Lidong Shao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5036687/publications.pdf Version: 2024-02-01

LIDONC SHAO

#	Article	IF	CITATIONS
1	Largeâ€Area Carbon Nanosheets Doped with Phosphorus: A Highâ€Performance Anode Material for Sodiumâ€Ion Batteries. Advanced Science, 2017, 4, 1600243.	5.6	450
2	Grapheneâ€Rich Wrapped Petalâ€Like Rutile TiO ₂ tuned by Carbon Dots for Highâ€Performance Sodium Storage. Advanced Materials, 2016, 28, 9391-9399.	11.1	262
3	How to Control the Selectivity of Palladiumâ€based Catalysts in Hydrogenation Reactions: The Role of Subsurface Chemistry. ChemCatChem, 2012, 4, 1048-1063.	1.8	223
4	Nanosizing Intermetallic Compounds Onto Carbon Nanotubes: Active and Selective Hydrogenation Catalysts. Angewandte Chemie - International Edition, 2011, 50, 10231-10235.	7.2	128
5	Removal of amorphous carbon for the efficient sidewall functionalisation of single-walled carbon nanotubes. Chemical Communications, 2007, , 5090.	2.2	108
6	The influence of edge-plane defects and oxygen-containing surface groups on the voltammetry of acid-treated, annealed and "super-annealed―multiwalled carbon nanotubes. Journal of Solid State Electrochemistry, 2008, 12, 1337-1348.	1.2	105
7	Gold Supported on Graphene Oxide: An Active and Selective Catalyst for Phenylacetylene Hydrogenations at Low Temperatures. ACS Catalysis, 2014, 4, 2369-2373.	5.5	99
8	Fabrication of nanoscale NiO/Ni heterostructures as electrocatalysts for efficient methanol oxidation. Journal of Materials Chemistry A, 2017, 5, 9946-9951.	5.2	85
9	Strong metal–support interactions between palladium and iron oxide and their effect on CO oxidation. Journal of Catalysis, 2014, 317, 220-228.	3.1	76
10	The Role of Palladium Dynamics in the Surface Catalysis of Coupling Reactions. Angewandte Chemie - International Edition, 2013, 52, 2114-2117.	7.2	75
11	Nickel nanoparticles supported on nitrogen-doped honeycomb-like carbon frameworks for effective methanol oxidation. RSC Advances, 2017, 7, 14152-14158.	1.7	75
12	Single Nanoparticle Voltammetry: Contact Modulation of the Mediated Current. Angewandte Chemie - International Edition, 2016, 55, 4296-4299.	7.2	53
13	The Electrocatalytic Properties of Arcâ€MWCNTs and Associated â€~Carbon Onions'. Electroanalysis, 2008, 20, 498-506.	1.5	50
14	Improved Selectivity by Stabilizing and Exposing Active Phases on Supported Pd Nanoparticles in Acetylene‣elective Hydrogenation. Chemistry - A European Journal, 2012, 18, 14962-14966.	1.7	50
15	A simple method for the containment and purification of filled open-ended single wall carbon nanotubes using C60 molecules. Chemical Communications, 2008, , 2164.	2.2	47
16	An electrochemical comparison of manganese dioxide microparticles versus α and β manganese dioxide nanorods: mechanistic and electrocatalytic behaviour. New Journal of Chemistry, 2008, 32, 1195.	1.4	41
17	Nanosized Pd–Au bimetallic phases on carbon nanotubes for selective phenylacetylene hydrogenation. Physical Chemistry Chemical Physics, 2017, 19, 6164-6168.	1.3	39
18	Catalyst-free synthesis of single crystalline ZnO nanonails with ultra-thin caps. CrystEngComm, 2012, 14, 8330.	1.3	38

LIDONG SHAO

#	Article	IF	CITATIONS
19	Ni/NiO nanoparticles on a phosphorous oxide/graphene hybrid for efficient electrocatalytic water splitting. Journal of Materials Chemistry A, 2017, 5, 14758-14762.	5.2	36
20	Structural rearrangements of Ru nanoparticles supported on carbon nanotubes under microwave irradiation. Chemical Communications, 2011, 47, 10716.	2.2	32
21	Suppressing the Pd-C interaction through B-doping for highly efficient oxygen reduction. Carbon, 2019, 149, 370-379.	5.4	32
22	Insight into graphene/hydroxide compositing mechanism for remarkably enhanced capacity. Journal of Power Sources, 2018, 399, 238-245.	4.0	31
23	Interaction between Palladium Nanoparticles and Surfaceâ€Modified Carbon Nanotubes: Role of Surface Functionalities. ChemCatChem, 2014, 6, 2607-2612.	1.8	30
24	Nanoscale Pd supported on 3D porous carbon for enhanced selective oxidation of benzyl alcohol. RSC Advances, 2017, 7, 25885-25890.	1.7	27
25	Nanosizing Pd on 3D porous carbon frameworks as effective catalysts for selective phenylacetylene hydrogenation. RSC Advances, 2017, 7, 15309-15314.	1.7	24
26	Nanosizing low-loading Pd on phosphorus-doped carbon nanotubes for enhanced HCOOH oxidation performance. Electrochemistry Communications, 2016, 67, 26-30.	2.3	23
27	High-rate sodium ion anodes assisted by N-doped carbon sheets. Sustainable Energy and Fuels, 2017, 1, 1130-1136.	2.5	23
28	Photocatalytic H2 evolution on CdS modified with partially crystallized MoS2 under visible light irradiation. Chemical Physics Letters, 2020, 746, 137305.	1.2	21
29	Pd–P nanoalloys supported on a porous carbon frame as an efficient catalyst for benzyl alcohol oxidation. Catalysis Science and Technology, 2018, 8, 2333-2339.	2.1	18
30	Polarity-Free Epitaxial Growth of Heterostructured ZnO/ZnS Core/Shell Nanobelts. Journal of Physical Chemistry Letters, 2013, 4, 740-744.	2.1	16
31	Ultralow loading of nanostructured Mn species onto two-dimensional Co ₃ O ₄ nanosheets for selective catalytic reduction of NO _x with NH ₃ . Catalysis Science and Technology, 2020, 10, 3450-3457.	2.1	16
32	Copper-enriched palladium-copper alloy nanoparticles for effective electrochemical formic acid oxidation. Electrochemistry Communications, 2016, 69, 55-58.	2.3	15
33	Pd-P nanoparticles supported on P _x O _y -incorporated carbon nanotubes for enhanced methanol oxidation in an alkaline medium. Physical Chemistry Chemical Physics, 2017, 19, 25214-25219.	1.3	15
34	The electrooxidation of formic acid catalyzed by Pd–Ga nanoalloys. Catalysis Science and Technology, 2019, 9, 1255-1259.	2.1	15
35	Thermally stable Pd/reduced graphene oxide aerogel catalysts for solvent-free oxidation of benzyl alcohol. Chemical Physics Letters, 2020, 746, 137306.	1.2	15
36	Single entity electrochemistry and the electron transfer kinetics of hydrazine oxidation. Nano Research, 2021, 14, 4132-4139.	5.8	15

LIDONG SHAO

#	Article	IF	CITATIONS
37	Palladium nanoparticles supported on graphene sheets incorporating boron oxides (BxOy) for enhanced formic acid oxidation. Electrochemistry Communications, 2017, 74, 48-52.	2.3	14
38	Electron Transfer to Decorated Graphene Oxide Particles. Angewandte Chemie - International Edition, 2019, 58, 12549-12552.	7.2	14
39	Nanosized palladium on phosphorus-incorporated porous carbon frameworks for enhanced selective phenylacetylene hydrogenation. Catalysis Science and Technology, 2017, 7, 4934-4939.	2.1	14
40	Nanosized palladium on holey graphene sheets incorporating PxOy for effective formic acid oxidation. Electrochemistry Communications, 2017, 74, 24-27.	2.3	11
41	Reaction-driven transformation of Ni/NiO hybrid structure into Ni single atoms. Materials Today Energy, 2020, 17, 100436.	2.5	10
42	The role of surface functionalities in fabricating supported Pd-P nanoparticles for efficient formic acid oxidation. Chemical Physics Letters, 2017, 686, 155-160.	1.2	9
43	Interactions between Low-Loading Pd Nanoparticles and Surface N-Functionalities and Their Effects on HCOOH Oxidation. Journal of the Electrochemical Society, 2015, 162, H898-H902.	1.3	8
44	Pd nanoparticles on carbon layer wrapped 3D TiO2 as efficient catalyst for selective oxidation of benzyl alcohol. Chemical Physics Letters, 2018, 712, 149-154.	1.2	8
45	Ethanol electrooxidation on highly active palladium/graphene oxide aerogel catalysts. Chemical Physics, 2020, 534, 110753.	0.9	7
46	Optimum Energyâ€Dispersive Xâ€Ray Spectroscopy Elemental Mapping for Advanced Catalytic Materials. ChemCatChem, 2013, 5, 2586-2590.	1.8	6
47	Clothing Carbon Nanotubes with Palladium Rings: Constructing CarbonMetal Hybrid Nanostructures under Electronâ€Beam Irradiation. ChemCatChem, 2013, 5, 2581-2585.	1.8	5
48	Doping carbon networks with phosphorus for supporting Pd in catalyzing selective oxidation of benzyl alcohol. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	4
49	Atomic Cu on nanodiamond-based sp2/sp3 hybrid nanostructures for selective hydrogenation of phenylacetylene. Chemical Physics Letters, 2019, 723, 39-43.	1.2	4