
## Joe Henry Steinbach

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5035611/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The extracellular patch clamp: A method for resolving currents through individual open channels in<br>biological membranes. Pflugers Archiv European Journal of Physiology, 1978, 375, 219-228. | 1.3 | 446       |
| 2  | The distribution of αâ€bungarotoxin binding sites on mammalian skeletal muscle developing <i>in vivo</i> . Journal of Physiology, 1977, 267, 195-213.                                           | 1.3 | 258       |
| 3  | How quickly can GABAA receptors open?. Neuron, 1994, 12, 61-71.                                                                                                                                 | 3.8 | 239       |
| 4  | Bicuculline and Gabazine Are Allosteric Inhibitors of Channel Opening of the GABA <sub>A</sub> Receptor. Journal of Neuroscience, 1997, 17, 625-634.                                            | 1.7 | 221       |
| 5  | Developmental changes in acetylcholine receptor aggregates at rat skeletal neuromuscular<br>junctions. Developmental Biology, 1981, 84, 267-276.                                                | 0.9 | 144       |
| 6  | Neurosteroid Access to the GABAA Receptor. Journal of Neuroscience, 2005, 25, 11605-11613.                                                                                                      | 1.7 | 144       |
| 7  | 3β-Hydroxypregnane Steroids Are Pregnenolone Sulfate-Like GABAAReceptor Antagonists. Journal of<br>Neuroscience, 2002, 22, 3366-3375.                                                           | 1.7 | 141       |
| 8  | The C Terminus of the Human Nicotinic α4β2 Receptor Forms a Binding Site Required for Potentiation by<br>an Estrogenic Steroid. Journal of Neuroscience, 2001, 21, 6561-6568.                   | 1.7 | 125       |
| 9  | Pregnenolone sulfate block of GABA A receptors: mechanism and involvement of a residue in the M2 region of the α subunit. Journal of Physiology, 2001, 532, 673-684.                            | 1.3 | 121       |
| 10 | How many kinds of nicotinic acetylcholine receptor are there?. Trends in Neurosciences, 1989, 12, 3-6.                                                                                          | 4.2 | 91        |
| 11 | Nicotine is Highly Effective at Producing Desensitization of Rat α4β2 Neuronal Nicotinic Receptors.<br>Journal of Physiology, 2003, 553, 857-871.                                               | 1.3 | 87        |
| 12 | Mutations of the GABA-A Receptor α1 Subunit M1 Domain Reveal Unexpected Complexity for Modulation<br>by Neuroactive Steroids. Molecular Pharmacology, 2008, 74, 614-627.                        | 1.0 | 82        |
| 13 | Neuroactive steroids have multiple actions to potentiate GABAAreceptors. Journal of Physiology, 2004, 558, 59-74.                                                                               | 1.3 | 76        |
| 14 | Steroid Inhibition of Rat Neuronal Nicotinic α4β2 Receptors Expressed in HEK 293 Cells. Molecular<br>Pharmacology, 2000, 58, 341-351.                                                           | 1.0 | 73        |
| 15 | Neurosteroid Analog Photolabeling of a Site in the Third Transmembrane Domain of the β3 Subunit of the GABA <sub>A</sub> Receptor. Molecular Pharmacology, 2012, 82, 408-419.                   | 1.0 | 69        |
| 16 | Structural domains of the human GABA A receptor β3 subunit involved in the actions of pentobarbital.<br>Journal of Physiology, 2000, 524, 649-676.                                              | 1.3 | 62        |
| 17 | Rare missense variants in CHRNB4 are associated with reduced risk of nicotine dependence. Human<br>Molecular Genetics, 2012, 21, 647-655.                                                       | 1.4 | 58        |
| 18 | Activation of GABAAreceptors containing the α4 subunit by GABA and pentobarbital. Journal of Physiology, 2004, 556, 387-399.                                                                    | 1.3 | 56        |

| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Rapsyn Clusters Neuronal Acetylcholine Receptors But Is Inessential for Formation of an<br>Interneuronal Cholinergic Synapse. Journal of Neuroscience, 1998, 18, 4166-4176.                           | 1.7 | 54        |
| 20 | The channel opening rate of adult- and fetal-type mouse muscle nicotinic receptors activated by acetylcholine. Journal of Physiology, 1998, 506, 53-72.                                               | 1.3 | 53        |
| 21 | Activation and block of recombinant GABAA receptors by pentobarbitone: a single-channel study.<br>British Journal of Pharmacology, 2000, 130, 249-258.                                                | 2.7 | 53        |
| 22 | Reversible loss of acetylcholine receptor clusters at the developing rat neuromuscular junction.<br>Developmental Biology, 1981, 81, 386-391.                                                         | 0.9 | 50        |
| 23 | Channel open time of acetylcholine receptors on Xenopus muscle cells in dissociated cell culture.<br>Developmental Biology, 1982, 91, 93-102.                                                         | 0.9 | 47        |
| 24 | Functional PDF Signaling in the Drosophila Circadian Neural Circuit Is Gated by Ral A-Dependent<br>Modulation. Neuron, 2016, 90, 781-794.                                                             | 3.8 | 45        |
| 25 | Characteristics of concatemeric GABA <sub>A</sub> receptors containing α4/δ subunits expressed in<br><i>Xenopus</i> oocytes. British Journal of Pharmacology, 2012, 165, 2228-2243.                   | 2.7 | 43        |
| 26 | Galantamine Activates Muscle-Type Nicotinic Acetylcholine Receptors without Binding to the Acetylcholine-Binding Site. Journal of Neuroscience, 2005, 25, 1992-2001.                                  | 1.7 | 42        |
| 27 | The cholinergic antagonist Â-bungarotoxin also binds and blocks a subset of GABA receptors.<br>Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5149-5154. | 3.3 | 42        |
| 28 | Natural and Enantiomeric Etiocholanolone Interact with Distinct Sites on the Rat α1β2γ2L GABAA<br>Receptor. Molecular Pharmacology, 2007, 71, 1582-1590.                                              | 1.0 | 41        |
| 29 | Propofol Is an Allosteric Agonist with Multiple Binding Sites on Concatemeric Ternary<br>GABA <sub>A</sub> Receptors. Molecular Pharmacology, 2018, 93, 178-189.                                      | 1.0 | 41        |
| 30 | Multiple Non-Equivalent Interfaces Mediate Direct Activation of GABAA Receptors by Propofol.<br>Current Neuropharmacology, 2016, 14, 772-780.                                                         | 1.4 | 37        |
| 31 | Neurosteroid migration to intracellular compartments reduces steroid concentration in the membrane and diminishes GABAâ€A receptor potentiation. Journal of Physiology, 2007, 584, 789-800.           | 1.3 | 36        |
| 32 | <i>γ</i> -Aminobutyric Acid Type A <i>α</i> 4, <i>β</i> 2, and <i>δ</i> Subunits Assemble to Produce More<br>Than One Functionally Distinct Receptor Type. Molecular Pharmacology, 2014, 86, 647-656. | 1.0 | 35        |
| 33 | Applying the Monod-Wyman-Changeux Allosteric Activation Model to Pseudo–Steady-State Responses<br>from GABA <sub>A</sub> Receptors. Molecular Pharmacology, 2019, 95, 106-119.                        | 1.0 | 35        |
| 34 | A Portable Site: A Binding Element for 17β-Estradiol Can Be Placed on Any Subunit of a Nicotinic α4β2<br>Receptor. Journal of Neuroscience, 2011, 31, 5045-5054.                                      | 1.7 | 34        |
| 35 | Neuroactive Steroids and Human Recombinant Ïl GABA Receptors. Journal of Pharmacology and Experimental Therapeutics, 2007, 323, 236-247.                                                              | 1.3 | 33        |
| 36 | NEUROMUSCULAR BLOCKING AGENTS. International Anesthesiology Clinics, 1988, 26, 288-301.                                                                                                               | 0.3 | 32        |

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Dual Potentiating and Inhibitory Actions of a Benz[e]indene Neurosteroid Analog on Recombinant α1β2γ2<br>GABAA Receptors. Molecular Pharmacology, 2006, 69, 2015-2026.                                                 | 1.0 | 32        |
| 38 | Low doses of ethanol and a neuroactive steroid positively interact to modulate rat GABA A receptor function. Journal of Physiology, 2003, 546, 641-646.                                                                | 1.3 | 30        |
| 39 | Steroid Interaction with a Single Potentiating Site Is Sufficient to Modulate GABA-A Receptor Function. Molecular Pharmacology, 2009, 75, 973-981.                                                                     | 1.0 | 30        |
| 40 | GABA Type A Receptor Activation in the Allosteric Coagonist Model Framework: Relationship between<br>EC <sub>50</sub> and Basal Activity. Molecular Pharmacology, 2018, 93, 90-100.                                    | 1.0 | 29        |
| 41 | Activation and block of mouse muscle-type nicotinic receptors by tetraethylammonium. Journal of Physiology, 2003, 551, 155-168.                                                                                        | 1.3 | 29        |
| 42 | The Actions of Drug Combinations on the GABA <sub>A</sub> Receptor Manifest as Curvilinear<br>Isoboles of Additivity. Molecular Pharmacology, 2017, 92, 556-563.                                                       | 1.0 | 28        |
| 43 | What does phosphorylation do for the nicotinic acetylcholine receptor?. Trends in Neurosciences, 1987, 10, 61-64.                                                                                                      | 4.2 | 27        |
| 44 | Activation and Block of the Adult Muscle-Type Nicotinic Receptor by Physostigmine: Single-Channel<br>Studies. Molecular Pharmacology, 2008, 74, 764-776.                                                               | 1.0 | 27        |
| 45 | Occupation of Either Site for the Neurosteroid Allopregnanolone Potentiates the Opening of the<br>GABA <sub>A</sub> Receptor Induced from Either Transmitter Binding Site. Molecular Pharmacology,<br>2011, 80, 79-86. | 1.0 | 27        |
| 46 | Subunit-Specific Action of an Anticonvulsant Thiobutyrolactone on Recombinant Glycine Receptors<br>Involves a Residue in the M2 Membrane-Spanning Region. Molecular Pharmacology, 2000, 58, 11-17.                     | 1.0 | 26        |
| 47 | The Nicotinic <i>α</i> 5 Subunit Can Replace Either an Acetylcholine-Binding or Nonbinding Subunit in<br>the <i>α</i> 4 <i>β</i> 2* Neuronal Nicotinic Receptor. Molecular Pharmacology, 2014, 85, 11-17.              | 1.0 | 26        |
| 48 | Analysis of GABA <sub>A</sub> Receptor Activation by Combinations of Agonists Acting at the Same or<br>Distinct Binding Sites. Molecular Pharmacology, 2019, 95, 70-81.                                                | 1.0 | 26        |
| 49 | Functional Characterization of the α5(Asn398) Variant Associated with Risk for Nicotine Dependence in the α3β4α5 Nicotinic Receptor. Molecular Pharmacology, 2011, 80, 818-827.                                        | 1.0 | 25        |
| 50 | Cytisine binds with similar affinity to nicotinic α4β2 receptors on the cell surface and in homogenates.<br>Brain Research, 2003, 959, 98-102.                                                                         | 1.1 | 24        |
| 51 | Structural elements near the Câ€ŧerminus are responsible for changes in nicotinic receptor gating kinetics following patch excision. Journal of Physiology, 2000, 527, 405-417.                                        | 1.3 | 23        |
| 52 | Enantiomers of Neuroactive Steroids Support a Specific Interaction with the GABA-C Receptor as the Mechanism of Steroid Action. Molecular Pharmacology, 2006, 69, 1779-1782.                                           | 1.0 | 23        |
| 53 | Role of the Agonist Binding Site in Up-Regulation of Neuronal Nicotinic α4β2 Receptors. Molecular<br>Pharmacology, 2006, 70, 2037-2044.                                                                                | 1.0 | 23        |
| 54 | A Synthetic 18-Norsteroid Distinguishes between Two Neuroactive Steroid Binding Sites on<br>GABA <sub>A</sub> Receptors. Journal of Pharmacology and Experimental Therapeutics, 2010, 333,<br>404-413.                 | 1.3 | 22        |

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Anticonvulsant and anesthetic effects of a fluorescent neurosteroid analog activated by visible light.<br>Nature Neuroscience, 2007, 10, 523-530.                                                                               | 7.1 | 21        |
| 56 | Kinetic and Structural Determinants for GABA-A Receptor Potentiation by Neuroactive Steroids.<br>Current Neuropharmacology, 2010, 8, 18-25.                                                                                     | 1.4 | 21        |
| 57 | Chemogenetic Isolation Reveals Synaptic Contribution of δGABA <sub>A</sub> Receptors in Mouse<br>Dentate Granule Neurons. Journal of Neuroscience, 2018, 38, 8128-8145.                                                         | 1.7 | 21        |
| 58 | FACTORS AFFECTING THE SUSCEPTIBILITY OF DIFFERENT STRAINS OF MICE TO EXPERIMENTAL MY ASTHENIA GRAVIS. Annals of the New York Academy of Sciences, 1981, 377, 237-257.                                                           | 1.8 | 20        |
| 59 | Steady-State Activation and Modulation of the Concatemeric <i>î±</i> 1 <i>î²</i> 2 <i>î³</i> 2L<br>GABA <sub>A</sub> Receptor. Molecular Pharmacology, 2019, 96, 320-329.                                                       | 1.0 | 20        |
| 60 | Hydrogen bonding between the 17βâ€substituent of a neurosteroid and the GABA <sub>A</sub> receptor is not obligatory for channel potentiation. British Journal of Pharmacology, 2009, 158, 1322-1329.                           | 2.7 | 19        |
| 61 | A neurosteroid potentiation site can be moved among GABA <sub>A</sub> receptor subunits. Journal of Physiology, 2012, 590, 5739-5747.                                                                                           | 1.3 | 19        |
| 62 | Cis-Regulatory Variants Affect CHRNA5 mRNA Expression in Populations of African and European<br>Ancestry. PLoS ONE, 2013, 8, e80204.                                                                                            | 1.1 | 19        |
| 63 | Kinetic analysis of voltageâ€dependent potentiation and block of the glycine α3 receptor by a neuroactive<br>steroid analogue. Journal of Physiology, 2009, 587, 981-997.                                                       | 1.3 | 17        |
| 64 | Steadyâ€state activation and modulation of the synapticâ€ŧype <i>α</i> 1 <i>β</i> 2 <i>γ</i> 2L GABA<br><sub>A</sub> receptor by combinations of physiological and clinical ligands. Physiological Reports,<br>2019, 7, e14230. | 0.7 | 17        |
| 65 | Ethanol Modulates the Interaction of the Endogenous Neurosteroid Allopregnanolone with the α1β2γ2L<br>GABAA Receptor. Molecular Pharmacology, 2007, 71, 461-472.                                                                | 1.0 | 16        |
| 66 | Pharmacology of structural changes at the GABA <sub>A</sub> receptor transmitter binding site.<br>British Journal of Pharmacology, 2011, 162, 840-850.                                                                          | 2.7 | 15        |
| 67 | Neonatal Rat Cerebellar Granule and Purkinje Neurons in Culture Express Different GABAAReceptors.<br>European Journal of Neuroscience, 1995, 7, 1895-1905.                                                                      | 1.2 | 14        |
| 68 | Site-Specific Fluorescence Reveals Distinct Structural Changes Induced in the Human Ïł GABA Receptor<br>by Inhibitory Neurosteroids. Molecular Pharmacology, 2010, 77, 539-546.                                                 | 1.0 | 13        |
| 69 | Activation and Modulation of Concatemeric GABA-A Receptors Expressed in Human Embryonic Kidney<br>Cells. Molecular Pharmacology, 2009, 75, 1400-1411.                                                                           | 1.0 | 12        |
| 70 | Collagenase digestion alters the organization and turnover of junctional acetylcholine receptors.<br>Neuroscience Letters, 1986, 66, 113-119.                                                                                   | 1.0 | 10        |
| 71 | Differences in the expression of GABAA receptors between functionally innervated and<br>non-innervated granule neurons in neonatal rat cerebellar cultures. Brain Research, 1996, 714, 49-56.                                   | 1.1 | 10        |
| 72 | Multiple Modes for Conferring Surface Expression of Homomeric β1 GABAA Receptors. Journal of<br>Biological Chemistry, 2008, 283, 26128-26136.                                                                                   | 1.6 | 10        |

| #  | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Functional Characterization Improves Associations between Rare Non-Synonymous Variants in CHRNB4 and Smoking Behavior. PLoS ONE, 2014, 9, e96753.                                                                                                           | 1.1 | 10        |
| 74 | Mutations in the Main Cytoplasmic Loop of the GABAA Receptor α4 and δ Subunits Have Opposite Effects<br>on Surface Expression. Molecular Pharmacology, 2014, 86, 20-27.                                                                                     | 1.0 | 10        |
| 75 | Potentiation of Neuronal Nicotinic Receptors by 17β-Estradiol: Roles of the Carboxy-Terminal and the<br>Amino-Terminal Extracellular Domains. PLoS ONE, 2015, 10, e0144631.                                                                                 | 1.1 | 10        |
| 76 | Intrasubunit and intersubunit steroid binding sites independently and additively mediate α1β2γ2L<br>GABA <sub>A</sub> receptor potentiation by the endogenous neurosteroid allopregnanolone.<br>Molecular Pharmacology, 2021, 100, MOLPHARM-AR-2021-000268. | 1.0 | 10        |
| 77 | Mechanism of Action of the Nicotinic Acetylcholine Receptor. Novartis Foundation Symposium, 1990, 152, 53-67.                                                                                                                                               | 1.2 | 10        |
| 78 | Application of the Co-Agonist Concerted Transition Model to Analysis of GABAA Receptor Properties.<br>Current Neuropharmacology, 2019, 17, 843-851.                                                                                                         | 1.4 | 9         |
| 79 | The Sulfated Steroids Pregnenolone Sulfate and Dehydroepiandrosterone Sulfate Inhibit the<br><i>α</i> 1 <i>β</i> 3 <i>Ĩ²</i> 2L GABA <sub>A</sub> Receptor by Stabilizing a Novel Nonconducting State.<br>Molecular Pharmacology, 2022, 101, 68-77.         | 1.0 | 9         |
| 80 | Enhancement of muscimol binding and gating by allosteric modulators of the GABAA receptor:<br>relating occupancy to state functions. Molecular Pharmacology, 2020, 98, MOLPHARM-AR-2020-000066.                                                             | 1.0 | 8         |
| 81 | Use of Concatemers of Ligand-Gated Ion Channel Subunits to Study Mechanisms of Steroid<br>Potentiation. Anesthesiology, 2011, 115, 1328-1337.                                                                                                               | 1.3 | 7         |
| 82 | Enhancement of Muscimol Binding and Gating by Allosteric Modulators of the<br>GABA <sub>A</sub> Receptor: Relating Occupancy to State Functions. Molecular Pharmacology, 2020,<br>98, 303-313.                                                              | 1.0 | 6         |
| 83 | Agonist-Specific Conformational Changes in the α1-γ2 Subunit Interface of the GABAA Receptor.<br>Molecular Pharmacology, 2012, 82, 255-263.                                                                                                                 | 1.0 | 4         |
| 84 | The E Loop of the Transmitter Binding Site Is a Key Determinant of the Modulatory Effects of<br>Physostigmine on Neuronal Nicotinic <i>α</i> 4 <i>β</i> 2 Receptors. Molecular Pharmacology, 2017, 91,<br>100-109.                                          | 1.0 | 4         |
| 85 | Mild chronic perturbation of inhibition severely alters hippocampal function. Scientific Reports, 2019, 9, 16431.                                                                                                                                           | 1.6 | 4         |
| 86 | Perspective on the relationship between GABAA receptor activity and the apparent potency of an inhibitor. Current Neuropharmacology, 2021, 19, .                                                                                                            | 1.4 | 4         |
| 87 | Energetic Contributions to Channel Gating of Residues in the Muscle Nicotinic Receptor β1 Subunit.<br>PLoS ONE, 2013, 8, e78539.                                                                                                                            | 1.1 | 3         |
| 88 | Chapter 7 Function of Mammalian Nicotinic Acetylcholine Receptors: Agonist Concentration<br>Dependence of Single Channel Current Kinetics. Current Topics in Membranes and Transport, 1988, 33,<br>133-145.                                                 | 0.6 | 2         |
| 89 | Reduced Activation of the Synaptic-Type GABA <sub>A</sub> Receptor Following Prolonged Exposure to Low Concentrations of Agonists: Relationship between Tonic Activity and Desensitization. Molecular Pharmacology, 2020, 98, 762-769.                      | 1.0 | 2         |
| 90 | Analysis of Modulation of the 🛿 GABAA Receptor by Combinations of Inhibitory and Potentiating<br>Neurosteroids Reveals Shared and Distinct Binding Sites. Molecular Pharmacology, 2020, 98, 280-291.                                                        | 1.0 | 2         |

| #  | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91 | How to Force Conformity on Transmitter-Gated Channels. Journal of General Physiology, 2000, 116, 445-448.                                                                                                         | 0.9  | 1         |
| 92 | Flapping Loops: Roles for Hinges in a Ligand-Binding Domain of the Nicotinic Receptor. Molecular<br>Pharmacology, 2011, 79, 337-339.                                                                              | 1.0  | 1         |
| 93 | Introduced Amino Terminal Epitopes Can Reduce Surface Expression of Neuronal Nicotinic Receptors.<br>PLoS ONE, 2016, 11, e0151071.                                                                                | 1.1  | 1         |
| 94 | Unready for action. Nature, 2008, 454, 704-705.                                                                                                                                                                   | 13.7 | 0         |
| 95 | Determination of the Residues in the Extracellular Domain of the Nicotinic <i>α</i> Subunit Required for the Actions of Physostigmine on Neuronal Nicotinic Receptors. Molecular Pharmacology, 2017, 92, 318-326. | 1.0  | 0         |