Daniele Dini

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5037773/daniele-dini-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

5,261 306 39 57 h-index g-index citations papers 6,363 6.31 4.1 337 avg, IF L-index ext. papers ext. citations

#	Paper	IF	Citations
306	Microscale characterisation of the time-dependent mechanical behaviour of brain white matter. Journal of the Mechanical Behavior of Biomedical Materials, 2022 , 125, 104917	4.1	2
305	Anomalous boundary behavior of non-Newtonian fluids on amphiphobic surfaces. <i>Tribology International</i> , 2022 , 165, 107261	4.9	0
304	Acoustic Emission Enabled Particle Size Estimation via Low Stress-Varied Axial Interface Shearing. <i>IEEE Transactions on Instrumentation and Measurement</i> , 2022 , 71, 1-10	5.2	1
303	Insights into Infusion-Based Targeted Drug Delivery in the Brain: Perspectives, Challenges and Opportunities <i>International Journal of Molecular Sciences</i> , 2022 , 23,	6.3	2
302	Effect of Particle Size and Surface Charge on Nanoparticles Diffusion in the Brain White Matter <i>Pharmaceutical Research</i> , 2022 , 1	4.5	5
301	Intrinsic viscuit probability distribution functions for transport coefficients of liquids and solids Journal of Chemical Physics, 2022 , 156, 124501	3.9	0
300	Morphometric study of the ventricular indexes in healthy ovine BRAIN using MRI <i>BMC Veterinary Research</i> , 2022 , 18, 97	2.7	
299	Slip and stress from low shear rate nonequilibrium molecular dynamics: The transient-time correlation function technique <i>Journal of Chemical Physics</i> , 2022 , 156, 184111	3.9	1
298	A new finite element paradigm to solve contact problems with roughness. <i>International Journal of Solids and Structures</i> , 2022 , 111643	3.1	1
297	Parallel Active Link Suspension: Full Car Application With Frequency-Dependent Multiobjective Control Strategies. <i>IEEE Transactions on Control Systems Technology</i> , 2021 , 1-16	4.8	1
296	Mechanochemistry of phosphate esters confined between sliding iron surfaces. <i>Communications Chemistry</i> , 2021 , 4,	6.3	4
295	Analysis of an Actuated Frictional Interface for Improved Dynamic Performance. <i>Conference Proceedings of the Society for Experimental Mechanics</i> , 2021 , 227-230	0.3	
294	Strength of interference screw fixation of meniscus prosthesis matches native meniscus attachments. <i>Knee Surgery, Sports Traumatology, Arthroscopy</i> , 2021 , 1	5.5	O
293	On the Origin of Plastic Deformation and Surface Evolution in Nano-Fretting: A Discrete Dislocation Plasticity Analysis. <i>Materials</i> , 2021 , 14,	3.5	2
292	Exploring the effect of geometric coupling on friction and energy dissipation in rough contacts of elastic and viscoelastic coatings. <i>Journal of the Mechanics and Physics of Solids</i> , 2021 , 148, 104273	5	6
291	On the origin of microstructural discontinuities in sliding contacts: A discrete dislocation plasticity analysis. <i>International Journal of Plasticity</i> , 2021 , 138, 102942	7.6	5
290	A dual nozzle 3D printing system for super soft composite hydrogels <i>HardwareX</i> , 2021 , 9, e00176	2.7	4

(2021-2021)

289	Cartilage rehydration: The sliding-induced hydrodynamic triggering mechanism. <i>Acta Biomaterialia</i> , 2021 , 125, 90-99	10.8	5
288	A novel CFD-DEM coarse-graining method based on the Voronoi tessellation. <i>Powder Technology</i> , 2021 , 384, 479-493	5.2	3
287	Influence of Fabric on Stress Distribution in Gap-Graded Soil. <i>Journal of Geotechnical and Geoenvironmental Engineering - ASCE</i> , 2021 , 147, 04021016	3.4	13
286	The use of Powder Metallurgy for promoting friction reduction under sliding-rolling lubricated conditions. <i>Tribology International</i> , 2021 , 157, 106892	4.9	2
285	Flexibility-Patterned Liquid-Repelling Surfaces. ACS Applied Materials & Emp; Interfaces, 2021, 13, 29092	- 2 95100	1
284	Biomimetic Water-Repelling Surfaces with Robustly Flexible Structures. <i>ACS Applied Materials</i> & amp; Interfaces, 2021, 13, 31310-31319	9.5	4
283	Molecular droplets vs bubbles: Effect of curvature on surface tension and Tolman length. <i>Physics of Fluids</i> , 2021 , 33, 072012	4.4	3
282	Fluid-solid interaction in the rate-dependent failure of brain tissue and biomimicking gels. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2021 , 119, 104530	4.1	5
281	The mechanics and physics of high-speed dislocations: a critical review. <i>International Materials Reviews</i> , 2021 , 66, 215-255	16.1	17
280	Ab initio insights into the interaction mechanisms between boron, nitrogen and oxygen doped diamond surfaces and water molecules. <i>Carbon</i> , 2021 , 171, 575-584	10.4	5
279	Tribological Rehydration and Its Role on Frictional Behavior of PVA/GO Hydrogels for Cartilage Replacement Under Migrating and Stationary Contact Conditions. <i>Tribology Letters</i> , 2021 , 69, 1	2.8	5
278	Infusion Mechanisms in Brain White Matter and Their Dependence on Microstructure: An Experimental Study of Hydraulic Permeability. <i>IEEE Transactions on Biomedical Engineering</i> , 2021 , 68, 1229-1237	5	7
277	Integrating Diffusion Tensor Imaging and Neurite Orientation Dispersion and Density Imaging to Improve the Predictive Capabilities of CED Models. <i>Annals of Biomedical Engineering</i> , 2021 , 49, 689-702	4.7	3
276	Using Ultrasonic Reflection Resonance to Probe Stress Wave Velocity in Assemblies of Spherical Particles. <i>IEEE Sensors Journal</i> , 2021 , 1-1	4	1
275	Normal Load and Counter Body Size Influence the Initiation of Microstructural Discontinuities in Copper during Sliding. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 4750-4760	9.5	8
274	Series Active Variable Geometry Suspension: Full-Car Prototyping and Road Testing. <i>IEEE/ASME Transactions on Mechatronics</i> , 2021 , 1-1	5.5	3
273	Contributions of Molecular Dynamics Simulations to Elastohydrodynamic Lubrication. <i>Tribology Letters</i> , 2021 , 69, 1	2.8	5
272	Scale-Dependent Friction-Coverage Relations and Nonlocal Dissipation in Surfactant Monolayers. <i>Langmuir</i> , 2021 , 37, 2406-2418	4	5

271	Viscuit and the fluctuation theorem investigation of shear viscosity by molecular dynamics simulations: The information and the noise. <i>Journal of Chemical Physics</i> , 2021 , 154, 074503	3.9	2
270	The effect of fluid viscoelasticity in lubricated contacts in the presence of cavitation. <i>Tribology International</i> , 2021 , 160, 107011	4.9	5
269	Interfacial Bonding Controls Friction in Diamond R ock Contacts. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 18395-18408	3.8	1
268	On the microstructural origin of brain white matter hydraulic permeability. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	3
267	Fast laser surface texturing of spherical samples to improve the frictional performance of elasto-hydrodynamic lubricated contacts. <i>Friction</i> , 2021 , 9, 1227-1241	5.6	15
266	Single trajectory transport coefficients and the energy landscape by molecular dynamics simulations. <i>Journal of Chemical Physics</i> , 2020 , 152, 194504	3.9	5
265	An adaptive finite element model for steerable needles. <i>Biomechanics and Modeling in Mechanobiology</i> , 2020 , 19, 1809-1825	3.8	14
264	The interaction of galling and oxidation in 316L stainless steel. <i>Wear</i> , 2020 , 450-451, 203234	3.5	4
263	Unraveling and Mapping the Mechanisms for Near-Surface Microstructure Evolution in CuNi Alloys under Sliding. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 32197-32208	9.5	18
262	Transient structures in rupturing thin films: Marangoni-induced symmetry-breaking pattern formation in viscous fluids. <i>Science Advances</i> , 2020 , 6, eabb0597	14.3	4
261	Capturing the hardness of coating systems across the scales. Surface and Coatings Technology, 2020 , 394, 125860	4.4	5
260	Hemiarthroplasties: the choice of prosthetic material causes different levels of damage in the articular cartilage. <i>Journal of Shoulder and Elbow Surgery</i> , 2020 , 29, 1019-1029	4.3	6
259	A study of thermal effects in EHL rheology and friction using infrared microscopy. <i>Tribology International</i> , 2020 , 146, 106179	4.9	1
258	Substituent Effects on the Thermal Decomposition of Phosphate Esters on Ferrous Surfaces. Journal of Physical Chemistry C, 2020 , 124, 9852-9865	3.8	9
257	Uncertainties Investigation and $\bar{\mu}$ -Synthesis Control Design for a Full Car with Series Active Variable Geometry Suspension. <i>IFAC-PapersOnLine</i> , 2020 , 53, 13882-13889	0.7	1
256	Effect of Temperature on the Deformation Behavior of Copper Nickel Alloys under Sliding. <i>Materials</i> , 2020 , 14,	3.5	9
255	Droplet manipulation of hierarchical steel surfaces using femtosecond laser fabrication. <i>Applied Surface Science</i> , 2020 , 521, 146474	6.7	6
254	The roles of adhesion, internal heat generation and elevated temperatures in normally loaded, sliding rough surfaces. <i>International Journal of Solids and Structures</i> , 2020 , 185-186, 14-28	3.1	2

(2019-2020)

253	Self-Compensating Liquid-Repellent Surfaces with Stratified Morphology. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 4174-4182	9.5	6
252	Exploiting air cushion effects to optimise a superhydrophobic/hydrophilic patterned liquid ring sealed air bearing. <i>Tribology International</i> , 2020 , 144, 106129	4.9	6
251	Tuning the periodic V-peeling behavior of elastic tapes applied to thin compliant substrates. <i>International Journal of Mechanical Sciences</i> , 2020 , 170, 105331	5.5	5
250	CPL library IA minimal framework for coupled particle and continuum simulation. <i>Computer Physics Communications</i> , 2020 , 250, 107068	4.2	2
249	Modelling the effects of age-related morphological and mechanical skin changes on the stimulation of tactile mechanoreceptors. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2020 , 112, 104	073	2
248	Liquid repellency enhancement through flexible microstructures. <i>Science Advances</i> , 2020 , 6, eaba9721	14.3	15
247	Statistical Analysis and Molecular Dynamics Simulations of the Thermal Conductivity of LennardIlones Solids Including Their Pressure and Temperature Dependencies. <i>Physica Status Solidi (B): Basic Research</i> , 2020 , 257, 2000344	1.3	2
246	High Lubricity Meets Load Capacity: Cartilage Mimicking Bilayer Structure by Brushing Up Stiff Hydrogels from Subsurface. <i>Advanced Functional Materials</i> , 2020 , 30, 2004062	15.6	32
245	Ab Initio Study of Polytetrafluoroethylene Defluorination for Tribocharging Applications. <i>ACS Applied Polymer Materials</i> , 2020 , 2, 5129-5134	4.3	2
244	Controlling the number of vortices and torque in TaylorLouette flow. <i>Journal of Fluid Mechanics</i> , 2020 , 901,	3.7	5
243	What Does a Brain Feel Like?. Journal of Chemical Education, 2020, 97, 4078-4083	2.4	O
242	Design and optimization of a liquid ring thrust bearing. <i>Tribology International</i> , 2020 , 149, 105588	4.9	7
241	Nonequilibrium Molecular Dynamics Simulations of Tribological Systems. <i>CISM International Centre for Mechanical Sciences, Courses and Lectures</i> , 2020 , 95-130	0.6	1
240	Contact Mechanics of Rubber and Soft Matter. <i>CISM International Centre for Mechanical Sciences, Courses and Lectures</i> , 2020 , 279-330	0.6	1
239	Computing drag and interactions between fluid and polydisperse particles in saturated granular materials. <i>Computers and Geotechnics</i> , 2020 , 117, 103210	4.4	8
238	Position Control of Parallel Active Link Suspension With Backlash. <i>IEEE Transactions on Industrial Electronics</i> , 2020 , 67, 4741-4751	8.9	3
237	Mixed-mode crack propagation during needle penetration for surgical interventions. <i>Procedia Structural Integrity</i> , 2019 , 18, 775-780	1	
236	Bioinspired 3D Printed Locomotion Devices Based on Anisotropic Friction. <i>Small</i> , 2019 , 15, e1802931	11	10

235	Influence of surface texturing on hydrodynamic friction in plane converging bearings - An experimental and numerical approach. <i>Tribology International</i> , 2019 , 134, 190-204	4.9	73
234	A new hardness formula incorporating the effect of source density on indentation response: A discrete dislocation plasticity analysis. <i>Surface and Coatings Technology</i> , 2019 , 374, 763-773	4.4	14
233	Interplay between wall slip and cavitation: A complementary variable approach. <i>Tribology International</i> , 2019 , 137, 324-339	4.9	7
232	Shear stress relaxation and diffusion in simple liquids by molecular dynamics simulations: Analytic expressions and paths to viscosity. <i>Journal of Chemical Physics</i> , 2019 , 150, 174504	3.9	10
231	Partitioned fluid-structure interaction techniques applied to the mixed-elastohydrodynamic solution of dynamically loaded connecting-rod big-end bearings. <i>Tribology International</i> , 2019 , 140, 105	7 67	7
230	Three-Dimensional Printed Surfaces Inspired by Bi-Gaussian Stratified Plateaus. <i>ACS Applied Materials & Discourt & Dis</i>	9.5	6
229	Characterization and simulation of bi-Gaussian surfaces induced by material transfer and additive processes. <i>Tribology International</i> , 2019 , 136, 31-44	4.9	4
228	A discrete crack dynamics model of toughening in brittle polycrystalline material by crack deflection. <i>Engineering Fracture Mechanics</i> , 2019 , 214, 95-111	4.2	4
227	Ability of a pore network model to predict fluid flow and drag in saturated granular materials. <i>Computers and Geotechnics</i> , 2019 , 110, 344-366	4.4	12
226	Bi-Gaussian Stratified Wetting Model on Rough Surfaces. <i>Langmuir</i> , 2019 , 35, 5967-5974	4	6
225	A computational fluid dynamics approach to determine white matter permeability. <i>Biomechanics and Modeling in Mechanobiology</i> , 2019 , 18, 1111-1122	3.8	12
224	The Percolation of Liquid Through a Compliant SealAn Experimental and Theoretical Study. <i>Journal of Fluids Engineering, Transactions of the ASME</i> , 2019 , 141,	2.1	10
223	Effect of tissue permeability and drug diffusion anisotropy on convection-enhanced delivery. <i>Drug Delivery</i> , 2019 , 26, 773-781	7	16
222	Simulating Surfactant-Iron Oxide Interfaces: From Density Functional Theory to Molecular Dynamics. <i>Journal of Physical Chemistry B</i> , 2019 , 123, 6870-6881	3.4	15
221	Detection of proteoglycan loss from articular cartilage using Brillouin microscopy, with applications to osteoarthritis. <i>Biomedical Optics Express</i> , 2019 , 10, 2457-2466	3.5	10
220	First-Principles Insights into the Structural and Electronic Properties of Polytetrafluoroethylene in Its High-Pressure Phase (Form III). <i>Journal of Physical Chemistry C</i> , 2019 , 123, 6250-6255	3.8	5
219	Shear heating, flow, and friction of confined molecular fluids at high pressure. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 5813-5823	3.6	16
218	A Combined Experimental and Theoretical Study on the Mechanisms Behind Tribocharging Phenomenon and the Influence of Triboemission. <i>Tribology Online</i> , 2019 , 14, 367-374	0.9	3

217	Robust Control for a Full-Car Prototype of Series Active Variable Geometry Suspension* 2019,		2
216	Transport coefficients of the Lennard-Jones fluid close to the freezing line. <i>Journal of Chemical Physics</i> , 2019 , 151, 204502	3.9	15
215	Evolving pore orientation, shape and size in sheared granular assemblies. <i>Granular Matter</i> , 2019 , 21, 1	2.6	8
214	A phase field model of pressure-assisted sintering. <i>Journal of the European Ceramic Society</i> , 2019 , 39, 173-182	6	17
213	Quarter-Car Experimental Study for Series Active Variable Geometry Suspension. <i>IEEE Transactions on Control Systems Technology</i> , 2019 , 27, 743-759	4.8	14
212	Tribological evaluation of biomedical polycarbonate urethanes against articular cartilage. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2018 , 82, 394-402	4.1	15
211	Discrete crack dynamics: A planar model of crack propagation and crack-inclusion interactions in brittle materials. <i>International Journal of Solids and Structures</i> , 2018 , 152-153, 12-27	3.1	8
2 10	Modeling and simulation in tribology across scales: An overview. <i>Tribology International</i> , 2018 , 125, 169	-1499	213
209	A computational geometry approach to pore network construction for granular packings. <i>Computers and Geosciences</i> , 2018 , 112, 133-143	4.5	9
208	Do uniform tangential interfacial stresses enhance adhesion?. <i>Journal of the Mechanics and Physics of Solids</i> , 2018 , 112, 145-156	5	26
207	Electronic remote blood issue combined with a computer-controlled, automated refrigerator for major surgery in operating theatres at a distance from the transfusion service. <i>Transfusion</i> , 2018 , 58, 372-378	2.9	5
206	Advances in nonequilibrium molecular dynamics simulations of lubricants and additives. <i>Friction</i> , 2018 , 6, 349-386	5.6	85
205	3D Measurements of Lubricant and Surface Temperatures Within an Elastohydrodynamic Contact. <i>Tribology Letters</i> , 2018 , 66, 7	2.8	15
204	Slip of Alkanes Confined between Surfactant Monolayers Adsorbed on Solid Surfaces. <i>Langmuir</i> , 2018 , 34, 3864-3873	4	22
203	Tribological properties of PVA/PVP blend hydrogels against articular cartilage. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2018 , 78, 36-45	4.1	46
202	Models and tissue mimics for brain shift simulations. <i>Biomechanics and Modeling in Mechanobiology</i> , 2018 , 17, 249-261	3.8	18
201	Investigation of the Influence of Different Asperity Contact Models on the Elastohydrodynamic Analysis of a Conrod Small-End/Piston Pin Coupling. <i>SAE International Journal of Engines</i> , 2018 , 11, 919-	934	2
200	Adsorption of Surfactants on Fe2O3(0001): A Density Functional Theory Study. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 20817-20826	3.8	26

199	Parallel Active Link Suspension: A Quarter-Car Experimental Study. <i>IEEE/ASME Transactions on Mechatronics</i> , 2018 , 23, 2066-2077	5.5	9
198	Control Design for a Quarter Car Test Rig with Parallel Active Link Suspension 2018,		4
197	Capillary waves with surface viscosity. <i>Journal of Fluid Mechanics</i> , 2018 , 847, 644-663	3.7	5
196	Effective Diffusion and Tortuosity in Brain White Matter. <i>Annual International Conference of the IEEE Engineering in Medicine and Biology Society Annual International Conference</i> , 2018 , 2018, 4901-4904	0.9	5
195	Instabilities of High Speed Dislocations. <i>Physical Review Letters</i> , 2018 , 121, 145502	7.4	10
194	Composite hydrogel: A high fidelity soft tissue mimic for surgery. <i>Materials and Design</i> , 2018 , 160, 886-8	3 9 41	23
193	Incremental viscosity by non-equilibrium molecular dynamics and the Eyring model. <i>Journal of Chemical Physics</i> , 2018 , 148, 194506	3.9	9
192	The influence of surface roughness and adhesion on particle rolling. <i>Powder Technology</i> , 2017 , 312, 321	- 3 33	28
191	On the characterization of the heterogeneous mechanical response of human brain tissue. <i>Biomechanics and Modeling in Mechanobiology</i> , 2017 , 16, 907-920	3.8	60
190	Polyelectrolyte pKa from experiment and molecular dynamics simulation. <i>RSC Advances</i> , 2017 , 7, 20007	'-3 <u>.9</u> 014	1 10
189	Analytical derivation of water retention for random monodisperse granular media. <i>Acta Geotechnica</i> , 2017 , 12, 1319-1328	4.9	6
188	Towards the Irving-Kirkwood limit of the mechanical stress tensor. <i>Journal of Chemical Physics</i> , 2017 , 146, 224109	3.9	6
187	Nanohydrogel Brushes for Switchable Underwater Adhesion. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 8452-8463	3.8	17
186	Series Active Variable Geometry Suspension application to comfort enhancement. <i>Control Engineering Practice</i> , 2017 , 59, 111-126	3.9	14
185	A coupled finite-volume CFD solver for two-dimensional elasto-hydrodynamic lubrication problems with particular application to rolling element bearings. <i>Tribology International</i> , 2017 , 109, 258-273	4.9	40
184	Nonequilibrium molecular dynamics simulations of stearic acid adsorbed on iron surfaces with nanoscale roughness. <i>Tribology International</i> , 2017 , 107, 264-273	4.9	42
183	Transient experimental and modelling studies of laser-textured micro-grooved surfaces with a focus on piston-ring cylinder liner contacts. <i>Tribology International</i> , 2017 , 113, 125-136	4.9	67
182	Model Identification and Control for a Quarter Car Test Rig of Series Active Variable Geometry Suspension. <i>IFAC-PapersOnLine</i> , 2017 , 50, 3376-3381	0.7	5

181	Cryogenic 3D Printing of Super Soft Hydrogels. Scientific Reports, 2017, 7, 16293	4.9	62
180	Sensitivity analysis of Immersed Boundary Method simulations of fluid flow in dense polydisperse random grain packings. <i>EPJ Web of Conferences</i> , 2017 , 140, 15006	0.3	1
179	Meeting the Contact-Mechanics Challenge. <i>Tribology Letters</i> , 2017 , 65, 1	2.8	163
178	Significant and stable drag reduction with air rings confined by alternated superhydrophobic and hydrophilic strips. <i>Science Advances</i> , 2017 , 3, e1603288	14.3	85
177	Non-Equilibrium Phase Behavior of Confined Molecular Films at Low Shear Rates. <i>Physica Status Solidi (B): Basic Research</i> , 2017 , 254, 1600862	1.3	1
176	Sliding wear analysis of cobalt based alloys in nuclear reactor conditions. <i>Wear</i> , 2017 , 376-377, 1489-15	0 3.5	3
175	Nanowire Stretching by Non-Equilibrium Molecular Dynamics. <i>Physica Status Solidi (B): Basic Research</i> , 2017 , 254, 1600861	1.3	2
174	Marangoni effect on small-amplitude capillary waves in viscous fluids. <i>Physical Review E</i> , 2017 , 96, 0531	1 9 .4	Ο
173	Soft Matter Lubrication: Does Solid Viscoelasticity Matter?. <i>ACS Applied Materials & Company Company</i> , 19, 42287-42295	9.5	36
172	On the effect of confined fluid molecular structure on nonequilibrium phase behaviour and friction. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 17883-17894	3.6	38
171	Molecular Dynamics Studies of Overbased Detergents on a Water Surface. <i>Langmuir</i> , 2017 , 33, 7263-72	7.Ф	4
170	The injection of a screw dislocation into a crystal: Atomistics vs. continuum elastodynamics. <i>Journal of the Mechanics and Physics of Solids</i> , 2017 , 98, 366-389	5	7
169	A Dynamic Discrete Dislocation Plasticity study of elastodynamic shielding of stationary cracks. <i>Journal of the Mechanics and Physics of Solids</i> , 2017 , 98, 1-11	5	12
168	Before the bubble ruptures. <i>Physical Review Fluids</i> , 2017 , 2,	2.8	1
167	Experimental Validation of a Mixed-Lubrication Regime Model for Textured Piston-Ring-Liner Contacts. <i>Materials Performance and Characterization</i> , 2017 , 6, MPC20160019	0.5	8
166	The effect of temperature on the elastic precursor decay in shock loaded FCC aluminium and BCC iron. <i>International Journal of Plasticity</i> , 2017 , 96, 135-155	7.6	44
165	Theory of reciprocating contact for viscoelastic solids. <i>Physical Review E</i> , 2016 , 93, 043003	2.4	22
164	A method of coupling discrete dislocation plasticity to the crystal plasticity finite element method. <i>Modelling and Simulation in Materials Science and Engineering</i> , 2016 , 24, 045007	2	12

163	Soft Tissue Phantoms for Realistic Needle Insertion: A Comparative Study. <i>Annals of Biomedical Engineering</i> , 2016 , 44, 2442-2452	4.7	45
162	Hypoid gear vehicle axle efficiency. <i>Tribology International</i> , 2016 , 101, 314-323	4.9	11
161	The influence of temperature on viscoelastic friction properties. <i>Tribology International</i> , 2016 , 100, 338	3-3443	15
160	Partial slip incomplete contacts under constant normal load and subject to periodic loading. <i>International Journal of Mechanical Sciences</i> , 2016 , 108-109, 115-121	5.5	16
159	A Comparison of Classical Force-Fields for Molecular Dynamics Simulations of Lubricants. <i>Materials</i> , 2016 , 9,	3.5	65
158	A numerical study exploring the effect of particle properties on the fluidization of adhesive particles. <i>AICHE Journal</i> , 2016 , 62, 1467-1477	3.6	16
157	Equilibrium fluctuations of liquid state static properties in a subvolume by molecular dynamics. Journal of Chemical Physics, 2016 , 145, 104504	3.9	2
156	Non-equilibrium phase behavior and friction of confined molecular films under shear: A non-equilibrium molecular dynamics study. <i>Journal of Chemical Physics</i> , 2016 , 145, 164704	3.9	18
155	. Journal of Strain Analysis for Engineering Design, 2016 , 51, 240-246	1.3	7
154	Nonequilibrium Molecular Dynamics Simulations of Organic Friction Modifiers Adsorbed on Iron Oxide Surfaces. <i>Langmuir</i> , 2016 , 32, 4450-63	4	72
153	Two classes of short intraflagellar transport train with different 3D structures are present in Chlamydomonas flagella. <i>Journal of Cell Science</i> , 2016 , 129, 2064-74	5.3	29
152	A composite hydrogel for brain tissue phantoms. <i>Materials and Design</i> , 2016 , 112, 227-238	8.1	62
151	Nonequilibrium Molecular Dynamics Investigation of the Reduction in Friction and Wear by Carbon Nanoparticles Between Iron Surfaces. <i>Tribology Letters</i> , 2016 , 63, 1	2.8	33
150	Transient effects in lubricated textured bearings. <i>Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology</i> , 2015 , 229, 523-537	1.4	18
149	Tribology-optimised silk protein hydrogels for articular cartilage repair. <i>Tribology International</i> , 2015 , 89, 9-18	4.9	26
148	Modelling and experimental characterisation of the rate dependent fracture properties of gelatine gels. <i>Food Hydrocolloids</i> , 2015 , 46, 180-190	10.6	58
147	An accurate forcedisplacement law for the modelling of elasticplastic contacts in discrete element simulations. <i>Powder Technology</i> , 2015 , 282, 2-9	5.2	26
146	. IEEE/ASME Transactions on Mechatronics, 2015 , 1-1	5.5	9

(2015-2015)

145	Attenuation of the dynamic yield point of shocked aluminum using elastodynamic simulations of dislocation dynamics. <i>Physical Review Letters</i> , 2015 , 114, 174301	7.4	46	
144	A molecular dynamics study of CaCO3 nanoparticles in a hydrophobic solvent with a stearate co-surfactant. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 13575-81	3.6	3	
143	A localized momentum constraint for non-equilibrium molecular dynamics simulations. <i>Journal of Chemical Physics</i> , 2015 , 142, 074110	3.9	5	
142	A General Finite Volume Method for the Solution of the Reynolds Lubrication Equation with a Mass-Conserving Cavitation Model. <i>Tribology Letters</i> , 2015 , 60, 1	2.8	21	
141	Pore shapes, volume distribution and orientations in monodisperse granular assemblies. <i>Granular Matter</i> , 2015 , 17, 727-742	2.6	23	
140	Active Variable Geometry Suspension robust control for improved vehicle ride comfort and road holding 2015 ,		5	
139	Series Active Variable Geometry Suspension for Road Vehicles. <i>IEEE/ASME Transactions on Mechatronics</i> , 2015 , 20, 361-372	5.5	29	
138	Sharp edged contacts subject to fretting: A description of corner behaviour. <i>International Journal of Fatigue</i> , 2015 , 71, 26-34	5	14	
137	Determination of the shakedown limit for large, discrete frictional systems. <i>European Journal of Mechanics, A/Solids</i> , 2015 , 49, 242-250	3.7	16	
136	The Role of Homogeneous Nucleation in Planar Dynamic Discrete Dislocation Plasticity. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2015 , 82,	2.7	11	
135	Elastohydrodynamic Analysis of the Conrod Small-End of a High Performance Motorbike Engine via a Mass Conserving Cavitation Algorithm 2015 ,		1	
134	Elastodynamic image forces on dislocations. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2015 , 471, 20150433	2.4	11	
133	Heat flux evaluation in high temperature ring-on-ring contacts. Wear, 2015, 330-331, 320-326	3.5	1	
132	The mechanisms governing the activation of dislocation sources in aluminum at different strain rates. <i>Journal of the Mechanics and Physics of Solids</i> , 2015 , 84, 273-292	5	48	
131	Nanoporous Substrate-Infiltrated Hydrogels: a Bioinspired Regenerable Surface for High Load Bearing and Tunable Friction. <i>Advanced Functional Materials</i> , 2015 , 25, 7366-7374	15.6	61	
130	Scaling of LennardIlones liquid elastic moduli, viscoelasticity and other properties along fluidIlolid coexistence. <i>Physica Status Solidi (B): Basic Research</i> , 2015 , 252, 1514-1525	1.3	23	
129	Mechanics of rough contacts in elastic and viscoelastic thin layers. <i>International Journal of Solids and Structures</i> , 2015 , 69-70, 507-517	3.1	40	
128	Response of Calcium Carbonate Nanoparticles in Hydrophobic Solvent to Pressure, Temperature, and Water. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 16879-16888	3.8	6	

127	Friction Induced Vibration in Windscreen Wiper Contacts. <i>Journal of Vibration and Acoustics, Transactions of the ASME</i> , 2015 , 137,	1.6	7
126	Self-Assembly of Calcium Carbonate Nanoparticles in Water and Hydrophobic Solvents. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 21092-21103	3.8	6
125	Combinatorial scaffold morphologies for zonal articular cartilage engineering. <i>Acta Biomaterialia</i> , 2014 , 10, 2065-75	10.8	101
124	Refinements in the characterisation of mode-mixity and small scale yielding at sharp notch roots. <i>Engineering Fracture Mechanics</i> , 2014 , 126, 73-86	4.2	10
123	Role of Deprotonation Free Energies in pKa Prediction and Molecule Ranking. <i>Journal of Chemical Theory and Computation</i> , 2014 , 10, 2537-45	6.4	11
122	Car attitude control by series mechatronic suspension. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2014 , 47, 10688-10693		4
121	Finite element analysis of the meniscectomised tibio-femoral joint: implementation of advanced articular cartilage models. <i>Computer Methods in Biomechanics and Biomedical Engineering</i> , 2014 , 17, 155	3 - 71	13
120	The method of planes pressure tensor for a spherical subvolume. <i>Journal of Chemical Physics</i> , 2014 , 140, 054506	3.9	11
119	A theoretical and experimental study of viscoelastic rolling contacts incorporating thermal effects. <i>Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology</i> , 2014 , 228, 1112-1121	1.4	13
118	Formulation of the tangential velocity slip problem in terms of variational inequalities. <i>Proceedings of the Institution of Mechanical Engineers, Part J. Journal of Engineering Tribology</i> , 2014 , 228, 1122-1135	1.4	4
117	Rapid, automated imaging of mouse articular cartilage by microCT for early detection of osteoarthritis and finite element modelling of joint mechanics. <i>Osteoarthritis and Cartilage</i> , 2014 , 22, 1419-28	6.2	57
116	Boundary-controlled barostats for slab geometries in molecular dynamics simulations. <i>Physical Review E</i> , 2014 , 90, 043302	2.4	15
115	Dynamic Discrete Dislocation Plasticity. Advances in Applied Mechanics, 2014, 93-224	10	9
114	A numerical model for the deterministic analysis of adhesive rough contacts down to the nano-scale. <i>International Journal of Solids and Structures</i> , 2014 , 51, 2620-2632	3.1	52
113	Common edge contacts: Effect of interface line orientation. <i>International Journal of Mechanical Sciences</i> , 2014 , 81, 73-76	5.5	4
112	Progress in the application of notch asymptotics to the understanding of complete contacts subject to fretting fatigue. <i>Fatigue and Fracture of Engineering Materials and Structures</i> , 2013 , 36, 56-64	3	8
111	The significance of rate dependency in blade insertions into a gelatin soft tissue phantom. <i>Tribology International</i> , 2013 , 63, 226-234	4.9	20
110	Experimental Investigation of Viscoelastic Rolling Contacts: A Comparison with Theory. <i>Tribology Letters</i> , 2013 , 51, 105-113	2.8	32

109	Fluid film lubrication in the presence of cavitation: a mass-conserving two-dimensional formulation for compressible, piezoviscous and non-Newtonian fluids. <i>Tribology International</i> , 2013 , 67, 61-71	4.9	53
108	Analytical and Numerical Models for Tangential Stiffness of Rough Elastic Contacts. <i>Tribology Letters</i> , 2013 , 49, 103-115	2.8	59
107	Traction and nonequilibrium phase behavior of confined sheared liquids at high pressure. <i>Physical Review E</i> , 2013 , 88, 052406	2.4	34
106	Effects of fiber orientation on the frictional properties and damage of regenerative articular cartilage surfaces. <i>Tissue Engineering - Part A</i> , 2013 , 19, 2300-10	3.9	44
105	Detailed finite element modelling of deep needle insertions into a soft tissue phantom using a cohesive approach. <i>Computer Methods in Biomechanics and Biomedical Engineering</i> , 2013 , 16, 530-43	2.1	62
104	Contact mechanics of frictional lap joints. <i>Journal of Strain Analysis for Engineering Design</i> , 2013 , 48, 321	I-B39	2
103	A dynamic discrete dislocation plasticity method for the simulation of plastic relaxation under shock loading. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2013 , 469, 20130141	2.4	46
102	Sharp contact corners, fretting and cracks. Frattura Ed Integrita Strutturale, 2013, 7, 27-35	0.9	3
101	Optimal Placement of Piezoelectric Plates to Control Multimode Vibrations of a Beam. <i>Advances in Acoustics and Vibration</i> , 2013 , 2013, 1-8	0.8	7
100	A Wireless Vibration Control Technique for Gas Turbine Blades Using Piezoelectric Plates and Contactless Energy Transfer 2013 ,		2
99	An overview of the quantification of fretting fatigue lives of complete contacts. <i>Engineering Fracture Mechanics</i> , 2012 , 80, 3-12	4.2	12
98	Correlation of fretting fatigue experimental results using an asymptotic approach. <i>International Journal of Fatigue</i> , 2012 , 43, 62-75	5	31
97	Optimal placement of piezoelectric plates for active vibration control of gas turbine blades: experimental results 2012 ,		2
96	Pressure dependence of confined liquid behavior subjected to boundary-driven shear. <i>Journal of Chemical Physics</i> , 2012 , 136, 134705	3.9	35
95	Control-volume representation of molecular dynamics. <i>Physical Review E</i> , 2012 , 85, 056705	2.4	25
94	Pitch angle reduction for cars under acceleration and braking by active variable geometry suspension 2012 ,		6
93	Predicting failure in soft tissue phantoms via modeling of non-predetermined tear progression. Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference, 2012, 2012, 6305-8	0.9	3
92	A Mass-Conserving Complementarity Formulation to Study Fluid Film Lubrication in the Presence of Cavitation for Non-Newtonian and Compressible Fluids 2012 ,		1

91	The Influence of Surface Topography on Energy Dissipation and Compliance in Tangentially Loaded Elastic Contacts. <i>Journal of Tribology</i> , 2012 , 134,	1.8	13
90	Dynamic response of liquid-filled catheter systems for measurement of blood pressure: precision of measurements and reliability of the Pressure Recording Analytical Method with different disposable systems. <i>Journal of Critical Care</i> , 2011 , 26, 415-22	4	40
89	Experimental Evidence of Micro-EHL Lubrication in Rough Soft Contacts. <i>Tribology Letters</i> , 2011 , 43, 16	59 <u>2</u> 1874	38
88	Characteristics of the process zone at sharp notch roots. <i>International Journal of Solids and Structures</i> , 2011 , 48, 2177-2183	3.1	35
87	Lubrication in soft rough contacts: A novel homogenized approach. Part II - Discussion. <i>Soft Matter</i> , 2011 , 7, 10407	3.6	29
86	Lubrication in soft rough contacts: A novel homogenized approach. Part I - Theory. <i>Soft Matter</i> , 2011 , 7, 10395	3.6	57
85	A quadratic programming formulation for the solution of layered elastic contact problems: Example applications and experimental validation. <i>European Journal of Mechanics, A/Solids</i> , 2011 , 30, 236-247	3.7	8
84	A coupled approach for rolling contact fatigue cracks in the hydrodynamic lubrication regime: The importance of fluid/solid interactions. <i>Wear</i> , 2011 , 271, 720-733	3.5	19
83	Experimental and numerical investigation of the behaviour of articular cartilage under shear loadingInterstitial fluid pressurisation and lubrication mechanisms. <i>Tribology International</i> , 2011 , 44, 565-578	4.9	48
82	The equivalence between volume averaging and method of planes definitions of the pressure tensor at a plane. <i>Journal of Chemical Physics</i> , 2011 , 135, 024512	3.9	31
81	Incipient Slip Conditions in the Rolling Contact of Tyred Wheels. <i>Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science</i> , 2010 , 224, 2049-2054	1.3	3
80	Detailed finite element simulations of probe insertion into solid elastic material using a cohesive zone approach. Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference, 2010 ,	0.9	3
79	A Mass-Conserving Complementarity Formulation to Study Lubricant Films in the Presence of Cavitation. <i>Journal of Tribology</i> , 2010 , 132,	1.8	74
78	Contact of a rigid cylinder indenting an elastic layer sliding over a rigid substrate. <i>European Journal of Mechanics, A/Solids</i> , 2010 , 29, 772-783	3.7	3
77	Interfacial slip and creep in rolling contact incorporating a cylinder with an elastic layer. <i>European Journal of Mechanics, A/Solids</i> , 2010 , 29, 761-771	3.7	4
76	Determining the coefficient of friction between solids without sliding. Wear, 2010, 269, 339-343	3.5	3
75	Separation and slip at the edge of a complete contact: An asymptotic solution. <i>International Journal of Solids and Structures</i> , 2010 , 47, 2613-2619	3.1	4
74	Frictional Energy Dissipation in a Rough Hertzian Contact. <i>Journal of Tribology</i> , 2009 , 131,	1.8	32

73	Adhesive Contact Between Atomistic Surfaces Using a Continuum Analysis 2009,	2
72	Probabilistic methods in predicting damage under multi-stage fatigue of composites using load block sequences. <i>Procedia Engineering</i> , 2009 , 1, 55-58	7
71	Eigenstrain analysis of non-uniformly shaped shot-peened samples. <i>Procedia Engineering</i> , 2009 , 1, 151-154	4
70	On the accurate prediction of interfacial micro-slip in frictional joints using distributed dislocations and quadratic programming techniques. <i>Procedia Engineering</i> , 2009 , 1, 181-184	4
69	Crack tip deformation fields and fatigue crack growth rates in TiBALEV. <i>International Journal of Fatigue</i> , 2009 , 31, 1771-1779	43
68	The derivation and application of a semi-infinite flat and rounded asymptotic frictionless contact. International Journal of Mechanical Sciences, 2009, 51, 662-666 5.5	8
67	Fretting fatigue and wear in bolted connections: A multi-level formulation for the computation of local contact stresses. <i>Tribology International</i> , 2009 , 42, 1663-1675	14
66	A virtual crystal plasticity simulation tool for micro-forming. <i>Procedia Engineering</i> , 2009 , 1, 75-78	9
65	Consistent tangent stiffness for local-nonlocal damage modelling of metals. <i>Procedia Engineering</i> , 2009 , 1, 177-180	6
64	Feasibility study of neutron strain tomography. <i>Procedia Engineering</i> , 2009 , 1, 185-188	32
63	Analysis of residual stresses around welds in a combustion casing. <i>Procedia Engineering</i> , 2009 , 1, 189-192	3
62	Probing intra-granular deformation by micro-beam Laue diffraction. <i>Procedia Engineering</i> , 2009 , 1, 193-196	20
61	Digital image correlation and finite element analysis of inter- and intra-granular deformation. <i>Procedia Engineering</i> , 2009 , 1, 197-200	10
60	A combined BEM/Contact Asymptotics (BEM-CA) semi-analytical formulation for the assessment of fretting damage in bolted joints. <i>Procedia Engineering</i> , 2009 , 1, 201-204	1
59	Inverse eigenstrain analysis of residual stresses in friction stir welds. <i>Procedia Engineering</i> , 2009 , 1, 213-216	14
58	Synchrotron XRD study of residual stress in a shot peened Al/SiCp composite. <i>Procedia Engineering</i> , 2009 , 1, 221-224	9
57	Crystal plasticity and hardening: A dislocation dynamics study. <i>Procedia Engineering</i> , 2009 , 1, 241-244	12
56	Modelling rolling contact fatigue cracks in the hydrodynamic lubrication regime: A coupled approach. <i>Procedia Engineering</i> , 2009 , 1, 245-248	1

55	An investigation of convection effects in complete and almost complete contact problems. <i>European Journal of Mechanics, A/Solids</i> , 2009 , 28, 680-687	3.7	1
54	Residual strain analysis in polycrystalline aggregates using diffraction measurement and finite element modelling. <i>Journal of Strain Analysis for Engineering Design</i> , 2009 , 44, 55-70	1.3	7
53	Finite element modelling and diffraction measurement of elastic strains during tensile deformation of HCP polycrystals. <i>Computational Materials Science</i> , 2008 , 44, 131-137	3.2	28
52	Fast Computation of Frictional Energy Dissipation in Rough Contacts Under Partial Slip 2008,		3
51	Frictional complete contacts subject to shear and bulk tension. <i>Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science</i> , 2008 , 222, 2301-2309	1.3	3
50	Fatigue Crack Growth Rate Analysis in a Titanium Alloy. <i>Key Engineering Materials</i> , 2008 , 385-387, 5-8	0.4	
49	Further consideration of closure at the root of a sharp notch. <i>Journal of Strain Analysis for Engineering Design</i> , 2008 , 43, 405-409	1.3	3
48	Characteristics of asymptotic solutions for slightly rounded contacts. <i>Tribology - Materials, Surfaces and Interfaces</i> , 2008 , 2, 121-127	1.4	1
47	Modelling of the Mechanical Behaviour of Human Joints Cartilage 2008,		2
46	Inter-Granular Residual Stresses in Polycrystalline Aggregates: Finite Element Modelling and Diffraction Post-Processing. <i>Materials Science Forum</i> , 2008 , 571-572, 271-276	0.4	1
45	Torsional contact of an elastic flat-ended cylinder. <i>Journal of the Mechanics and Physics of Solids</i> , 2008 , 56, 3352-3362	5	8
44	An axi-symmetric Hertzian Contact subject to cyclic shear and severe wear. <i>Wear</i> , 2008 , 265, 1918-1922	3.5	17
43	The state of stress induced by ring dislocations in a semi-infinite stepped shaft. <i>European Journal of Mechanics, A/Solids</i> , 2008 , 27, 269-284	3.7	
42	The application of asymptotic solutions to contact problems characterised by logarithmic singularities. <i>European Journal of Mechanics, A/Solids</i> , 2008 , 27, 847-858	3.7	15
41	Skew sliding of an elastic cylinder: An investigation of convection in contact. <i>International Journal of Mechanical Sciences</i> , 2008 , 50, 293-298	5.5	6
40	Contact of a rotating wheel with a flat. International Journal of Solids and Structures, 2007, 44, 3304-331	6 .1	21
39	Comparative assessment of dissipated energy and other fatigue criteria?. <i>International Journal of Fatigue</i> , 2007 , 29, 1990-1995	5	103
38	Evaluation and analysis of residual stresses due to foreign object damage. <i>Mechanics of Materials</i> , 2007 , 39, 199-211	3.3	40

(2005-2007)

37	Fretting fatigue test analysis of contact. <i>Fatigue and Fracture of Engineering Materials and Structures</i> , 2007 , 30, 499-509	3		
36	Comparison of X-ray diffraction measurement of residual elastic strains: Monochromatic beam and image plate versus white beam energy-dispersive analysis. <i>Journal of Strain Analysis for Engineering Design</i> , 2007 , 42, 23-37	1.3	3	
35	The influence function for self-equilibrating forces on a semi-infinite wedge. <i>Journal of Strain Analysis for Engineering Design</i> , 2007 , 42, 351-359	1.3	1	
34	Modeling Crack Initiation and Propagation in Nickel Base Superalloys. <i>Key Engineering Materials</i> , 2007 , 348-349, 53-56	0.4		
33	Roughness in lubricated rolling contact: The dry contact limit. <i>Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology</i> , 2007 , 221, 787-791	1.4	2	
32	Measurement of Residual Elastic Strains in a Titanium Alloy Using High Energy Synchrotron X-Ray Diffraction. <i>Experimental Mechanics</i> , 2006 , 46, 519-529	2.6	12	
31	On the Nature of Singularities and Asymptotic Fields in Contact Mechanics 2006 , 1481			
30	Oxford HEXameter: Laboratory High Energy X-Ray Diffractometer for Bulk Residual Stress Analysis. <i>Materials Science Forum</i> , 2006 , 524-525, 743-748	0.4	1	
29	Diffraction Post-Processor for Polycrystalline Plasticity Modelling. <i>Materials Science Forum</i> , 2006 , 524-525, 427-432	0.4	1	
28	When does a notch behave like a crack?. <i>Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science</i> , 2006 , 220, 27-43	1.3	12	
27	The principle of strain reconstruction tomography: Determination of quench strain distribution from diffraction measurements. <i>Acta Materialia</i> , 2006 , 54, 2101-2108	8.4	34	
26	Recent developments in the understanding of fretting fatigue. <i>Engineering Fracture Mechanics</i> , 2006 , 73, 207-222	4.2	176	
25	Closure at the root of a sharp notch. International Journal of Mechanical Sciences, 2006, 48, 1063-1071	5.5	9	
24	The contact problem for a wheel having a flat[] Wear, 2006, 261, 1265-1270	3.5	17	
23	The use of notch and short crack approaches to fretting fatigue threshold prediction: Theory and experimental validation. <i>Tribology International</i> , 2006 , 39, 1158-1165	4.9	39	
22	A new method for the quantification of nucleation of fretting fatigue cracks using asymptotic contact solutions. <i>Tribology International</i> , 2006 , 39, 1114-1122	4.9	21	
21	Comprehensive bounded asymptotic solutions for incomplete contacts in partial slip. <i>Journal of the Mechanics and Physics of Solids</i> , 2005 , 53, 437-454	5	38	
20	The tilted shallow wedge problem. <i>European Journal of Mechanics, A/Solids</i> , 2005 , 24, 919-928	3.7	18	

19	The finite and semi-infinite tilted, flat but rounded punch. <i>International Journal of Solids and Structures</i> , 2005 , 42, 4988-5009	3.1	17
18	A refined CLNA model in fretting fatigue using asymptotic characterization of the contact stress fields. <i>Fatigue and Fracture of Engineering Materials and Structures</i> , 2005 , 28, 1099-1112	3	8
17	Size and Scale Effects in Fretting Fatigue Thresholds. <i>International Journal of Fracture</i> , 2005 , 135, L11-L ⁻²	18 .3	4
16	Analysis of plastic deformation and residual elastic strain in a titanium alloy using synchrotron x-ray diffraction. <i>Journal Physics D: Applied Physics</i> , 2005 , 38, A195-A199	3	3
15	The effect of a crack-tip radius on the validity of the singular solution. <i>Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science</i> , 2004 , 218, 693-701	1.3	8
14	Unsymmetrical shear loading and its influence on the frictional shakedown of incomplete contacts. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2004 , 218, 469-475	1.3	3
13	What level of friction guarantees adhesion in a complete contact?. <i>Journal of Strain Analysis for Engineering Design</i> , 2004 , 39, 549-551	1.3	11
12	A consideration of the effects of the slip displacement on fretting fatigue behaviour. <i>Journal of Strain Analysis for Engineering Design</i> , 2004 , 39, 397-407	1.3	
11	Asymptotic characterisation of nearly-sharp notch root stress fields. <i>International Journal of Fracture</i> , 2004 , 130, 651-666	2.3	37
10	A correlation of the process zone properties in complete, incomplete and almost complete fretting contacts. <i>International Journal of Mechanical Sciences</i> , 2004 , 46, 491-508	5.5	9
9	Flat and rounded fretting contact problems incorporating elastic layers. <i>International Journal of Mechanical Sciences</i> , 2004 , 46, 1635-1657	5.5	17
8	Bounded asymptotic solutions for incomplete contacts in partial slip. <i>International Journal of Solids and Structures</i> , 2004 , 41, 7049-7062	3.1	39
7	A method based on asymptotics for the refined solution of almost complete partial slip contact problems. <i>European Journal of Mechanics, A/Solids</i> , 2003 , 22, 851-859	3.7	13
6	Stress gradient effects in fretting fatigue. <i>Tribology International</i> , 2003 , 36, 71-78	4.9	44
5	Prediction of the slip zone friction coefficient in flat and rounded contact. Wear, 2003, 254, 364-369	3.5	20
4	Stress analysis of V-notches with and without cracks, with application to foreign object damage. <i>Journal of Strain Analysis for Engineering Design</i> , 2003 , 38, 429-441	1.3	25
3	Physical observations of the transient evolution of the porosity distribution during internal erosion using spatial time domain reflectometry. <i>Canadian Geotechnical Journal</i> ,	3.2	2
2	Tribological Performance of Random Sinter Pores vs. Deterministic Laser Surface Textures: An Experimental and Machine Learning Approach		1

Imaging and reconstruction of the cytoarchitecture of axonal fibres: enabling biomedical engineering studies involving brain microstructure

3