
Dave D White

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5037599/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An overview of current applications, challenges, and future trends in distributed process-based models in hydrology. Journal of Hydrology, 2016, 537, 45-60.	5.4	349
2	Credibility, salience, and legitimacy of boundary objects: water managers' assessment of a simulation model in an immersive decision theater. Science and Public Policy, 2010, 37, 219-232.	2.4	224
3	A Structural Model of Leisure Constraints Negotiation in Outdoor Recreation. Leisure Sciences, 2008, 30, 342-359.	3.1	200
4	Effects of Place Identity, Place Dependence, and Experience-Use History on Perceptions of Recreation Impacts in a Natural Setting. Environmental Management, 2008, 42, 647-657.	2.7	122
5	Real-world hydrologic assessment of a fully-distributed hydrological model in a parallel computing environment. Journal of Hydrology, 2011, 409, 483-496.	5.4	95
6	Fail-safe and safe-to-fail adaptation: decision-making for urban flooding under climate change. Climatic Change, 2017, 145, 397-412.	3.6	85
7	Stakeholder Analysis for the Food-Energy-Water Nexus in Phoenix, Arizona: Implications for Nexus Governance. Sustainability, 2017, 9, 2204.	3.2	73
8	Water Managers' Perceptions of the Science–Policy Interface in Phoenix, Arizona: Implications for an Emerging Boundary Organization. Society and Natural Resources, 2008, 21, 230-243.	1.9	70
9	Divergent perspectives on water resource sustainability in a public–policy–science context. Environmental Science and Policy, 2009, 12, 1012-1023.	4.9	70
10	Designing collaborative governance: Insights from the drought contingency planning process for the lower Colorado River basin. Environmental Science and Policy, 2019, 91, 39-49.	4.9	59
11	Motive-Based Tourist Market Segmentation: An Application to Native American Cultural Heritage Sites in Arizona, USA. Journal of Heritage Tourism, 2006, 1, 81-99.	2.7	56
12	Comparing actual de facto wastewater reuse and its public acceptability: A three city case study. Sustainable Cities and Society, 2016, 27, 467-474.	10.4	53
13	A metropolitan scale water management analysis of the food-energy-water nexus. Science of the Total Environment, 2020, 701, 134478.	8.0	52
14	Participatory geographic information systems for the co-production of science and policy in an emerging boundary organization. Environmental Science and Policy, 2011, 14, 977-985.	4.9	50
15	Comparing Focus Group and Individual Responses on Sensitive Topics: A Study of Water Decision Makers in a Desert City. Field Methods, 2010, 22, 88-110.	0.8	49
16	Decision-Making under Uncertainty for Water Sustainability and Urban Climate Change Adaptation. Sustainability, 2015, 7, 14761-14784.	3.2	47
17	Connecting Visitors to People and Place: Visitors' Perceptions of Authenticity at Canyon de Chelly National Monument, Arizona. Journal of Heritage Tourism, 2008, 3, 185-202.	2.7	43
18	A modeling approach reveals differences in evapotranspiration and its partitioning in two semiarid ecosystems in Northwest Mexico. Water Resources Research, 2014, 50, 3229-3252.	4.2	43

#	Article	IF	CITATIONS
19	A Bibliometric Analysis of Food-Energy-Water Nexus Literature. Sustainability, 2020, 12, 1112.	3.2	41
20	Wilderness Campers' Perception and Evaluation of Campsite Impacts. Journal of Leisure Research, 2001, 33, 229-250.	1.4	38
21	The Role of Physical Exercise in Wilderness Therapy for Troubled Adolescent Women. Journal of Experiential Education, 2006, 29, 18-37.	1.1	38
22	Urban adaptation to mega-drought: Anticipatory water modeling, policy, and planning for the urban Southwest. Sustainable Cities and Society, 2016, 27, 497-504.	10.4	38
23	An Interpretive Study of Yosemite National Park Visitors' Perspectives Toward Alternative Transportation in Yosemite Valley. Environmental Management, 2007, 39, 50-62.	2.7	36
24	Anger and Sadness: Gendered Emotional Responses to Climate Threats in Four Island Nations. Cross-Cultural Research, 2019, 53, 58-86.	2.7	36
25	Hard paths, soft paths or no paths? Cross-cultural perceptions of water solutions. Hydrology and Earth System Sciences, 2014, 18, 109-120.	4.9	35
26	Water management decision makers' evaluations of uncertainty in a decision support system: the case of WaterSim in the Decision Theater. Journal of Environmental Planning and Management, 2015, 58, 616-630.	4.5	34
27	Soil moisture downscaling across climate regions and its emergent properties. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	33
28	GRACE Detected Rise of Groundwater in the Sahelian Niger River Basin. Journal of Geophysical Research: Solid Earth, 2017, 122, 10,459.	3.4	32
29	Linking stakeholder survey, scenario analysis, and simulation modeling to explore the long-term impacts of regional water governance regimes. Environmental Science and Policy, 2015, 48, 237-249.	4.9	28
30	Anticipatory modeling for water supply sustainability in Phoenix, Arizona. Environmental Science and Policy, 2016, 55, 36-46.	4.9	28
31	Evaluation of Precipitation From EURO ORDEX Regional Climate Simulations in a Small‧cale Mediterranean Site. Journal of Geophysical Research D: Atmospheres, 2018, 123, 1604-1625.	3.3	28
32	Performance of the CORDEXâ€Africa regional climate simulations in representing the hydrological cycle of the Niger River basin. Journal of Geophysical Research D: Atmospheres, 2015, 120, 12425-12444.	3.3	27
33	On the diurnal cycle of surface energy fluxes in the North American monsoon region using the WRFâ€Hydro modeling system. Journal of Geophysical Research D: Atmospheres, 2017, 122, 9024-9049.	3.3	26
34	A metropolitan scale analysis of the impacts of future electricity mix alternatives on the water-energy nexus. Applied Energy, 2019, 256, 113870.	10.1	26
35	Dimensions of alternative transportation experience in Yosemite and Rocky Mountain National Parks. Journal of Transport Geography, 2013, 30, 37-46.	5.0	24
36	Transportation Systems as Cultural Landscapes in National Parks: The Case of Yosemite. Society and Natural Resources, 2008, 21, 797-811.	1.9	23

#	Article	IF	CITATIONS
37	Towards Water Sensitive Cities in the Colorado River Basin: A Comparative Historical Analysis to Inform Future Urban Water Sustainability Transitions. Sustainability, 2017, 9, 761.	3.2	22
38	An Assessment of Public Perceptions of Climate Change Risk in Three Western U.S. Cities. Weather, Climate, and Society, 2019, 11, 449-463.	1.1	22
39	Modeling the distributed effects of forest thinning on the long-term water balance and streamflow extremes for a semi-arid basin in the southwestern US. Hydrology and Earth System Sciences, 2016, 20, 1241-1267.	4.9	21
40	Strategies to Improve and Evaluate Physicsâ€Based Hyperresolution Hydrologic Simulations at Regional Basin Scales. Water Resources Research, 2019, 55, 1129-1152.	4.2	21
41	Toward a resilient organization: analysis of employee skills and organization adaptive traits. Journal of Sustainable Tourism, 2021, 29, 658-677.	9.2	20
42	Framing Water Sustainability in an Environmental Decision Support System. Society and Natural Resources, 2013, 26, 1365-1373.	1.9	19
43	Temporal Downscaling and Statistical Analysis of Rainfall across a Topographic Transect in Northwest Mexico. Journal of Applied Meteorology and Climatology, 2014, 53, 910-927.	1.5	19
44	Research Article: Envisioning the Future of Water Governance: A Survey of Central Arizona Water Decision Makers. Environmental Practice, 2015, 17, 25-35.	0.3	19
45	Socio-hydrology modelling for an uncertain future, with examples from the USA and Canada. Geological Society Special Publication, 2017, 408, 183-199.	1.3	19
46	Land and water use changes in the US–Mexico border region, 1992–2011. Environmental Research Letters, 2018, 13, 114005.	5.2	18
47	Development pathways at the agriculture–urban interface: the case of Central Arizona. Agriculture and Human Values, 2015, 32, 743-759.	3.0	17
48	Utility of coarse and downscaled soil moisture products at Lâ€band for hydrologic modeling at the catchment scale. Geophysical Research Letters, 2012, 39, .	4.0	16
49	Understanding barriers to collaborative governance for the food-energy-water nexus: The case of Phoenix, Arizona. Environmental Science and Policy, 2022, 127, 111-119.	4.9	16
50	A climate change projection for summer hydrologic conditions in a semiarid watershed of central Arizona. Journal of Arid Environments, 2015, 118, 9-20.	2.4	15
51	The Implications of Global Change for the Coâ€Evolution of Argentina's Integrated Energyâ€Waterâ€Land Systems. Earth's Future, 2021, 9, e2020EF001970.	6.3	15
52	Evaluation of Coupled Model Intercomparison Project Phase 5 historical simulations in the Colorado River basin. International Journal of Climatology, 2018, 38, 3861-3877.	3.5	14
53	De jure versus de facto institutions: trust, information, and collective efforts to manage the invasive mile-a-minute weed (Mikania micrantha). International Journal of the Commons, 2017, 11, 171.	1.4	14
54	Cross-Cultural Perceptions of Water Risks and Solutions Across Select Sites. Society and Natural Resources, 2016, 29, 1049-1064.	1.9	12

#	Article	IF	CITATIONS
55	Coâ€Producing Interdisciplinary Knowledge and Action for Sustainable Water Governance: Lessons from the Development of a Water Resources Decision Support System in Pernambuco, Brazil. Global Challenges, 2019, 3, 1800012.	3.6	12
56	Propagation of radar rainfall uncertainties into urban pluvial flood modeling during the North American monsoon. Hydrological Sciences Journal, 2021, 66, 2232-2248.	2.6	12
57	Emotion, Coping, and Climate Change in Island Nations: Implications for Environmental Justice. Environmental Justice, 2017, 10, 102-107.	1.5	11
58	Cities of the Southwest are testbeds for urban resilience. Frontiers in Ecology and the Environment, 2019, 17, 79-80.	4.0	10
59	A social network analysis of collaborative governance for the food-energy-water nexus in Phoenix, AZ, USA. Journal of Environmental Studies and Sciences, 2021, 11, 671-681.	2.0	10
60	On the Role of Serial Correlation and Field Significance in Detecting Changes in Extreme Precipitation Frequency. Water Resources Research, 2021, 57, e2021WR030172.	4.2	10
61	Navigating a Murky Adaptive Comanagement Governance Network: Agua Fria Watershed, Arizona, USA. Ecology and Society, 2013, 18, .	2.3	9
62	Public attitudes toward urban water sustainability transitions: a multi-city survey in the western United States. Sustainability Science, 2019, 14, 1469-1483.	4.9	9
63	Comparison of Local, Regional, and Scaling Models for Rainfall Intensity–Duration–Frequency Analysis. Journal of Applied Meteorology and Climatology, 2020, 59, 1519-1536.	1.5	9
64	Public Understanding of Science in Pacific Northwest Salmon Recovery Policy. Society and Natural Resources, 2006, 19, 305-320.	1.9	8
65	Comparison of Two Watershed Models for Addressing Stakeholder Flood Mitigation Strategies: Case Study of Hurricane Alex in Monterrey, México. Journal of Hydrologic Engineering - ASCE, 2017, 22, .	1.9	8
66	Cross-cultural Knowledge and Acceptance of Wastewater Reclamation and Reuse Processes across Select Sites. Human Organization, 2019, 78, 311-324.	0.3	8
67	Motivators for treated wastewater acceptance across developed and developing contexts. Journal of Water Sanitation and Hygiene for Development, 2019, 9, 1-6.	1.8	8
68	Wastewater Reclamation Holds a Key for Water Sustainability in Future Urban Development of Phoenix Metropolitan Area. Sustainability, 2019, 11, 3537.	3.2	7
69	Closing the Loop of Satellite Soil Moisture Estimation via Scale Invariance of Hydrologic Simulations. Scientific Reports, 2019, 9, 16123.	3.3	6
70	Investigating the value of spatiotemporal resolutions and feedback loops in water-energy nexus modeling. Environmental Modelling and Software, 2021, 145, 105197.	4.5	6
71	Exploring the Social, Psychological, and Behavioral Mechanisms of Heat Vulnerability in the City of Phoenix, AZ. Journal of Extreme Events, 2019, 06, 2050006.	1.1	6
72	Evaluating the effectiveness of land and water integrative practices for achieving water sustainability within the Colorado River Basin: perceptions and indicators. Water International, 2022, 47, 257-277.	1.0	6

#	Article	IF	CITATIONS
73	Climate change as catastrophe or opportunity? Climate change framing and implications for water and climate governance in a drought-prone region. Journal of Environmental Studies and Sciences, 2020, 10, 1-11.	2.0	5
74	Climate Change as an Involuntary Exposure: A Comparative Risk Perception Study from Six Countries across the Global Development Gradient. International Journal of Environmental Research and Public Health, 2020, 17, 1894.	2.6	4
75	Boundary Organizations and Objects Supporting Stakeholders for Decision Making on Sustainable Water Management in Phoenix, Arizona USA. Structure and Function of Mountain Ecosystems in Japan, 2018, , 333-352.	0.5	4
76	Media framing of the Cape Town water crisis: perspectives on the food-energy-water nexus. Regional Environmental Change, 2022, 22, .	2.9	4
77	Common knowledge promotes risk pooling in an experimental economic game. PLoS ONE, 2019, 14, e0220682.	2.5	3
78	Stakeholders and social influence in a shadow network: implications for transitions toward urban water sustainability in the Colorado River basin. Ecology and Society, 2020, 25, .	2.3	3
79	Identifying diverging sustainability meanings for water policy: a Q-method study in Phoenix, Arizona. Water Policy, 2021, 23, 291-309.	1.5	3
80	Investigating Parameter Transferability across Models and Events for a Semiarid Mediterranean Catchment. Water (Switzerland), 2019, 11, 2261.	2.7	2
81	Modeling the Water-Energy Nexus for the Phoenix Active Management Area. , 2020, , .		2
82	An Assessment Framework for Integrated Food-Energy-Water Nexus Governance: Application to the Cases of Phoenix and Cape Town. Society and Natural Resources, 2022, 35, 1102-1122.	1.9	1
83	Stochastic Hybrid Event Based and Continuous Approach to Derive Flood Frequency Curve. Water (Switzerland), 2021, 13, 1931.	2.7	0
84	Resilient Organizations for River Restoration: The Case of Two Colorado River Sub-Basin Recovery Programs. Frontiers in Water, 2021, 3, .	2.3	0
85	Restoration versus transformative adaptation of community drinking water systems after Hurricanes Irma and Maria in Puerto Rico. Journal of Emergency Management, 2021, 19, 25-40.	0.3	0