
Csk Ranasinghe, Chandana Sampath Ku

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5036525/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Investigating the donor:acceptor ratio in thermally activated delayed fluorescence light-emitting macromolecules. Organic Electronics, 2022, 105, 106500.	2.6	6
2	Thermally activated delayed fluorescence poly(dendrimer)s – detrapping excitons for reverse intersystem crossing. Journal of Materials Chemistry C, 2022, 10, 8109-8124.	5.5	1
3	A simplified approach to thermally activated delayed fluorescence (TADF) bipolar host polymers. Polymer Chemistry, 2022, 13, 4241-4248.	3.9	5
4	Properties of Dual Emissive Dendrimers Based on ThermallyActivated Delayed Fluorescence Dendrons and a Phosphorescent Ir(ppy) ₃ Core. Advanced Functional Materials, 2022, 32, .	14.9	6
5	Engineering fluorinated-cation containing inverted perovskite solar cells with an efficiency of >21% and improved stability towards humidity. Nature Communications, 2021, 12, 52.	12.8	94
6	Effect of dendrimer surface groups on the properties of phosphorescent emissive films. Organic Electronics, 2021, 99, 106321.	2.6	4
7	A solution-processed bis-tridentate iridium(<scp>iii</scp>) complex-cored dendrimer for green OLEDs. Journal of Materials Chemistry C, 2021, 9, 9545-9554.	5.5	10
8	Emissive Material Optimization for Solution-Processed Exciplex OLEDs. ACS Applied Electronic Materials, 2021, 3, 4757-4767.	4.3	3
9	Effect of dendron structure on the luminescent and charge transporting properties of solution processed dendrimer-based OLEDs. Journal of Materials Chemistry C, 2021, 9, 16033-16043.	5.5	4
10	Identification of Individual Electron- and Hole-Transfer Kinetics at CoO _{<i>x</i>} /BiVO ₄ /SnO ₂ Double Heterojunctions. ACS Applied Energy Materials, 2020, 3, 1207-1214.	5.1	22
11	Solution-Processed Dendrimer-Based TADF Materials for Deep-Red OLEDs. Macromolecules, 2020, 53, 10375-10385.	4.8	25
12	Clear and transparent nanocrystals for infrared-responsive carrier transfer. Nature Communications, 2019, 10, 406.	12.8	33
13	Visible-light CO ₂ reduction over a ruthenium(<scp>ii</scp>)-complex/C ₃ N ₄ hybrid photocatalyst: the promotional effect of silver species. Journal of Materials Chemistry A, 2018, 6, 9708-9715.	10.3	31
14	Fabrication of robust TiO2 thin films by atomized spray pyrolysis deposition for photoelectrochemical water oxidation. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 358, 320-326.	3.9	17
15	Structural changes of water molecules during photoelectrochemical water oxidation on TiO ₂ thin film electrodes. Physical Chemistry Chemical Physics, 2018, 20, 3388-3394.	2.8	3
16	CdS nanosheet-sensitized solar cells based on SnO2/MgO composite films. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364, 109-115.	3.9	7
17	Excited-State Dynamics of Graphitic Carbon Nitride Photocatalyst and Ultrafast Electron Injection to a Ru(II) Mononuclear Complex for Carbon Dioxide Reduction. Journal of Physical Chemistry C, 2018, 122, 16795-16802.	3.1	39
18	Vein graphite-based counter electrodes for dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 344, 78-83.	3.9	15

Csk Ranasinghe, Chandana

#	Article	IF	CITATIONS
19	Interfacial Manipulation by Rutile TiO ₂ Nanoparticles to Boost CO ₂ Reduction into CO on a Metal-Complex/Semiconductor Hybrid Photocatalyst. ACS Applied Materials & Interfaces, 2017, 9, 23869-23877.	8.0	69
20	Preparation of bone-implants by coating hydroxyapatite nanoparticles on self-formed titanium dioxide thin-layers on titanium metal surfaces. Materials Science and Engineering C, 2016, 63, 172-184.	7.3	43
21	Tin oxide based dye-sensitized solid-state solar cells: surface passivation for suppression of recombination. Materials Science in Semiconductor Processing, 2015, 40, 890-895.	4.0	12
22	Novel Method to Improve Performance of Dye-sensitized Solar Cells Based on Quasi-solid Gel-Polymer Electrolytes. Electrochimica Acta, 2015, 152, 360-367.	5.2	21
23	Development of Dye-Sensitized Solid-State ZnO / D 149/ CuSCN Solar Cell. International Journal of Nanoscience, 2014, 13, 1440007.	0.7	3
24	Highly Efficient SnO ₂ / MgO Composite Film-Based Dye-Sensitized Solar Cells Sensitized with N719 and D358 Dyes. International Journal of Nanoscience, 2014, 13, 1440006.	0.7	3
25	Preparation of Fluoride-Doped Tin Oxide Films on Soda–Lime Glass Substrates by Atomized Spray Pyrolysis Technique and Their Subsequent Use in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16479-16485.	3.1	34
26	An enhancement of efficiency of a solid-state dye-sensitized solar cell due to cocktail effect of N719 and black dye. Optik, 2014, 125, 813-815.	2.9	16
27	Efficient solid-state dye-sensitized n-ZnO/D-358 dye/p-CuI solar cell. Electrochimica Acta, 2013, 94, 34-37.	5.2	13