Roger Dj Pocock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5036285/publications.pdf

Version: 2024-02-01

58 papers 1,938 citations

331670 21 h-index 276875 41 g-index

71 all docs

71 docs citations

71 times ranked

2790 citing authors

#	Article	IF	CITATIONS
1	Functional recovery of the germ line following splicing collapse. Cell Death and Differentiation, 2022, 29, 772-787.	11.2	3
2	Atypical TGF- \hat{l}^2 signaling controls neuronal guidance in Caenorhabditis elegans. IScience, 2022, 25, 103791.	4.1	7
3	Diet-responsive transcriptional regulation of insulin in a single neuron controls systemic metabolism. PLoS Biology, 2022, 20, e3001655.	5.6	7
4	The UIG-1/CDC-42 guanine nucleotide exchange factor acts in parallel to CED-10/Rac1 during axon outgrowth in Caenorhabditis elegans. Small GTPases, 2021, 12, 60-66.	1.6	3
5	In silico analysis of the transcriptional regulatory logic of neuronal identity specification throughout the C. elegans nervous system. ELife, 2021, 10, .	6.0	16
6	Functions of the extracellular matrix in development: Lessons from Caenorhabditis elegans. Cellular Signalling, 2021, 84, 110006.	3.6	4
7	Transcription Factors That Control Behavior—Lessons From C. elegans. Frontiers in Neuroscience, 2021, 15, 745376.	2.8	5
8	A somatic proteoglycan controls Notch-directed germ cell fate. Nature Communications, 2021, 12, 6708.	12.8	12
9	Transcriptional landscape of the embryonic chicken M $\tilde{A}^{1}\!\!/\!\!4$ llerian duct. BMC Genomics, 2020, 21, 688.	2.8	10
10	Harmonization of L1CAM expression facilitates axon outgrowth and guidance of a motor neuron. Development (Cambridge), 2020, 147 , .	2.5	6
11	IFNB/interferon- \hat{I}^2 regulates autophagy via a <i>MIR1</i> -TBC1D15-RAB7 pathway. Autophagy, 2020, 16, 767-769.	9.1	13
12	A single amino acid change in the EGL-46 transcription factor causes defects in BAG neuron specification. MicroPublication Biology, 2020, 2020, .	0.1	0
13	Caenorhabditis elegans hub genes that respond to amyloid beta are homologs of genes involved in human Alzheimer's disease. PLoS ONE, 2019, 14, e0219486.	2.5	16
14	mir-234 controls neuropeptide release at the Caenorhabditis elegans neuromuscular junction. Molecular and Cellular Neurosciences, 2019, 98, 70-81.	2.2	7
15	A Protein Disulfide Isomerase Controls Neuronal Migration through Regulation of Wnt Secretion. Cell Reports, 2019, 26, 3183-3190.e5.	6.4	12
16	Glycan Mimetics from Natural Products: New Therapeutic Opportunities for Neurodegenerative Disease. Molecules, 2019, 24, 4604.	3.8	20
17	New deletion alleles for Hedgehog pathway-related genes and. MicroPublication Biology, 2019, 2019, .	0.1	2
18	Rac GTPases: domain-specific functions in neuronal development. Neural Regeneration Research, 2019, 14, 1367.	3.0	2

#	Article	IF	Citations
19	PIE-scope, integrated cryo-correlative light and FIB/SEM microscopy. ELife, 2019, 8, .	6.0	108
20	Interferon- \hat{l}^2 -induced miR-1 alleviates toxic protein accumulation by controlling autophagy. ELife, 2019, 8, .	6.0	23
21	Proteomic Characterization of <i>Caenorhabditis elegans</i> Larval Development. Proteomics, 2018, 18, 1700238.	2.2	3
22	Distinct CED-10/Rac1 domains confer context-specific functions in development. PLoS Genetics, 2018, 14, e1007670.	3.5	11
23	Brain Energy and Oxygen Metabolism: Emerging Role in Normal Function and Disease. Frontiers in Molecular Neuroscience, 2018, 11, 216.	2.9	237
24	Computational Analysis of the Caenorhabditis elegans Germline to Study the Distribution of Nuclei, Proteins, and the Cytoskeleton. Journal of Visualized Experiments, 2018, , .	0.3	4
25	Hub connectivity, neuronal diversity, and gene expression in the Caenorhabditis elegans connectome. PLoS Computational Biology, 2018, 14, e1005989.	3.2	56
26	Behavioral Assays to Study Oxygen and Carbon Dioxide Sensing in Caenorhabditis elegans. Bio-protocol, 2018, 8, .	0.4	1
27	Developmental Wiring of Specific Neurons Is Regulated by RET-1/Nogo-A in Caenorhabditis elegans. Genetics, 2017, 205, 295-302.	2.9	2
28	The ETS-5 transcription factor regulates activity states in <i>Caenorhabditis elegans</i> by controlling satiety. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1651-E1658.	7.1	37
29	Control of Neuropeptide Expression by Parallel Activity-dependent Pathways in Caenorhabditis elegans. Scientific Reports, 2017, 7, 38734.	3.3	14
30	Automated three-dimensional reconstruction of the Caenorhabditis elegans germline. Developmental Biology, 2017, 432, 222-228.	2.0	14
31	LIN-32/Atonal Controls Oxygen Sensing Neuron Development in Caenorhabditis elegans. Scientific Reports, 2017, 7, 7294.	3.3	7
32	Transcriptional control of satiety in <i>Caenorhabditis elegans</i> . Communicative and Integrative Biology, 2017, 10, e1325978.	1.4	0
33	Cell-extracellular matrix and cell-cell adhesion are linked by syndecan-4. Matrix Biology, 2017, 60-61, 57-69.	3.6	47
34	Redefining the role of syndecans in C. elegansbiology. Worm, 2016, 5, e1142042.	1.0	5
35	Specific microRNAs Regulate Heat Stress Responses in Caenorhabditis elegans. Scientific Reports, 2015, 5, 8866.	3.3	52
36	microRNA regulation of the embryonic hypoxic response in Caenorhabditis elegans. Scientific Reports, 2015, 5, 11284.	3.3	18

#	Article	IF	Citations
37	MicroRNAs: Not "Fine-Tuners―but Key Regulators of Neuronal Development and Function. Frontiers in Neurology, 2015, 6, 245.	2.4	62
38	A Novel Role for the Zinc-Finger Transcription Factor EGL-46 in the Differentiation of Gas-Sensing Neurons in <i>Caenorhabditis elegans</i>	2.9	19
39	Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels. Journal of Cell Biology, 2015, 210, 1199-1211.	5.2	88
40	Regulation of Axonal Midline Guidance by Prolyl 4-Hydroxylation in <i>Caenorhabditis elegans</i> Journal of Neuroscience, 2014, 34, 16348-16357.	3.6	12
41	Reliable reference miRNAs for quantitative gene expression analysis of stress responses in Caenorhabditis elegans. BMC Genomics, 2014, 15, 222.	2.8	13
42	EGL-13/SoxD Specifies Distinct O2 and CO2 Sensory Neuron Fates in Caenorhabditis elegans. PLoS Genetics, 2013, 9, e1003511.	3 . 5	25
43	An Epidermal MicroRNA Regulates Neuronal Migration Through Control of the Cellular Glycosylation State. Science, 2013, 341, 1404-1408.	12.6	73
44	Neuronal cell fate decisions. Worm, 2013, 2, e27284.	1.0	3
45	DVC1 (C1orf124) is a DNA damage–targeting p97 adaptor that promotes ubiquitin-dependent responses to replication blocks. Nature Structural and Molecular Biology, 2012, 19, 1084-1092.	8.2	153
46	A Single Gene Target of an ETS-Family Transcription Factor Determines Neuronal CO2-Chemosensitivity. PLoS ONE, 2012, 7, e34014.	2.5	38
47	Neuronal Responses to Physiological Stress. Frontiers in Genetics, 2012, 3, 222.	2.3	62
48	The UNC-4 homeobox protein represses mab-9 expression in DA motor neurons in Caenorhabditis elegans. Mechanisms of Development, 2011, 128, 49-58.	1.7	4
49	Invited review: decoding the microRNA response to hypoxia. Pflugers Archiv European Journal of Physiology, 2011, 461, 307-315.	2.8	75
50	Hypoxia activates a latent circuit for processing gustatory information in C. elegans. Nature Neuroscience, 2010, 13, 610-614.	14.8	106
51	Microbeam Irradiation of the C. elegans Nematode. Journal of Radiation Research, 2009, 50, A49-A54.	1.6	57
52	Lateralized Gustatory Behavior of C. elegans Is Controlled by Specific Receptor-Type Guanylyl Cyclases. Current Biology, 2009, 19, 996-1004.	3.9	101
53	Oxygen levels affect axon guidance and neuronal migration in Caenorhabditis elegans. Nature Neuroscience, 2008, 11, 894-900.	14.8	96
54	Functional dissection of the C. elegans cell adhesion molecule SAX-7, a homologue of human L1. Molecular and Cellular Neurosciences, 2008, 37, 56-68.	2.2	54

#	Article	IF	CITATION
55	Neuronal function of Tbx20 conserved from nematodes to vertebrates. Developmental Biology, 2008, 317, 671-685.	2.0	22
56	A Novel Eph Receptor-Interacting IgSF Protein Provides C. elegans MotoneuronsÂwith Midline Guidepost Function. Current Biology, 2006, 16, 1871-1883.	3.9	46
57	A regulatory network of T-box genes and the even-skippedhomologue vab-7 controls patterning and morphogenesis in C. elegans. Development (Cambridge), 2004, 131, 2373-2385.	2.5	40
58	A Protein Disulfide Isomerase Controls Neuronal Migration Through Regulation of Wnt Secretion. SSRN Electronic Journal, 0, , .	0.4	0