015, , .		20
67	Resource sharing between neighboring nodes in heterogeneous wireless sensor networks. , 2015, , .		1
68	Smart home gateway system over Bluetooth low energy with wireless energy transfer capability. Eurasip Journal on Wireless Communications and Networking, 2015, 2015, .	1.5	40
69	Modular wireless sensor and Actuator Network Nodes with Plug-and-Play module connection. , 2014, , .		7
70	Simulation of network-level performance for Bluetooth Low Energy. , 2014, , .		25
71	Cognitive Internet-of-Things solutions enabled by wireless sensor and actuator networks. , 2014, , .		24
72	Accelerated Connection Establishment (ACE) mechanism for Bluetooth Low Energy. , 2014, , .		10

#	Article	IF	CITATIONS
73	Wireless Sensor Network Based Smart Home System over BLE with Energy Harvesting Capability. Lecture Notes in Computer Science, 2014, , 419-432.	1.0	2
74	Wireless sensor glove interface and its application in digital holography. , 2013, , .		3
75	Data Collection from Isolated Clusters in Wireless Sensor Networks Using Mobile Ferries. , 2013, , .		7
76	Multihop data transfer service for Bluetooth Low Energy. , 2013, , .		23
77	Analysis and evaluation of the maximum throughput for data streaming over IEEE 802.15.4 wireless networks. Journal of High Speed Networks, 2013, 19, 181-202.	0.6	1
78	Energy Consumption of the Mobile Wireless Sensor Network's Node with Controlled Mobility. , 2013, , .		8
79	Plug-and-play mechanism for plain transducers with wired digital interfaces attached to wireless sensor network nodes. International Journal of Sensor Networks, 2013, 14, 50.	0.2	6
80	Performance Analysis and Comparison of Bluetooth Low Energy with IEEE 802.15.4 and SimpliciTI. Journal of Sensor and Actuator Networks, 2013, 2, 589-613.	2.3	71
81	Novel energy consumption model for simulating wireless sensor networks. , 2012, , .		5
82	Energy-efficient routing in wireless sensor networks using power-source type identification. International Journal of Space-Based and Situated Computing, 2012, 2, 253.	0.2	14
83	Experimental Evaluation of Alkaline Batteries's Capacity for Low Power Consuming Applications. , 2012, , .		10
84	Wireless Sensor Networks in industrial environment: Real-life evaluation results. , 2012, , .		29
85	Evaluation of Power Efficiency for Digital Serial Interfaces of Microcontrollers. , 2012, , .		15
86	Node's Power Source Type Identification in Wireless Sensor Networks. , 2011, , .		9
87	Energy Efficient Data Restoring after Power-Downs for Wireless Sensor Networks Nodes with Energy Scavenging. , 2011, , .		5
88	Improvement of energy consumption for "over-the-air" reprogramming in Wireless Sensor Networks. , 2010, , .		5
89	Optimization of microcontroller hardware parameters for Wireless Sensor Network node power consumption and lifetime improvement. , 2010, , .		15
90	Development of Energy Efficiency Aware Applications Using Commercial Low Power Embedded Systems.		11