Clara Deser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5037478/publications.pdf Version: 2024-02-01

CLADA DESED

#	Article	IF	CITATIONS
1	The Community Earth System Model (CESM) Large Ensemble Project: A Community Resource for Studying Climate Change in the Presence of Internal Climate Variability. Bulletin of the American Meteorological Society, 2015, 96, 1333-1349.	3.3	1,723
2	Uncertainty in climate change projections: the role of internal variability. Climate Dynamics, 2012, 38, 527-546.	3.8	1,209
3	The Community Earth System Model Version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001916.	3.8	935
4	Global Warming Pattern Formation: Sea Surface Temperature and Rainfall*. Journal of Climate, 2010, 23, 966-986.	3.2	915
5	The Pacific Decadal Oscillation, Revisited. Journal of Climate, 2016, 29, 4399-4427.	3.2	877
6	Sea Surface Temperature Variability: Patterns and Mechanisms. Annual Review of Marine Science, 2010, 2, 115-143.	11.6	788
7	Surface Climate Variations over the North Atlantic Ocean during Winter: 1900–1989. Journal of Climate, 1993, 6, 1743-1753.	3.2	701
8	Communication of the role of natural variability in future North American climate. Nature Climate Change, 2012, 2, 775-779.	18.8	671
9	North Atlantic climate variability: The role of the North Atlantic Oscillation. Journal of Marine Systems, 2009, 78, 28-41.	2.1	559
10	Arctic Sea Ice Variability in the Context of Recent Atmospheric Circulation Trends. Journal of Climate, 2000, 13, 617-633.	3.2	519
11	Pacific Interdecadal Climate Variability: Linkages between the Tropics and the North Pacific during Boreal Winter since 1900. Journal of Climate, 2004, 17, 3109-3124.	3.2	511
12	Why the Western Pacific Subtropical High Has Extended Westward since the Late 1970s. Journal of Climate, 2009, 22, 2199-2215.	3.2	456
13	The Seasonal Atmospheric Response to Projected Arctic Sea Ice Loss in the Late Twenty-First Century. Journal of Climate, 2010, 23, 333-351.	3.2	447
14	Insights from Earth system model initial-condition large ensembles and future prospects. Nature Climate Change, 2020, 10, 277-286.	18.8	436
15	The Influence of Sea-Surface Temperature on Surface Wind in the Eastern Equatorial Pacific: Seasonal and Interannual Variability. Journal of Climate, 1989, 2, 1492-1499.	3.2	414
16	North Atlantic climate variability: The role of the North Atlantic Oscillation. Journal of Marine Systems, 2010, 79, 231-244.	2.1	396
17	Precipitation variability increases in a warmer climate. Scientific Reports, 2017, 7, 17966.	3.3	395
18	Projecting North American Climate over the Next 50 Years: Uncertainty due to Internal Variability*. Journal of Climate, 2014, 27, 2271-2296.	3.2	393

#	Article	IF	CITATIONS
19	On the teleconnectivity of the "Arctic Oscillation― Geophysical Research Letters, 2000, 27, 779-782.	4.0	373
20	Twentieth century tropical sea surface temperature trends revisited. Geophysical Research Letters, 2010, 37, .	4.0	373
21	The Atmospheric Response to Three Decades of Observed Arctic Sea Ice Loss. Journal of Climate, 2013, 26, 1230-1248.	3.2	314
22	Upper-Ocean Thermal Variations in the North Pacific during 1970–1991. Journal of Climate, 1996, 9, 1840-1855.	3.2	310
23	Asymmetry in the Duration of El Niño and La Niña. Journal of Climate, 2010, 23, 5826-5843.	3.2	301
24	Large-Scale Atmospheric Circulation Features of Warm and Cold Episodes in the Tropical Pacific. Journal of Climate, 1990, 3, 1254-1281.	3.2	300
25	ENSO and Pacific Decadal Variability in the Community Climate System Model Version 4. Journal of Climate, 2012, 25, 2622-2651.	3.2	293
26	A U.S. CLIVAR Project to Assess and Compare the Responses of Global Climate Models to Drought-Related SST Forcing Patterns: Overview and Results. Journal of Climate, 2009, 22, 5251-5272.	3.2	282
27	Slowdown of the Walker circulation driven by tropical Indo-Pacific warming. Nature, 2012, 491, 439-443.	27.8	281
28	A Mechanism for the Recurrence of Wintertime Midlatitude SST Anomalies. Journal of Physical Oceanography, 1995, 25, 122-137.	1.7	270
29	Consistency and discrepancy in the atmospheric response to Arctic sea-ice loss across climate models. Nature Geoscience, 2018, 11, 155-163.	12.9	265
30	Local and remote controls on observed Arctic warming. Geophysical Research Letters, 2012, 39, .	4.0	264
31	Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6. Earth System Dynamics, 2020, 11, 491-508.	7.1	255
32	Amazon River Discharge and Climate Variability: 1903 to 1985. Science, 1989, 246, 101-103.	12.6	254
33	A verification framework for interannual-to-decadal predictions experiments. Climate Dynamics, 2013, 40, 245-272.	3.8	254
34	The Effects of North Atlantic SST and Sea Ice Anomalies on the Winter Circulation in CCM3. Part II: Direct and Indirect Components of the Response. Journal of Climate, 2004, 17, 877-889.	3.2	253
35	Towards predictive understanding of regional climate change. Nature Climate Change, 2015, 5, 921-930.	18.8	253
36	The Role of Ocean–Atmosphere Coupling in the Zonal-Mean Atmospheric Response to Arctic Sea Ice Loss. Journal of Climate, 2015, 28, 2168-2186.	3.2	244

#	Article	IF	CITATIONS
37	Evidence for a Wind-Driven Intensification of the Kuroshio Current Extension from the 1970s to the 1980s. Journal of Climate, 1999, 12, 1697-1706.	3.2	242
38	The Effects of North Atlantic SST and Sea Ice Anomalies on the Winter Circulation in CCM3. Part I: Main Features and Storm Track Characteristics of the Response. Journal of Climate, 2004, 17, 857-876.	3.2	242
39	North Atlantic Winter Climate Regimes: Spatial Asymmetry, Stationarity with Time, and Oceanic Forcing. Journal of Climate, 2004, 17, 1055-1068.	3.2	233
40	The Transient Atmospheric Circulation Response to North Atlantic SST and Sea Ice Anomalies. Journal of Climate, 2007, 20, 4751-4767.	3.2	227
41	On the Relationship between Tropical and North Pacific Sea Surface Temperature Variations. Journal of Climate, 1995, 8, 1677-1680.	3.2	226
42	Atmospheric impacts of Arctic sea-ice loss, 1979–2009: separating forced change from atmospheric internal variability. Climate Dynamics, 2014, 43, 333-344.	3.8	225
43	The Relation between Decadal Variability of Subtropical Mode Water and the North Atlantic Oscillation*. Journal of Climate, 2000, 13, 2550-2569.	3.2	223
44	Understanding the Persistence of Sea Surface Temperature Anomalies in Midlatitudes. Journal of Climate, 2003, 16, 57-72.	3.2	218
45	Subduction of Decadal North Pacific Temperature Anomalies: Observations and Dynamics. Journal of Physical Oceanography, 1999, 29, 1056-1070.	1.7	216
46	Mechanisms of Stratospheric and Tropospheric Circulation Response to Projected Arctic Sea Ice Loss*. Journal of Climate, 2015, 28, 7824-7845.	3.2	204
47	The atmospheric role in the Arctic water cycle: A review on processes, past and future changes, and their impacts. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 586-620.	3.0	197
48	The Reemergence of SST Anomalies in the North Pacific Ocean. Journal of Climate, 1999, 12, 2419-2433.	3.2	195
49	Accelerated Arctic land warming and permafrost degradation during rapid sea ice loss. Geophysical Research Letters, 2008, 35, .	4.0	195
50	Diurnal and semidiurnal variations in global surface wind and divergence fields. Journal of Geophysical Research, 1999, 104, 31109-31125.	3.3	192
51	Forced and Internal Components of Winter Air Temperature Trends over North America during the past 50 Years: Mechanisms and Implications*. Journal of Climate, 2016, 29, 2237-2258.	3.2	189
52	The Northern Hemisphere Extratropical Atmospheric Circulation Response to ENSO: How Well Do We Know It and How Do We Evaluate Models Accordingly?. Journal of Climate, 2017, 30, 5059-5082.	3.2	180
53	Atmosphere–Ocean Interaction on Weekly Timescales in the North Atlantic and Pacific. Journal of Climate, 1997, 10, 393-408.	3.2	179
54	The Polar Amplification Model Intercomparison Project (PAMIP) contribution to CMIP6: investigating the causes and consequences of polar amplification. Geoscientific Model Development, 2019, 12, 1139-1164.	3.6	168

#	Article	IF	CITATIONS
55	Extreme temperatures in Southeast Asia caused by El Niño and worsened by global warming. Nature Communications, 2017, 8, 15531.	12.8	167
56	Evolution of Arctic sea ice concentration trends and the role of atmospheric circulation forcing, 1979–2007. Geophysical Research Letters, 2008, 35, .	4.0	164
57	El Niño events and their relation to the Southern Oscillation: 1925–1986. Journal of Geophysical Research, 1987, 92, 14189-14196.	3.3	161
58	Atmospheric Circulation Trends, 1950–2000: The Relative Roles of Sea Surface Temperature Forcing and Direct Atmospheric Radiative Forcing. Journal of Climate, 2009, 22, 396-413.	3.2	148
59	El Niño and Southern Oscillation (ENSO): A Review. Coral Reefs of the World, 2017, , 85-106.	0.7	147
60	Quantifying the Role of Internal Climate Variability in Future Climate Trends. Journal of Climate, 2015, 28, 6443-6456.	3.2	143
61	North Pacific Decadal Variability in the Community Climate System Model Version 2. Journal of Climate, 2007, 20, 2416-2433.	3.2	141
62	North Pacific Climate Response to Freshwater Forcing in the Subarctic North Atlantic: Oceanic and Atmospheric Pathways. Journal of Climate, 2009, 22, 1424-1445.	3.2	140
63	Tropical Pacific and Atlantic Climate Variability in CCSM3. Journal of Climate, 2006, 19, 2451-2481.	3.2	139
64	An assessment and interpretation of the observed warming of West Antarctica in the austral spring. Climate Dynamics, 2012, 38, 323-347.	3.8	137
65	Does ocean coupling matter for the northern extratropical response to projected Arctic sea ice loss?. Geophysical Research Letters, 2016, 43, 2149-2157.	4.0	133
66	Ubiquity of human-induced changes in climate variability. Earth System Dynamics, 2021, 12, 1393-1411.	7.1	131
67	Will There Be a Significant Change to El Niño in the Twenty-First Century?. Journal of Climate, 2012, 25, 2129-2145.	3.2	129
68	ESMValTool (v1.0) – a community diagnostic and performance metrics tool for routine evaluation of Earth system models in CMIP. Geoscientific Model Development, 2016, 9, 1747-1802.	3.6	127
69	Evolution of the Global Coupled Climate Response to Arctic Sea Ice Loss during 1990–2090 and Its Contribution to Climate Change. Journal of Climate, 2018, 31, 7823-7843.	3.2	126
70	Distinguishing the Roles of Natural and Anthropogenically Forced Decadal Climate Variability. Bulletin of the American Meteorological Society, 2011, 92, 141-156.	3.3	125
71	Climatological Characteristics of Arctic and Antarctic Surface-Based Inversions. Journal of Climate, 2011, 24, 5167-5186.	3.2	124
72	Recent Antarctic sea ice trends in the context of Southern Ocean surface climate variations since 1950. Geophysical Research Letters, 2014, 41, 2419-2426.	4.0	123

#	Article	IF	CITATIONS
73	The role of the North Atlantic Oscillation in European climate projections. Climate Dynamics, 2017, 49, 3141-3157.	3.8	122
74	A Proposed Mechanism for the Asymmetric Duration of El Niño and La Niña. Journal of Climate, 2011, 24, 3822-3829.	3.2	111
75	Reduced Risk of North American Cold Extremes due to Continued Arctic Sea Ice Loss. Bulletin of the American Meteorological Society, 2015, 96, 1489-1503.	3.3	108
76	The Continuum of Hydroclimate Variability in Western North America during the Last Millennium. Journal of Climate, 2013, 26, 5863-5878.	3.2	106
77	The Role of Ocean Heat Transport in the Global Climate Response to Projected Arctic Sea Ice Loss. Journal of Climate, 2016, 29, 6841-6859.	3.2	103
78	Observed Antarctic Interannual Climate Variability and Tropical Linkages. Journal of Climate, 2012, 25, 4048-4066.	3.2	100
79	Estimation of the Surface Heat Flux Response to Sea Surface Temperature Anomalies over the Global Oceans. Journal of Climate, 2005, 18, 4582-4599.	3.2	95
80	Rethinking the Ocean's Role in the Southern Oscillation. Journal of Climate, 2011, 24, 4056-4072.	3.2	95
81	Isolating the Evolving Contributions of Anthropogenic Aerosols and Greenhouse Gases: A New CESM1 Large Ensemble Community Resource. Journal of Climate, 2020, 33, 7835-7858.	3.2	93
82	Nonlinear Controls on the Persistence of La Niña*. Journal of Climate, 2014, 27, 7335-7355.	3.2	91
83	Simulation of the 1976/77 Climate Transition over the North Pacific: Sensitivity to Tropical Forcing. Journal of Climate, 2006, 19, 6170-6180.	3.2	88
84	Evaluating Modes of Variability in Climate Models. Eos, 2014, 95, 453-455.	0.1	84
85	How Well Do We Know ENSO's Climate Impacts over North America, and How Do We Evaluate Models Accordingly?. Journal of Climate, 2018, 31, 4991-5014.	3.2	83
86	Attributing the U.S. Southwest's Recent Shift Into Drier Conditions. Geophysical Research Letters, 2018, 45, 6251-6261.	4.0	82
87	Internal Variability in Projections of Twenty-First-Century Arctic Sea Ice Loss: Role of the Large-Scale Atmospheric Circulation. Journal of Climate, 2014, 27, 527-550.	3.2	81
88	Toward a New Estimate of "Time of Emergence―of Anthropogenic Warming: Insights from Dynamical Adjustment and a Large Initial-Condition Model Ensemble. Journal of Climate, 2017, 30, 7739-7756.	3.2	81
89	Tropical–North Pacific Climate Linkages over the Past Four Centuries*. Journal of Climate, 2005, 18, 5253-5265.	3.2	79
90	Characterizing decadal to centennial variability in the equatorial Pacific during the last millennium. Geophysical Research Letters, 2013, 40, 3450-3456.	4.0	79

#	Article	IF	CITATIONS
91	Distinguishing Stratospheric Sudden Warmings from ENSO as Key Drivers of Wintertime Climate Variability over the North Atlantic and Eurasia. Journal of Climate, 2017, 30, 1959-1969.	3.2	77
92	Tropical climate responses to projected Arctic and Antarctic sea-ice loss. Nature Geoscience, 2020, 13, 275-281.	12.9	76
93	The importance of ENSO phase during volcanic eruptions for detection and attribution. Geophysical Research Letters, 2016, 43, 2851-2858.	4.0	75
94	Pacific thermocline bridge revisited. Geophysical Research Letters, 1999, 26, 1329-1332.	4.0	74
95	On the Reemergence of North Atlantic SST Anomalies. Journal of Climate, 2002, 15, 2707-2712.	3.2	74
96	Predictability of 2-year La Niña events in a coupled general circulation model. Climate Dynamics, 2017, 49, 4237-4261.	3.8	74
97	Atmospheric forcing of Fram Strait sea ice export: a closer look. Climate Dynamics, 2010, 35, 1349-1360.	3.8	71
98	The Influence of Sea Surface Temperature Gradients on Stratiform Cloudiness along the Equatorial Front in the Pacific Ocean. Journal of Climate, 1993, 6, 1172-1180.	3.2	70
99	Summer Sea Surface Temperature Conditions in the North Atlantic and Their Impact upon the Atmospheric Circulation in Early Winter. Journal of Climate, 2004, 17, 3349-3363.	3.2	70
100	Internal Variability and Regional Climate Trends in an Observational Large Ensemble. Journal of Climate, 2018, 31, 6783-6802.	3.2	69
101	Earth System Model Evaluation Tool (ESMValTool) v2.0 – an extended set of large-scale diagnostics for quasi-operational and comprehensive evaluation of Earth system models in CMIP. Geoscientific Model Development, 2020, 13, 3383-3438.	3.6	69
102	Investigating the Impact of Reemerging Sea Surface Temperature Anomalies on the Winter Atmospheric Circulation over the North Atlantic. Journal of Climate, 2007, 20, 3510-3526.	3.2	68
103	Pacific Ocean Variability Influences the Time of Emergence of a Seasonally Iceâ€Free Arctic Ocean. Geophysical Research Letters, 2019, 46, 2222-2231.	4.0	68
104	Arctic Inversion Strength in Climate Models. Journal of Climate, 2011, 24, 4733-4740.	3.2	67
105	Robust but weak winter atmospheric circulation response to future Arctic sea ice loss. Nature Communications, 2022, 13, 727.	12.8	67
106	Decadal variations in Labrador Sea ice cover and North Atlantic sea surface temperatures. Journal of Geophysical Research, 2002, 107, 3-1.	3.3	66
107	Anatomy and Decadal Evolution of the Pacific Subtropical–Tropical Cells (STCs)*. Journal of Climate, 2005, 18, 3739-3758.	3.2	63
108	Diurnal and Semidiurnal Variations of the Surface Wind Field over the Tropical Pacific Ocean. Journal of Climate, 1998, 11, 1730-1748.	3.2	61

#	Article	IF	CITATIONS
109	The relative contributions of tropical Pacific sea surface temperatures and atmospheric internal variability to the recent global warming hiatus. Geophysical Research Letters, 2017, 44, 7945-7954.	4.0	61
110	Connecting tropical climate change with Southern Ocean heat uptake. Geophysical Research Letters, 2017, 44, 9449-9457.	4.0	61
111	Projected changes in regional climate extremes arising from Arctic sea ice loss. Environmental Research Letters, 2015, 10, 084006.	5.2	59
112	An "Observational Large Ensemble―to Compare Observed and Modeled Temperature Trend Uncertainty due to Internal Variability. Journal of Climate, 2017, 30, 7585-7598.	3.2	57
113	Evolutionary Structure of the Eastern Pacific Double ITCZ Based on Satellite Moisture Profile Retrievals. Journal of Climate, 2001, 14, 743-751.	3.2	56
114	Equatorial signatures of the Pacific Meridional Modes: Dependence on mean climate state. Geophysical Research Letters, 2014, 41, 568-574.	4.0	56
115	Uncertainty in future regional sea level rise due to internal climate variability. Geophysical Research Letters, 2013, 40, 2768-2772.	4.0	53
116	Fast Response of the Tropics to an Abrupt Loss of Arctic Sea Ice via Ocean Dynamics. Geophysical Research Letters, 2018, 45, 4264-4272.	4.0	53
117	Pattern Recognition Methods to Separate Forced Responses from Internal Variability in Climate Model Ensembles and Observations. Journal of Climate, 2020, 33, 8693-8719.	3.2	53
118	Human Influence on Winter Precipitation Trends (1921–2015) over North America and Eurasia Revealed by Dynamical Adjustment. Geophysical Research Letters, 2019, 46, 3426-3434.	4.0	52
119	ENSO and Pacific Decadal Variability in the Community Earth System Model Version 2. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002022.	3.8	52
120	Evolving Impacts of Multiyear La Niña Events on Atmospheric Circulation and U.S. Drought. Geophysical Research Letters, 2017, 44, 11,614.	4.0	51
121	Correlation Structure of the El Niño/Southern Oscillation Phenomenon. Journal of Climate, 1988, 1, 609-625.	3.2	50
122	Future risk of record-breaking summer temperatures and its mitigation. Climatic Change, 2018, 146, 363-375.	3.6	50
123	"Certain Uncertainty: The Role of Internal Climate Variability in Projections of Regional Climate Change and Risk Management― Earth's Future, 2020, 8, e2020EF001854.	6.3	50
124	Uncertainty in Climate Change Projections of the Hadley Circulation: The Role of Internal Variability. Journal of Climate, 2013, 26, 7541-7554.	3.2	49
125	Decadal predictability of late winter precipitation in western Europe through an ocean–jet stream connection. Nature Geoscience, 2019, 12, 613-619.	12.9	48
126	Effects of stratospheric variability on El Niño teleconnections. Environmental Research Letters, 2015, 10. 124021.	5.2	47

#	Article	IF	CITATIONS
127	Modeled and Observed Multidecadal Variability in the North Atlantic Jet Stream and Its Connection to Sea Surface Temperatures. Journal of Climate, 2018, 31, 8313-8338.	3.2	47
128	Evaluation of Leading Modes of Climate Variability in the CMIP Archives. Journal of Climate, 2020, 33, 5527-5545.	3.2	47
129	Diagnosis of the Surface Momentum Balance over the Tropical Pacific Ocean. Journal of Climate, 1993, 6, 64-74.	3.2	44
130	Decadal–Interdecadal Climate Variability over Antarctica and Linkages to the Tropics: Analysis of Ice Core, Instrumental, and Tropical Proxy Data. Journal of Climate, 2012, 25, 7421-7441.	3.2	44
131	Tropically driven and externally forced patterns of Antarctic sea ice change: reconciling observed and modeled trends. Climate Dynamics, 2018, 50, 4599-4618.	3.8	43
132	Comparing the Impacts of Tropical SST Variability and Polar Stratospheric Ozone Loss on the Southern Ocean Westerly Winds*. Journal of Climate, 2015, 28, 9350-9372.	3.2	38
133	A 2 Year Forecast for a 60–80% Chance of La Niña in 2017–2018. Geophysical Research Letters, 2017, 44, 11,624.	4.0	37
134	Simulated Siberian snow cover response to observed Arctic sea ice loss, 1979–2008. Journal of Geophysical Research, 2012, 117, .	3.3	35
135	Nonlinear Response of Extreme Precipitation to Warming in CESM1. Geophysical Research Letters, 2019, 46, 10551-10560.	4.0	35
136	Low-Frequency Pycnocline Variability in the Northeast Pacific. Journal of Physical Oceanography, 2005, 35, 1403-1420.	1.7	33
137	Removing Circulation Effects to Assess Central U.S. Landâ€Atmosphere Interactions in the CESM Large Ensemble. Geophysical Research Letters, 2017, 44, 9938-9946.	4.0	33
138	North Atlantic Oscillation (NAO). , 2019, , 447-454.		33
139	The Impact of Cloud Radiative Feedback, Remote ENSO Forcing, and Entrainment on the Persistence of North Pacific Sea Surface Temperature Anomalies. Journal of Climate, 2006, 19, 6243-6261.	3.2	30
140	Zonal mean and shift modes of historical climate response to evolving aerosol distribution. Science Bulletin, 2021, 66, 2405-2411.	9.0	30
141	Wind-Driven Thermocline Variability in the Pacific: A Model–Data Comparison. Journal of Climate, 2002, 15, 829-845.	3.2	29
142	NAO influence on sea ice extent in the Eurasian coastal region. Geophysical Research Letters, 2002, 29, 10-1-10-4.	4.0	29
143	The Atmospheric Response to Projected Terrestrial Snow Changes in the Late Twenty-First Century. Journal of Climate, 2010, 23, 6430-6437.	3.2	29
144	Spurious Late Historicalâ€Era Warming in CESM2 Driven by Prescribed Biomass Burning Emissions. Geophysical Research Letters, 2022, 49, .	4.0	29

#	Article	IF	CITATIONS
145	A Climatology of Diurnal and Semidiurnal Surface Wind Variations over the Tropical Pacific Ocean Based on the Tropical Atmosphere Ocean Moored Buoy Array. Journal of Climate, 2008, 21, 593-607.	3.2	28
146	Atmospheric and Oceanic Origins of Tropical Precipitation Variability. Journal of Climate, 2017, 30, 3197-3217.	3.2	28
147	The Atmospheric Response to Realistic Reduced Summer Arctic Sea Ice Anomalies. Geophysical Monograph Series, 0, , 91-110.	0.1	26
148	Attribution of Climate Change in the Presence of Internal Variability. World Scientific Series on Asia-Pacific Weather and Climate, 2015, , 1-29.	0.2	26
149	Reconciling the observed and modeled Southern Hemisphere circulation response to volcanic eruptions. Geophysical Research Letters, 2016, 43, 7259-7266.	4.0	25
150	The Effect of Arctic Sea Ice Loss on the Hadley Circulation. Geophysical Research Letters, 2019, 46, 963-972.	4.0	23
151	Two-Year Dynamical Predictions of ENSO Event Duration during 1954–2015. Journal of Climate, 2021, 34, 4069-4087.	3.2	23
152	Global Coupled Climate Response to Polar Sea Ice Loss: Evaluating the Effectiveness of Different Iceâ€Constraining Approaches. Geophysical Research Letters, 2020, 47, e2019GL085788.	4.0	22
153	Coupled atmosphere–mixed layer ocean response to ocean heat flux convergence along the Kuroshio Current Extension. Climate Dynamics, 2011, 36, 2295-2312.	3.8	20
154	Is There a Tropical Response to Recent Observed Southern Ocean Cooling?. Geophysical Research Letters, 2021, 48, e2020GL091235.	4.0	20
155	Climatological Characteristics of Typical Daily Precipitation. Journal of Climate, 2017, 30, 5985-6003.	3.2	19
156	Defining the Internal Component of Atlantic Multidecadal Variability in a Changing Climate. Geophysical Research Letters, 2021, 48, e2021GL095023.	4.0	19
157	Tropical Atmospheric Variability Forced by Oceanic Internal Variability. Journal of Climate, 2007, 20, 765-771.	3.2	18
158	Local and Nonlocal Land Surface Influence in European Heatwave Initial Condition Ensembles. Geophysical Research Letters, 2019, 46, 14082-14092.	4.0	17
159	Recent Trends in Arctic Sea Ice and the Evolving Role of Atmospheric Circulation Forcing, 1979-2007. Geophysical Monograph Series, 0, , 7-26.	0.1	16
160	Anthropogenic Aerosols Dominate Forced Multidecadal Sahel Precipitation Change through Distinct Atmospheric and Oceanic Drivers. Journal of Climate, 2020, 33, 10187-10204.	3.2	16
161	Decadal variability in the northeast Pacific in a physicalâ€ecosystem model: Role of mixed layer depth and trophic interactions. Journal of Geophysical Research, 2008, 113, .	3.3	15
162	On the Persistence of Cold-Season SST Anomalies Associated with the Annular Modes. Journal of Climate, 2011, 24, 2500-2515.	3.2	14

#	Article	IF	CITATIONS
163	Tree-ring reconstructed temperature index for coastal northern Japan: implications for western North Pacific variability. International Journal of Climatology, 2015, 35, 3713-3720.	3.5	14
164	Climate forcings and climate sensitivities diagnosed from atmospheric global circulation models. Climate Dynamics, 2010, 35, 1461-1475.	3.8	12
165	The inherent uncertainty of precipitation variability, trends, and extremes due to internal variability, with implications for Western US water resources. Journal of Climate, 2021, , 1-46.	3.2	12
166	An overview of decadal-scale sea surface temperature variability in the observational record. Past Global Change Magazine, 2017, 25, 2-6.	0.1	12
167	Uncertainty in the Winter Tropospheric Response to Arctic Sea Ice Loss: The Role of Stratospheric Polar Vortex Internal Variability. Journal of Climate, 2022, 35, 3109-3130.	3.2	12
168	Model Biases in the Simulation of the Springtime North Pacific ENSO Teleconnection. Journal of Climate, 2020, 33, 9985-10002.	3.2	9
169	Separating the Influences of Low-Latitude Warming and Sea Ice Loss on Northern Hemisphere Climate Change. Journal of Climate, 2022, 35, 2327-2349.	3.2	9
170	Less Surface Sea Ice Melt in the CESM2 Improves Arctic Sea Ice Simulation With Minimal Nonâ€Polar Climate Impacts. Journal of Advances in Modeling Earth Systems, 2022, 14, .	3.8	9
171	The Equatorial Pacific Cold Tongue Bias in CESM1 and Its Influence on ENSO Forecasts. Journal of Climate, 2022, 35, 3261-3277.	3.2	8
172	Northern Hemisphere climate variability during winter: Looking back on the work of Felix Exner. Meteorologische Zeitschrift, 2015, 24, 113-118.	1.0	6
173	How well do we know the surface impact of sudden stratospheric warmings?. Geophysical Research Letters, 2021, 48, e2021GL095493.	4.0	5
174	Historical and Future Roles of Internal Atmospheric Variability in Modulating Summertime Greenland Ice Sheet Melt. Geophysical Research Letters, 2020, 47, e2019GL086913.	4.0	2
175	Changes in Variability Associated with Climate Change. , 2013, , 249-271.		2
176	Contrary Responses of the Gulf Stream and the Kuroshio to Arctic Sea Ice Loss. Atmosphere, 2022, 13, 514.	2.3	1