
Michael J Schmeisser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5035717/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TMBIM5 loss of function alters mitochondrial matrix ion homeostasis and causes a skeletal myopathy. Life Science Alliance, 2022, 5, e202201478.	2.8	14
2	Abnormalities of synaptic mitochondria in autism spectrum disorder and related neurodevelopmental disorders. Journal of Molecular Medicine, 2021, 99, 161-178.	3.9	27
3	Mutations in PRDM15 Are a Novel Cause of Galloway-Mowat Syndrome. Journal of the American Society of Nephrology: JASN, 2021, 32, 580-596.	6.1	15
4	Carl Toldt Centennial, Surgeon and Anatomist. American Surgeon, 2021, 87, 000313482199197.	0.8	3
5	Crissâ€crossing autism spectrum disorder and adult neurogenesis. Journal of Neurochemistry, 2021, 159, 452-478.	3.9	18
6	Early life adversity targets the transcriptional signature of hippocampal NG2+ glia and affects voltage gated sodium (Nav) channels properties. Neurobiology of Stress, 2021, 15, 100338.	4.0	7
7	Genetic influences of autism candidate genes on circuit wiring and olfactory decoding. Cell and Tissue Research, 2021, 383, 581-595.	2.9	4
8	Galloway-Mowat syndrome: New insights from bioinformatics and expression during Xenopus embryogenesis. Gene Expression Patterns, 2021, 42, 119215.	0.8	4
9	The K63 deubiquitinase CYLD modulates autism-like behaviors and hippocampal plasticity by regulating autophagy and mTOR signaling. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	15
10	Hyperactivity and Hypermotivation Associated With Increased Striatal mGluR1 Signaling in a Shank2 Rat Model of Autism. Frontiers in Molecular Neuroscience, 2018, 11, 107.	2.9	30
11	An Epha4/Sipa1l3/Wnt pathway regulates eye development and lens maturation. Development (Cambridge), 2017, 144, 321-333.	2.5	20
12	The Nedd4 binding protein 3 is required for anterior neural development in Xenopus laevis. Developmental Biology, 2017, 423, 66-76.	2.0	17
13	Neuroanatomy and Neuropathology of Autism Spectrum Disorder in Humans. Advances in Anatomy, Embryology and Cell Biology, 2017, 224, 27-48.	1.6	15
14	Behavioural Phenotypes and Neural Circuit Dysfunctions in Mouse Models of Autism Spectrum Disorder. Advances in Anatomy, Embryology and Cell Biology, 2017, 224, 85-101.	1.6	21
15	Cerebellar and Striatal Pathologies in Mouse Models of Autism Spectrum Disorder. Advances in Anatomy, Embryology and Cell Biology, 2017, 224, 103-119.	1.6	10
16	Genetic and Pharmacological Reversibility of Phenotypes in Mouse Models of Autism Spectrum Disorder. Advances in Anatomy, Embryology and Cell Biology, 2017, 224, 189-211.	1.6	2
17	Proteomic Analysis of Post-synaptic Density Fractions from Shank3 Mutant Mice Reveals Brain Region Specific Changes Relevant to Autism Spectrum Disorder. Frontiers in Molecular Neuroscience, 2017, 10, 26.	2.9	66
18	Neurotrophic Factors in Mouse Models of Autism Spectrum Disorder: Focus on BDNF and IGF-1. Advances in Anatomy, Embryology and Cell Biology, 2017, 224, 121-134.	1.6	21

MICHAEL J SCHMEISSER

#	Article	IF	CITATIONS
19	Selective Localization of Shanks to VGLUT1-Positive Excitatory Synapses in the Mouse Hippocampus. Frontiers in Cellular Neuroscience, 2016, 10, 106.	3.7	23
20	Shank3 is localized in axons and presynaptic specializations of developing hippocampal neurons and involved in the modulation of <scp>NMDA</scp> receptor levels at axon terminals. Journal of Neurochemistry, 2016, 137, 26-32.	3.9	56
21	PRG-1 Regulates Synaptic Plasticity via Intracellular PP2A/β1-Integrin Signaling. Developmental Cell, 2016, 38, 275-290.	7.0	37
22	Dysfunctional cerebellar Purkinje cells contribute to autism-like behaviour in Shank2-deficient mice. Nature Communications, 2016, 7, 12627.	12.8	180
23	Sipa1l3/SPAR3 is targeted to postsynaptic specializations and interacts with the Fezzin ProSAPiP1/Lzts3. Journal of Neurochemistry, 2016, 136, 28-35.	3.9	15
24	Phenotypic and functional analysis of SHANK3 stop mutations identified in individuals with ASD and/or ID. Molecular Autism, 2015, 6, 23.	4.9	68
25	Translational neurobiology in Shank mutant mice - Model systems for neuropsychiatric disorders. Annals of Anatomy, 2015, 200, 115-117.	1.9	44
26	Genetic Animal Models for Autism Spectrum Disorder. Current Topics in Behavioral Neurosciences, 2015, 30, 311-324.	1.7	30
27	Meta-analysis of SHANK Mutations in Autism Spectrum Disorders: A Gradient of Severity in Cognitive Impairments. PLoS Genetics, 2014, 10, e1004580.	3.5	501
28	Spikar speaks to spines and nuclei. Journal of Neurochemistry, 2014, 128, 473-475.	3.9	0
29	The PSD protein ProSAP2/Shank3 displays synapto-nuclear shuttling which is deregulated in a schizophrenia-associated mutation. Experimental Neurology, 2014, 253, 126-137.	4.1	59
30	Neurobiology of autism gene products: towards pathogenesis and drug targets. Psychopharmacology, 2014, 231, 1037-1062.	3.1	70
31	Insight on the fate of CNS-targeted nanoparticles. Part II: Intercellular neuronal cell-to-cell transport. Journal of Controlled Release, 2014, 177, 96-107.	9.9	48
32	Inâ€depth protein profiling of the postsynaptic density from mouse hippocampus using dataâ€independent acquisition proteomics. Proteomics, 2014, 14, 2607-2613.	2.2	103
33	Zinc deficiency dysregulates the synaptic ProSAP/Shank scaffold and might contribute to autism spectrum disorders. Brain, 2014, 137, 137-152.	7.6	154
34	The Nedd4-binding protein 3 (N4BP3) is crucial for axonal and dendritic branching in developing neurons. Neural Development, 2013, 8, 18.	2.4	21
35	lκB Kinase/Nuclear Factor κB-Dependent Insulin-Like Growth Factor 2 (Igf2) Expression Regulates Synapse Formation and Spine Maturation via Igf2 Receptor Signaling. Journal of Neuroscience, 2012, 32, 5688-5703.	3.6	116
36	Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature, 2012, 486, 256-260.	27.8	570

#	Article	IF	CITATIONS
37	An SK3 Channel/nWASP/Abi-1 Complex Is Involved in Early Neurogenesis. PLoS ONE, 2011, 6, e18148.	2.5	48
38	Heterogeneous Nuclear Ribonucleoprotein K Interacts with Abi-1 at Postsynaptic Sites and Modulates Dendritic Spine Morphology. PLoS ONE, 2011, 6, e27045.	2.5	31
39	Postsynaptic ProSAP/Shank scaffolds in the cross-hair of synaptopathies. Trends in Cell Biology, 2011, 21, 594-603.	7.9	238
40	The spatioâ€ŧemporal expression of ProSAP/shank family members and their interaction partner LAPSER1 during <i>Xenopus laevis</i> development. Developmental Dynamics, 2011, 240, 1528-1536.	1.8	13
41	Synaptic Cross-talk between N-Methyl-d-aspartate Receptors and LAPSER1-β-Catenin at Excitatory Synapses. Journal of Biological Chemistry, 2009, 284, 29146-29157.	3.4	53