Kaiyang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/503684/publications.pdf

Version: 2024-02-01

236925 233421 2,124 58 25 45 citations h-index g-index papers 59 59 59 2896 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Recent Advances in Perovskite Micro―and Nanolasers. Advanced Optical Materials, 2018, 6, 1800278.	7.3	149
2	Lead Halide Perovskite Nanostructures for Dynamic Color Display. ACS Nano, 2018, 12, 8847-8854.	14.6	142
3	Highly Reproducible Organometallic Halide Perovskite Microdevices based on Topâ€Down Lithography. Advanced Materials, 2017, 29, 1606205.	21.0	138
4	Twoâ€Photon Pumped CH ₃ NH ₃ PbBr ₃ Perovskite Microwire Lasers. Advanced Optical Materials, 2016, 4, 472-479.	7.3	134
5	Unidirectional Lasing Emissions from CH ₃ NH ₃ PbBr ₃ Perovskite Microdisks. ACS Photonics, 2016, 3, 1125-1130.	6.6	106
6	All-optical control of lead halide perovskite microlasers. Nature Communications, 2019, 10, 1770.	12.8	104
7	Formation of Lead Halide Perovskite Based Plasmonic Nanolasers and Nanolaser Arrays by Tailoring the Substrate. ACS Nano, 2018, 12, 3865-3874.	14.6	81
8	Micro―and Nanostructured Lead Halide Perovskites: From Materials to Integrations and Devices. Advanced Materials, 2021, 33, e2000306.	21.0	75
9	Deep surface passivation for efficient and hydrophobic perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 2919-2927.	10.3	74
10	Tailoring the Performances of Lead Halide Perovskite Devices with Electronâ€Beam Irradiation. Advanced Materials, 2017, 29, 1701636.	21.0	72
11	Solutionâ€Phase Synthesis of Cesium Lead Halide Perovskite Microrods for Highâ€Quality Microlasers and Photodetectors. Advanced Optical Materials, 2017, 5, 1700023.	7.3	66
12	Ultrashort laser pulse doubling by metal-halide perovskite multiple quantum wells. Nature Communications, 2020, 11, 3361.	12.8	57
13	High-Density and Uniform Lead Halide Perovskite Nanolaser Array on Silicon. Journal of Physical Chemistry Letters, 2016, 7, 2549-2555.	4.6	54
14	Formation of single-mode laser in transverse plane of perovskite microwire via micromanipulation. Optics Letters, 2016, 41, 555.	3.3	52
15	Room temperature three-photon pumped CH3NH3PbBr3 perovskite microlasers. Scientific Reports, 2017, 7, 45391.	3.3	48
16	Facile deposition of high-quality Cs2AgBiBr6 films for efficient double perovskite solar cells. Science China Materials, 2020, 63, 1518-1525.	6.3	41
17	Whispering-gallery-mode based CH ₃ NH ₃ PbBr ₃ perovskite microrod lasers with high quality factors. Materials Chemistry Frontiers, 2017, 1, 477-481.	5.9	39
18	Postsynthetic and Selective Control of Lead Halide Perovskite Microlasers. Journal of Physical Chemistry Letters, 2016, 7, 3886-3891.	4.6	37

#	Article	IF	CITATIONS
19	Effective Surface Ligand-Concentration Tuning of Deep-Blue Luminescent FAPbBr ₃ Nanoplatelets with Enhanced Stability and Charge Transport. ACS Applied Materials & Diterfaces, 2020, 12, 31863-31874.	8.0	37
20	Darkâ€Field Sensors based on Organometallic Halide Perovskite Microlasers. Advanced Materials, 2018, 30, e1801481.	21.0	36
21	Single Nanoparticle Detection Using Far-field Emission of Photonic Molecule around the Exceptional Point. Scientific Reports, 2015, 5, 11912.	3.3	35
22	Tunable perovskite microdisk lasers. Nanoscale, 2016, 8, 8717-8721.	5.6	32
23	Stable Whispering Gallery Mode Lasing from Solutionâ€Processed Formamidinium Lead Bromide Perovskite Microdisks. Advanced Optical Materials, 2020, 8, 2000030.	7.3	32
24	Random lasing actions in self-assembled perovskite nanoparticles. Optical Engineering, 2016, 55, 057102.	1.0	29
25	Photon hopping and nanowire based hybrid plasmonic waveguide and ring-resonator. Scientific Reports, 2015, 5, .	3.3	27
26	Lead Halide Perovskite Nanoribbon Based Uniform Nanolaser Array on Plasmonic Grating. ACS Photonics, 2017, 4, 649-656.	6.6	26
27	Inversed Vernier effect based single-mode laser emission in coupled microdisks. Scientific Reports, 2015, 5, 13682.	3.3	25
28	Surface passivation of organometal halide perovskites by atomic layer deposition: an investigation of the mechanism of efficient inverted planar solar cells. Nanoscale Advances, 2021, 3, 2305-2315.	4.6	25
29	Size-Controlled Patterning of Single-Crystalline Perovskite Arrays toward a Tunable High-Performance Microlaser. ACS Applied Materials & Samp; Interfaces, 2020, 12, 2662-2670.	8.0	24
30	Controlling the film structure by regulating 2D Ruddlesden–Popper perovskite formation enthalpy for efficient and stable tri-cation perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 5874-5881.	10.3	23
31	Improving the Performance of a CH ₃ NH ₃ PbBr ₃ Perovskite Microrod Laser through Hybridization with Fewâ€Layered Graphene. Advanced Optical Materials, 2016, 4, 2057-2062.	7.3	20
32	Hybridizing CH ₃ NH ₃ PbBr ₃ microwires and tapered fibers for efficient light collection. Journal of Materials Chemistry A, 2016, 4, 8015-8019.	10.3	18
33	Maskless Fabrication of Aluminum Nanoparticles for Plasmonic Enhancement of Lead Halide Perovskite Lasers. Advanced Optical Materials, 2017, 5, 1700529.	7.3	18
34	Tailoring the Surface Morphology and Phase Distribution for Efficient Perovskite Electroluminescence. Journal of Physical Chemistry Letters, 2020, 11, 5877-5882.	4.6	17
35	Overcoming the Limitation of Cs ₂ AgBiBr ₆ Double Perovskite Solar Cells Through Using Mesoporous TiO ₂ Electron Extraction Layer. Energy and Environmental Materials, 2022, 5, 1317-1322.	12.8	17
36	Quasi-guiding Modes in Microfibers on a High Refractive Index Substrate. ACS Photonics, 2015, 2, 1278-1283.	6.6	16

#	Article	IF	CITATIONS
37	Morphology Control of Doped Spiroâ€MeOTAD Films for Air Stable Perovskite Solar Cells. Small, 2020, 16, e1907513.	10.0	16
38	Nested fiber ring resonator enhanced Mach–Zehnder interferometer for temperature sensing. Applied Optics, 2012, 51, 8873.	1.8	14
39	The combination of high Q factor and chirality in twin cavities and microcavity chain. Scientific Reports, 2014, 4, 6493.	3.3	14
40	Light-induced phase transition and photochromism in all-inorganic two-dimensional Cs2Pbl2Cl2 perovskite. Science China Materials, 2020, 63, 1510-1517.	6.3	14
41	Robust Ultralong Lead Halide Perovskite Microwire Lasers. ACS Applied Materials & Amp; Interfaces, 2021, 13, 38458-38466.	8.0	14
42	Fabricating high refractive index titanium dioxide film using electron beam evaporation for all-dielectric metasurfaces. MRS Communications, 2016, 6, 77-83.	1.8	13
43	Single Crystal Microrod Based Homonuclear Photonic Molecule Lasers. Advanced Optical Materials, 2017, 5, 1600744.	7. 3	13
44	Singleâ€Crystalline Perovskite Microlasers for Highâ€Contrast and Subâ€Diffraction Imaging. Advanced Functional Materials, 2019, 29, 1904868.	14.9	13
45	Tailoring the lasing modes in CH ₃ NH ₃ PbBr ₃ perovskite microplates via micro-manipulation. RSC Advances, 2016, 6, 50553-50558.	3.6	11
46	Large-Scale and Defect-Free Silicon Metamaterials with Magnetic Response. Scientific Reports, 2016, 6, 25760.	3.3	10
47	Phase Tailoring of Ruddlesden–Popper Perovskite at Fixed Large Spacer Cation Ratio. Small, 2021, 17, e2100560.	10.0	10
48	Improvement of the chirality near avoided resonance crossing in optical microcavity. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1.	5.1	7
49	The Role of Excitons on Light Amplification in Lead Halide Perovskites. Advanced Materials, 2016, 28, 10165-10169.	21.0	7
50	Deformed Microdisk-Based End-Fire Injection and Collection Resonant Device. Journal of Lightwave Technology, 2015, 33, 3698-3703.	4.6	6
51	All-Inorganic Perovskite Nanorod Arrays with Spatially Randomly Distributed Lasing Modes for All-Photonic Cryptographic Primitives. ACS Applied Materials & Samp; Interfaces, 2021, 13, 30891-30901.	8.0	6
52	Suppressing the defects in cesium-based perovskites <i>via</i> polymeric interlayer assisted crystallization control. Journal of Materials Chemistry A, 2021, 9, 26149-26158.	10.3	6
53	End-fire injection of guided light into optical microcavity. Applied Physics B: Lasers and Optics, 2015, 120, 255-260.	2.2	5
54	Electromagnetically induced-transparency-like spectrum in an add/drop interferometer. Applied Optics, 2015, 54, 1285.	1.8	5

#	Article	IF	CITATIONS
55	Triangular lasing modes in hexagonal perovskite microplates with balanced gain and loss. RSC Advances, 2016, 6, 64589-64594.	3.6	5
56	Charge Carrier Dynamics and Broad Wavelength Tunable Amplified Spontaneous Emission in Zn <i>_{<i>x</i>}</i> Cd _{1–<i>x</i>} Se Nanowires. Journal of Physical Chemistry Letters, 2019, 10, 7516-7522.	4.6	5
57	Tunable Fano resonance in a single-ring-resonator-based add/drop interferometer. Applied Optics, 2013, 52, 4884.	1.8	4
58	Organic-inorganic Lead Halide Perovskite CH3NH3PbBr3 Nanolaser Array based on Silicon Grating. , 2017, , .		0