
Masanori Tamaoki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5036997/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ethylene Inhibits Abscisic Acid-Induced Stomatal Closure in Arabidopsis. Plant Physiology, 2005, 138, 2337-2343.	2.3	347
2	Complete Genomic Structure of the Bloom-forming Toxic Cyanobacterium Microcystis aeruginosa NIES-843. DNA Research, 2007, 14, 247-256.	1.5	253
3	Molecular Mechanisms of Selenium Tolerance and Hyperaccumulation in <i>Stanleya pinnata</i> . Plant Physiology, 2010, 153, 1630-1652.	2.3	210
4	Spermidine Synthase Genes Are Essential for Survival of Arabidopsis. Plant Physiology, 2004, 135, 1565-1573.	2.3	209
5	Cytokinin and auxin inhibit abscisic acid-induced stomatal closure by enhancing ethylene production in Arabidopsis. Journal of Experimental Botany, 2006, 57, 2259-2266.	2.4	189
6	Transcriptome analyses give insights into seleniumâ€stress responses and selenium tolerance mechanisms in Arabidopsis. Physiologia Plantarum, 2008, 132, 236-253.	2.6	164
7	DEAR1, a transcriptional repressor of DREB protein that mediates plant defense and freezing stress responses in Arabidopsis. Journal of Plant Research, 2009, 122, 633-643.	1.2	154
8	Cooperative Ethylene and Jasmonic Acid Signaling Regulates Selenite Resistance in Arabidopsis Â. Plant Physiology, 2008, 146, 1219-1230.	2.3	152
9	Alteration of Hormone Levels in Transgenic Tobacco Plants Overexpressing the Rice Homeobox Gene OSH1. Plant Physiology, 1998, 116, 471-476.	2.3	127
10	The Arabidopsis Gene CAD1 Controls Programmed Cell Death in the Plant Immune System and Encodes a Protein Containing a MACPF Domain. Plant and Cell Physiology, 2005, 46, 902-912.	1.5	119
11	Cytosolic Dehydroascorbate Reductase is Important for Ozone Tolerance in Arabidopsisthaliana. Plant and Cell Physiology, 2006, 47, 304-308.	1.5	111
12	Light-controlled expression of a gene encoding l-galactono-Î ³ -lactone dehydrogenase which affects ascorbate pool size in Arabidopsis thaliana. Plant Science, 2003, 164, 1111-1117.	1.7	108
13	Transcriptome analysis of O3-exposed Arabidopsis reveals that multiple signal pathways act mutually antagonistically to induce gene expression. Plant Molecular Biology, 2003, 53, 443-456.	2.0	97
14	Ethylene and salicylic acid control glutathione biosynthesis in ozoneâ€exposed <i>Arabidopsis thaliana</i> . Physiologia Plantarum, 2009, 136, 284-298.	2.6	95
15	The Integral Membrane Protein SEN1 is Required for Symbiotic Nitrogen Fixation in Lotus japonicus Nodules. Plant and Cell Physiology, 2012, 53, 225-236.	1.5	95
16	Glycosylation of bisphenol A by freshwater microalgae. Chemosphere, 2007, 69, 934-941.	4.2	94
17	Salicylic Acid Accumulation Under O3 Exposure is Regulated by Ethylene in Tobacco Plants. Plant and Cell Physiology, 2005, 46, 1062-1072.	1.5	90
18	Monitoring the escape of transgenic oilseed rape around Japanese ports and roadsides. Environmental Biosafety Research, 2005, 4, 217-222.	1.1	87

Masanori Tamaoki

#	Article	IF	CITATIONS
19	The role of phytohormone signaling in ozone-induced cell death in plants. Plant Signaling and Behavior, 2008, 3, 166-174.	1.2	73
20	The expression of tobacco knotted1-type class 1 homeobox genes correspond to regions predicted by the cytohistological zonation model. Plant Journal, 1999, 18, 337-347X.	2.8	71
21	Alternative RNA products from a rice homeobox gene. Plant Journal, 1995, 7, 927-938.	2.8	70
22	Differential ozone sensitivity among Arabidopsis accessions and its relevance to ethylene synthesis. Planta, 2003, 216, 552-560.	1.6	70
23	Processing of Bisphenol A by Plant Tissues: Glucosylation by Cultured BY-2 Cells and Glucosylation/Translocation by Plants of Nicotiana tabacum. Plant and Cell Physiology, 2002, 43, 1036-1042.	1.5	62
24	Detection of feral transgenic oilseed rape with multiple-herbicide resistance in Japan. Environmental Biosafety Research, 2006, 5, 77-87.	1.1	62
25	The Arabidopsis sweetie mutant is affected in carbohydrate metabolism and defective in the control of growth, development and senescence. Plant Journal, 2008, 55, 665-686.	2.8	57
26	Isolation of an Ozone-Sensitive and Jasmonate-Semi-Insensitive Arabidopsis Mutant (oji1). Plant and Cell Physiology, 2003, 44, 1301-1310.	1.5	55
27	The Conserved KNOX Domain Mediates Specificity of Tobacco KNOTTED1-Type Homeodomain Proteins. Plant Cell, 1999, 11, 1419-1431.	3.1	52
28	Effects of environmental radiation on testes and spermatogenesis in wild large Japanese field mice (Apodemus speciosus) from Fukushima. Scientific Reports, 2016, 6, 23601.	1.6	46
29	Monitoring the occurrence of genetically modified oilseed rape growing along a Japanese roadside: 3-year observations. Environmental Biosafety Research, 2009, 8, 33-44.	1.1	46
30	Ozone-Induced Rice Grain Yield Loss Is Triggered via a Change in Panicle Morphology That Is Controlled by ABERRANT PANICLE ORGANIZATION 1 Gene. PLoS ONE, 2015, 10, e0123308.	1.1	46
31	Seeds of a Possible Natural Hybrid between Herbicide-Resistant Brassica napus and Brassica rapa Detected on a Riverbank in Japan. GM Crops, 2011, 2, 201-210.	1.8	45
32	Disruption of a Gene Encoding C4-Dicarboxylate Transporter-Like Protein Increases Ozone Sensitivity Through Deregulation of the Stomatal Response in Arabidopsis thaliana. Plant and Cell Physiology, 2008, 49, 2-10.	1.5	44
33	The isochorismate pathway is negatively regulated by salicylic acid signaling in O3-exposed Arabidopsis. Planta, 2007, 226, 1277-1285.	1.6	43
34	A method for diagnosis of plant environmental stresses by gene expression profiling using a cDNA macroarray. Environmental Pollution, 2004, 131, 137-145.	3.7	35
35	New insights into the roles of ethylene and jasmonic acid in the acquisition of selenium resistance in plants. Plant Signaling and Behavior, 2008, 3, 865-867.	1.2	34
36	Improvement in ozone tolerance of tobacco plants with an antisense DNA for 1-aminocyclopropane-1-carboxylate synthase. Plant, Cell and Environment, 2002, 25, 727-735.	2.8	33

Masanori Tamaoki

#	Article	IF	CITATIONS
37	Two Types of Pea Leghemoglobin Genes Showing Different O2-Binding Affinities and Distinct Patterns of Spatial Expression in Nodules. Plant Physiology, 2001, 125, 641-651.	2.3	32
38	cDNA microarray assessment for ozone-stressed Arabidopsis thaliana. Environmental Pollution, 2002, 117, 191-194.	3.7	31
39	Rapeseed species and environmental concerns related to loss of seeds of genetically modified oilseed rape in Japan. GM Crops, 2010, 1, 143-156.	1.8	31
40	Expression of Genes Encoding Late Nodulins Characterized by a Putative Signal Peptide and Conserved Cysteine Residues Is Reduced in Ineffective Pea Nodules. Molecular Plant-Microbe Interactions, 2002, 15, 129-137.	1.4	29
41	SAZ, a new SUPERMAN-like protein, negatively regulates a subset of ABA-responsive genes in Arabidopsis. Molecular Genetics and Genomics, 2008, 279, 183-192.	1.0	25
42	Expression and functions of myo-inositol monophosphatase family genes in seed development of Arabidopsis. Journal of Plant Research, 2011, 124, 385-394.	1.2	25
43	Effects of ozone exposure on the gene expression of ethylene biosynthetic enzymes in tomato leaves. Plant Physiology and Biochemistry, 2001, 39, 993-998.	2.8	22
44	Expression of nodulin genes in plant-determined ineffective nodules of pea. Plant Molecular Biology, 1995, 28, 1027-1038.	2.0	19
45	Elevated Ozone Deteriorates Grain Quality of Japonica Rice cv. Koshihikari, Even if it Does Not Cause Yield Reduction. Rice, 2016, 9, 7.	1.7	19
46	Ozone-Sensitive Arabidopsis Mutants with Deficiencies in Photorespiratory Enzymes. Plant and Cell Physiology, 2017, 58, 914-924.	1.5	18
47	Genetic Diversity of Invasive Spartina alterniflora Loisel. (Poaceae) Introduced Unintentionally Into Japan and Its Invasion Pathway. Frontiers in Plant Science, 2020, 11, 556039.	1.7	18
48	Quantitative trait locus analyses of ozone-induced grain yield reduction in rice. Environmental and Experimental Botany, 2013, 88, 100-106.	2.0	17
49	Expression of rice OSH1 gene is localized in developing vascular strands and its ectopic expression in transgenic rice causes altered morphology of leaf. Plant Cell Reports, 1995, 14, 555-9.	2.8	16
50	Fixed-route monitoring and a comparative study of the occurrence of herbicide-resistant oilseed rape (<i>Brassica napus</i> L.) along a Japanese roadside. GM Crops and Food, 2016, 7, 20-37.	2.0	16
51	An unidentified ultraviolet-B-specific photoreceptor mediates transcriptional activation of the cyclobutane pyrimidine dimer photolyase gene in plants. Planta, 2008, 229, 25-36.	1.6	15
52	Molecular Mechanisms of Selenium Responses and Resistance in Plants. Plant Ecophysiology, 2017, , 35-51.	1.5	15
53	Untangling radiocesium dynamics of forest-stream ecosystems: A review of Fukushima studies in the decade after the accident. Environmental Pollution, 2021, 288, 117744.	3.7	13
54	Compensation for lack of a cytosolic ascorbate peroxidase in an Arabidopsis mutant by activation of multiple antioxidative systems. Plant Science, 2004, 166, 1547-1554.	1.7	12

#	Article	IF	CITATIONS
55	137Cs concentrations in foliose lichens within Tsukuba-city as a reflection of radioactive fallout from the Fukushima Dai-ichi Nuclear Power Plant accident. Journal of Environmental Radioactivity, 2015, 141, 38-43.	0.9	12
56	The homeobox gene NTH23 of tobacco is expressed in the basal region of leaf primordia. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1998, 1399, 203-208.	2.4	11
57	Arabidopsis CAD1 negatively controls plant immunity mediated by both salicylic acid-dependent and -independent signaling pathways. Plant Science, 2008, 175, 604-611.	1.7	11
58	Photosynthesis and growth of <i>Ulva ohnoi</i> and <i>Ulva pertusa</i> (Ulvophyceae) under high light and high temperature conditions, and implications for green tide in Japan. Phycological Research, 2020, 68, 152-160.	0.8	11
59	Comparison of Potentials of Higher Plants for Phytoremediation of Radioactive Cesium from Contaminated Soil. Environmental Control in Biology, 2016, 54, 65-69.	0.3	10
60	Classification of the spermatogenic cycle, seasonal changes of seminiferous tubule morphology and estimation of the breeding season of the large Japanese field mouse (<i>Apodemus) Tj ETQq0 0 0 rgBT /Ove 2015, 77, 799-807.</i>	rlock 10 T	f 50 542 Td (
61	Impact of sea spider parasitism on host clams: relationships between burial patterns and parasite loads, somatic condition and survival of host. Hydrobiologia, 2016, 770, 15-26.	1.0	8
62	Characterization of hybrids between wild and genetically modified glyphosate-tolerant soybeans. Plant Biotechnology, 2013, 30, 335-345.	0.5	8
63	Development of Visible Markers for Transgenic Plants and their Availability for Environmental Risk Assessment. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2006, 61, 377-386.	0.6	6
64	Alteration ofArabidopsis SLAC1promoter and its association with natural variation in drought tolerance. Plant Signaling and Behavior, 2015, 10, e989761.	1.2	6
65	Genetic Population Structure of Wild Boars (Sus scrofa) in Fukushima Prefecture. Animals, 2022, 12, 491.	1.0	6
66	18S analysis of the taxonomic position of an endoparasitic pycnogonid, Nymphonella tapetis(Arthropoda: Pycnogonida:ÂAscorhynchidae). Journal of Crustacean Biology, 2015, 35, 491-494.	0.3	5
67	Concentration of radioactive materials in small mammals collected from a restricted area in Fukushima, Japan since 2012. Ecological Research, 2019, 34, 7-7.	0.7	5
68	Dorsoventral pattern formation of tobacco leaf involves spatial expression of a tobacco homeobox gene, NTH15 Genes and Genetic Systems, 1997, 72, 1-8.	0.2	4
69	Occurrence of spilled genetically modified oilseed rape growing along a Japanese roadside over 10 years. Weed Biology and Management, 2020, 20, 139-146.	0.6	4
70	Monitoring of radioactive cesium in wild boars captured inside the difficult-to-return zone in Fukushima Prefecture over a 5-year period. Scientific Reports, 2022, 12, 5667.	1.6	4
71	Two Transcripts with Different Sizes Derived from a Rice Homeobox Gene,OSH1. Biochemical and Biophysical Research Communications, 1996, 221, 408-413.	1.0	3
72	O-2 Activates Leaf Injury, Ethylene and Salicylic Acid Synthesis, and the Expression of O3-Induced Genes in O3-Exposed Tobacco. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2006, 61, 856-864.	0.6	3

MASANORI TAMAOKI

#	Article	IF	CITATIONS
73	Impact of sea spider parasitism on host clams: susceptibility and intensity-dependent mortality. Journal of the United Kingdom, 2018, 98, 735-742.	0.4	3
74	Abnormal cell divisions in leaf primordia caused by the expression of the rice homeobox gene. Molecular Genetics and Genomics, 1996, 251, 13.	2.4	3
75	Highâ€ŧhroughput capture of nucleotide sequence polymorphisms in three <i>Brassica</i> species (Brassicaceae) using DNA microarrays. American Journal of Botany, 2012, 99, e94-6.	0.8	2
76	Genomic Structure of the Cucumber CPD Photolyase Gene. OMICS A Journal of Integrative Biology, 2003, 7, 203-209.	1.0	1
77	Comparison of 0.1 M Stable CsCl and 1 M NH ₄ NO ₃ as an Extraction Reagent to Evaluate Cs-137 Mobility in Soils. Analytical Sciences, 2019, 35, 153-158.	0.8	1
78	The Conserved KNOX Domain Mediates Specificity of Tobacco KNOTTED1-Type Homeodomain Proteins. Plant Cell, 1999, 11, 1419.	3.1	0
79	Novel Marker Gene for Assessment of Behavior of Transgenic Plants in the Field. Plant Biotechnology, 2003, 20, 225-227.	0.5	0
80	Isolation and characterization of 25 polymorphic microsatellites of the large Japanese wood mouse (Apodemus speciosus). Conservation Genetics Resources, 2013, 5, 1001-1003.	0.4	0
81	Temporal Changes in the Parasite Fauna of the Large Japanese Field Mouse <i>Apodemus speciosus</i> in the Radioactive Contaminated Zone of Fukushima. Japanese Journal of Zoo and Wildlife Medicine, 2021, 26, 1-5.	0.2	0
82	Isolation of O\$3\$-Response Genes from Arabidopsis thaliana Using cDNA Macroarray. Methods in Molecular Biology, 2008, 410, 29-42.	0.4	0