Richard Hendricks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5037709/publications.pdf

Version: 2024-02-01

623734 713466 22 513 14 21 citations g-index h-index papers 22 22 22 569 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	A search for varying fundamental constants using hertz-level frequency measurements of cold CH molecules. Nature Communications, 2013, 4, 2600.	12.8	77
2	Coherent manipulation of a ⁴⁰ Ca ⁺ spin qubit in a micro ion trap. Journal of Physics B: Atomic, Molecular and Optical Physics, 2009, 42, 154013.	1.5	41
3	A buffer gas beam source for short, intense and slow molecular pulses. Journal of Modern Optics, 2018, 65, 648-656.	1.3	40
4	Diffusion, thermalization, and optical pumping of YbF molecules in a cold buffer-gas cell. Physical Review A, 2011, 83, .	2.5	36
5	An all-optical ion-loading technique for scalable microtrap architectures. Applied Physics B: Lasers and Optics, 2007, 88, 507-513.	2.2	32
6	Franck–Condon factors and radiative lifetime of the A2Î1/2–X2Σ+ transition of ytterbium monofluoride, YbF. Physical Chemistry Chemical Physics, 2011, 13, 19013.	2.8	31
7	Traveling-wave deceleration of heavy polar molecules in low-field-seeking states. Physical Review A, 2012, 86, .	2.5	29
8	First accuracy evaluation of the NRC-FCs2 primary frequency standard. Metrologia, 2020, 57, 035010.	1.2	29
9	Characterization of a cryogenic beam source for atoms and molecules. Physical Chemistry Chemical Physics, 2013, 15, 12299.	2.8	25
10	Vibrational branching ratios and hyperfine structure of $11\mathrm{BH}$ and its suitability for laser cooling. Frontiers in Physics, $2014, 2, .$	2.1	25
11	Doppler cooling of calcium ions using a dipole-forbidden transition. Physical Review A, 2008, 77, .	2.5	23
12	Doppler-free laser spectroscopy of buffer-gas-cooled molecular radicals. New Journal of Physics, 2009, 11, 123026.	2.9	22
13	Characterising molecules for fundamental physics: an accurate spectroscopic model of methyltrioxorhenium derived from new infrared and millimetre-wave measurements. Physical Chemistry Chemical Physics, 2017, 19, 4576-4587.	2.8	16
14	High-resolution mid-infrared spectroscopy of buffer-gas-cooled methyltrioxorhenium molecules. New Journal of Physics, 2017, 19, 053006.	2.9	15
15	Cs Fountain Clocks for Commercial Realizations—An Improved and Robust Design. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2019, 66, 624-631.	3.0	14
16	Dynamics of axialized laser-cooled ions in a Penning trap. Physical Review A, 2008, 78, .	2.5	12
17	MEASUREMENT OF THE LOWEST MILLIMETER-WAVE TRANSITION FREQUENCY OF THE CH RADICAL. Astrophysical Journal, 2014, 780, 71.	4.5	12
18	A high quality, efficiently coupled microwave cavity for trapping cold molecules. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48, 045001.	1.5	12

#	Article	IF	CITATIONS
19	Laser cooling in the Penning trap: an analytical model for cooling rates in the presence of an axializing field. Journal of Physics B: Atomic, Molecular and Optical Physics, 2008, 41, 035301. Microwave spectroscopy of xmml: math altimg="six" overflow="scroll" and the presence of an axializing and the presence of axializing axializin	1.5	10
20	xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/shall-water.	1.2	10
21	xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/x Operation of caesium fountain frequency standards with remote hydrogen maser references. Metrologia, 2018, 55, 782-788.	1.2	1
22	Measuring atom positions in a microwave cavity to evaluate distributed cavity phase shifts. Metrologia, 2020, 57, 065003.	1.2	1