Beth L Parker

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5035484/beth-l-parker-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

160 3,547 51 33 h-index g-index citations papers 167 4.8 4,119 5.55 avg, IF L-index ext. papers ext. citations

#	Paper	IF	Citations
160	Septic System Impacts on Source Water: Two Novel Field Tracer Experiments in Fractured Sedimentary Bedrock. <i>Sustainability</i> , 2022 , 14, 1959	3.6	
159	Improving spatial characterization of buried bedrock valleys through airborne frequency-domain electromagnetic, residual magnetic, and surface resistivity measurements. <i>Journal of Applied Geophysics</i> , 2022 , 199, 104584	1.7	
158	Evaluation of slim-hole NMR logging for Hydrogeologic Insights into Dolostone and Sandstone Aquifers. <i>Journal of Hydrology</i> , 2022 , 127809	6	O
157	Biotic and abiotic reductive dechlorination of chloroethenes in aquitards. <i>Science of the Total Environment</i> , 2021 , 816, 151532	10.2	1
156	Origin of solutes in a regional multi-layered sedimentary aquifer system (a case study from the Rubla al Khali basin, Saudi Arabia). <i>Applied Geochemistry</i> , 2021 , 126, 104871	3.5	3
155	Chemical evolution of an inland sabkha: a case study from Sabkha Matti, Saudi Arabia. <i>Hydrogeology Journal</i> , 2021 , 29, 1939-1951	3.1	
154	Evaluating Friction and Inertial Losses From Slug Tests Conducted in a Multilevel System. <i>Water Resources Research</i> , 2021 , 57, e2021WR029794	5.4	O
153	Identification of degrader bacteria and fungi enriched in rhizosphere soil from a toluene phytoremediation site using DNA stable isotope probing. <i>International Journal of Phytoremediation</i> , 2021 , 23, 846-856	3.9	0
152	The role of ecotones in the dehalogenation of chloroethenes in alluvial fan aquifers. <i>Environmental Science and Pollution Research</i> , 2021 , 28, 26871-26884	5.1	1
151	A New Method for Determining Compound Specific Carbon Isotope of Chlorinated Solvents in Porewater. <i>Ground Water Monitoring and Remediation</i> , 2021 , 41, 51-57	1.4	3
150	Field, Laboratory and Modeling Evidence for Strong Attenuation of a Cr(VI) Plume in a Mudstone Aquifer Due to Matrix Diffusion and Reaction Processes <i>Soil Systems</i> , 2021 , 5, 1-24	3.5	
149	How Do Fractures Influence Hyporheic Exchange in Sedimentary Rock Riverbeds?. <i>Water Resources Research</i> , 2021 , 57, e2020WR028476	5.4	1
148	Quantifying groundwater flow variability in a poorly cemented fractured sandstone aquifer to inform in situ remediation. <i>Journal of Contaminant Hydrology</i> , 2021 , 241, 103838	3.9	1
147	Geochemical and isotopic evidence for pumping-induced impacts to bedrock groundwater quality in the City of Guelph, Canada. <i>Science of the Total Environment</i> , 2021 , 800, 149359	10.2	2
146	Impacts of Climate Change and Different Crop Rotation Scenarios on Groundwater Nitrate Concentrations in a Sandy Aquifer. <i>Sustainability</i> , 2020 , 12, 1153	3.6	7
145	Groundwater nitrate in three distinct hydrogeologic and land-use settings in southwestern Ontario, Canada. <i>Hydrogeology Journal</i> , 2020 , 28, 1891-1908	3.1	5
144	Assessing aquitard integrity in a complex aquifer - aquitard system contaminated by chlorinated hydrocarbons. <i>Water Research</i> , 2020 , 171, 115388	12.5	11

143	Quantification of toluene phytoextraction rates and microbial biodegradation functional profiles at a fractured bedrock phytoremediation site. <i>Science of the Total Environment</i> , 2020 , 707, 135890	10.2	5
142	Inferring flow pathways between bedrock boreholes using the hydraulic response to borehole liner installation. <i>Journal of Hydrology</i> , 2020 , 580, 124267	6	2
141	Natural attenuation of pools and plumes of carbon tetrachloride and chloroform in the transition zone to bottom aquitards and the microorganisms involved in their degradation. <i>Science of the Total Environment</i> , 2020 , 712, 135679	10.2	9
140	The importance of transects for characterizing aged organic contaminant plumes in groundwater. Journal of Contaminant Hydrology, 2020 , 235, 103728	3.9	5
139	Measuring Fracture Flow Changes in a Bedrock Aquifer Due to Open Hole and Pumped Conditions Using Active Distributed Temperature Sensing. <i>Water Resources Research</i> , 2020 , 56, e2020WR027229	5.4	9
138	Chlorinated Ethene Degradation Rate Coefficients Simulated with Intact Sandstone Core Microcosms. <i>Environmental Science & Environmental Science & Env</i>	10.3	2
137	Groundwater and Solute Budget (A Case Study from Sabkha Matti, Saudi Arabia). <i>Hydrology</i> , 2020 , 7, 94	2.8	2
136	Assessing toluene biodegradation under temporally varying redox conditions in a fractured bedrock aquifer using stable isotope methods. <i>Water Research</i> , 2019 , 165, 114986	12.5	8
135	Wastewater impacts on groundwater at a fractured sedimentary bedrock site in Ontario, Canada: implications for First Nations Bource-water protection. <i>Hydrogeology Journal</i> , 2019 , 27, 2739-2753	3.1	7
134	Toluene biodegradation in the vadose zone of a poplar phytoremediation system identified using metagenomics and toluene-specific stable carbon isotope analysis. <i>International Journal of Phytoremediation</i> , 2019 , 21, 60-69	3.9	6
133	Benchmarking NAPL Redirection and Matrix Entry at Fracture Intersections Below the Water Table. <i>Water Resources Research</i> , 2019 , 55, 2672-2689	5.4	1
132	Authors Response to Dr. Kram Et al. © Comments on Our Manuscript Titled DyeLIF New Direct-Push Laser-Induced Fluorescence Sensor System for Chlorinated Solvent DNAPL and Other Nonnaturally Fluorescing NAPLs. Ground Water Monitoring and Remediation, 2019, 39, 75-75	1.4	
131	Spatial and temporal variability of groundwater recharge in a sandstone aquifer in a semiarid region. <i>Hydrology and Earth System Sciences</i> , 2019 , 23, 2187-2205	5.5	11
130	Methane gas transport in unconfined aquifers: A numerical sensitivity study of a controlled release experiment at CFB Borden. <i>Journal of Contaminant Hydrology</i> , 2019 , 225, 103506	3.9	10
129	Groundwater Flow Quantification in Fractured Rock Boreholes Using Active Distributed Temperature Sensing Under Natural Gradient Conditions. <i>Water Resources Research</i> , 2019 , 55, 3285-33	0ē ^{.4}	26
128	Metolachlor dense non-aqueous phase liquid source conditions and plume attenuation in a dolostone water supply aquifer. <i>Geological Society Special Publication</i> , 2019 , 479, 207-236	1.7	8
127	Acoustic televiewer amplitude data for porosity estimation with application to porewater conversion. <i>Geological Society Special Publication</i> , 2019 , 479, 177-185	1.7	2
126	Characterizing scales of hydrogeological heterogeneity in ice-marginal sediments in Wisconsin, USA. <i>Hydrogeology Journal</i> , 2019 , 27, 1949-1968	3.1	3

125	Hydro-biogeochemical impacts of fugitive methane on a shallow unconfined aquifer. <i>Science of the Total Environment</i> , 2019 , 690, 1342-1354	10.2	13
124	Geophysical response to simulated methane migration in groundwater based on a controlled injection experiment in a sandy unconfined aquifer. <i>Journal of Applied Geophysics</i> , 2019 , 168, 59-70	1.7	2
123	Improving pore-size distribution and permeability prediction from NMR using DT2 maps 2019,		1
122	PFAS Experts Symposium: Statements on regulatory policy, chemistry and analytics, toxicology, transport/fate, and remediation for per- and polyfluoroalkyl substances (PFAS) contamination issues. <i>Remediation</i> , 2019 , 29, 31-48	1.8	40
121	Five-century record of climate and groundwater recharge variability in southern California. <i>Scientific Reports</i> , 2019 , 9, 18215	4.9	5
120	Multiple lines of field evidence to inform fracture network connectivity at a shale site contaminated with dense non-aqueous phase liquids. <i>Geological Society Special Publication</i> , 2019 , 479, 101-127	1.7	5
119	DFN-M field characterization of sandstone for a process-based site conceptual model and numerical simulations of TCE transport with degradation. <i>Journal of Contaminant Hydrology</i> , 2018 , 212, 96-114	3.9	12
118	Assessing the effect of chlorinated hydrocarbon degradation in aquitards on plume persistence due to back-diffusion. <i>Science of the Total Environment</i> , 2018 , 633, 1602-1612	10.2	15
117	Multiple-scale hydraulic characterization of a surficial clayey aquitard overlying a regional aquifer in Louisiana. <i>Journal of Hydrology</i> , 2018 , 558, 546-563	6	3
116	Cross-hole fracture connectivity assessed using hydraulic responses during liner installations in crystalline bedrock boreholes. <i>Journal of Hydrology</i> , 2018 , 556, 233-246	6	6
115	High resolution spatial and temporal evolution of dissolved gases in groundwater during a controlled natural gas release experiment. <i>Science of the Total Environment</i> , 2018 , 622-623, 1178-1192	10.2	24
114	Geophysical, geological, and hydrogeological characterization of a tributary buried bedrock valley in southern Ontario. <i>Canadian Journal of Earth Sciences</i> , 2018 , 55, 641-658	1.5	9
113	Using a multiple variogram approach to improve the accuracy of subsurface geological models. <i>Canadian Journal of Earth Sciences</i> , 2018 , 55, 786-801	1.5	8
112	CAD-DRASTIC: chloride application density combined with DRASTIC for assessing groundwater vulnerability to road salt application. <i>Hydrogeology Journal</i> , 2018 , 26, 2379-2393	3.1	5
111	Identification of Degradation Pathways of Chlorohydrocarbons in Saturated Low-Permeability Sediments Using Compound-Specific Isotope Analysis. <i>Environmental Science & Environmental </i>	10.3	18
110	Novel Well Completions in Small Diameter Coreholes Created Using Portable Rock Drills. <i>Ground Water Monitoring and Remediation</i> , 2018 , 38, 42-55	1.4	2
109	DyeLIFIA New Direct-Push Laser-Induced Fluorescence Sensor System for Chlorinated Solvent DNAPL and Other Non-Naturally Fluorescing NAPLs. <i>Ground Water Monitoring and Remediation</i> , 2018 , 38, 28-42	1.4	8
108	Hydrologic interpretation of seasonally dynamic ambient temperature profiles in sealed bedrock boreholes. <i>Journal of Hydrology</i> , 2018 , 567, 133-148	6	1

107	Spatial variability of microbial communities in a fractured sedimentary rock matrix impacted by a mixed organics plume. <i>Journal of Contaminant Hydrology</i> , 2018 , 218, 110-119	3.9	5
106	Diffusion-Coupled Degradation of Chlorinated Ethenes in Sandstone: An Intact Core Microcosm Study. <i>Environmental Science & Eamp; Technology</i> , 2018 , 52, 14321-14330	10.3	7
105	Insights From Unsteady Flow Analysis of Underdamped Slug Tests in Fractured Rock. <i>Water Resources Research</i> , 2018 , 54, 5825-5840	5.4	4
104	On Permeability Prediction From Complex Conductivity Measurements Using Polarization Magnitude and Relaxation Time. <i>Water Resources Research</i> , 2018 , 54, 3436-3452	5.4	19
103	Improving estimates of groundwater velocity in a fractured rock borehole using hydraulic and tracer dilution methods. <i>Journal of Contaminant Hydrology</i> , 2018 , 214, 75-86	3.9	15
102	A multidisciplinary-based conceptual model of a fractured sedimentary bedrock aquitard: improved prediction of aquitard integrity. <i>Hydrogeology Journal</i> , 2018 , 26, 2133-2159	3.1	4
101	Novel cable coupling technique for improved shallow distributed acoustic sensor VSPs. <i>Journal of Applied Geophysics</i> , 2017 , 138, 72-79	1.7	24
100	Multidimensional Investigation of Bedrock Heterogeneity/Unconformities at a DNAPL-Impacted Site. <i>Ground Water</i> , 2017 , 55, 532-549	2.4	8
99	Estimating a Representative Value and Proportion of True Zeros for Censored Analytical Data with Applications to Contaminated Site Assessment. <i>Environmental Science & Environmental Science & Enviro</i>	12 ⁻¹ 75 ³ 10) ⁸
98	Response to the comment by Mesut Cimen on Depth-discrete specific storage in fractured sedimentary rock using steady-state and transient single-hole hydraulic tests by Patryk M. Quinn, John A. Cherry, Beth L. Parker, J. Hydrol. 542 (2016), Journal of Hydrology, Volume 546, March	6	
97	Geochemical and Isotopic Study of Bedrock Groundwater in the City of Guelph, Canada. <i>Procedia Earth and Planetary Science</i> , 2017 , 17, 921-923		6
96	Mobility and persistence of methane in groundwater in a controlled-release field experiment. <i>Nature Geoscience</i> , 2017 , 10, 289-294	18.3	76
95	Monitoring the evolution and migration of a methane gas plume in an unconfined sandy aquifer using time-lapse GPR and ERT. <i>Journal of Contaminant Hydrology</i> , 2017 , 205, 12-24	3.9	34
94	Vadose zone processes delay groundwater nitrate reduction response to BMP implementation as observed in paired cultivated vs. uncultivated potato rotation fields. <i>Journal of Hydrology</i> , 2017 , 555, 760-776	6	8
93	Determination of Cr(III) solids formed by reduction of Cr(VI) in a contaminated fractured bedrock aquifer: Evidence for natural attenuation of Cr(VI). <i>Chemical Geology</i> , 2017 , 474, 1-8	4.2	5
92	Does sorption influence isotope ratios of chlorinated hydrocarbons under field conditions?. <i>Applied Geochemistry</i> , 2017 , 84, 348-359	3.5	24
91	On Methods for In-Well Nitrate Monitoring Using Optical Sensors. <i>Ground Water Monitoring and Remediation</i> , 2017 , 37, 60-70	1.4	9
90	Mechanisms of recharge in a fractured porous rock aquifer in a semi-arid region. <i>Journal of Hydrology</i> , 2017 , 555, 869-880	6	13

89	Virus occurrence in private and public wells in a fractured dolostone aquifer in Canada. <i>Hydrogeology Journal</i> , 2017 , 25, 1117-1136	3.1	15
88	Impact of eliminating fracture intersection nodes in multiphase compositional flow simulation. Water Resources Research, 2017 , 53, 2917-2939	5.4	7
87	Electrical resistivity dynamics beneath a fractured sedimentary bedrock riverbed in response to temperature and groundwaterBurface water exchange. <i>Hydrology and Earth System Sciences</i> , 2017 , 21, 3105-3123	5.5	14
86	JRK is a positive regulator of Etatenin transcriptional activity commonly overexpressed in colon, breast and ovarian cancer. <i>Oncogene</i> , 2016 , 35, 2834-41	9.2	14
85	Reductive dechlorination in recalcitrant sources of chloroethenes in the transition zone between aquifers and aquitards. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 18724-41	5.1	12
84	A new device for characterizing fracture networks and measuring groundwater and contaminant fluxes in fractured rock aquifers. <i>Water Resources Research</i> , 2016 , 52, 5400-5420	5.4	10
83	Combining high resolution vertical gradients and sequence stratigraphy to delineate hydrogeologic units for a contaminated sedimentary rock aquifer system. <i>Journal of Hydrology</i> , 2016 , 534, 505-523	6	13
82	Geophysical and geochemical studies to delineate seawater intrusion in Bagoush area, Northwestern coast, Egypt. <i>Journal of African Earth Sciences</i> , 2016 , 121, 365-381	2.2	30
81	Blended head analyses to reduce uncertainty in packer testing in fractured-rock boreholes. <i>Hydrogeology Journal</i> , 2016 , 24, 59-77	3.1	14
80	Using earth-tide induced water pressure changes to measure in situ permeability: A comparison with long-term pumping tests. <i>Water Resources Research</i> , 2016 , 52, 3113-3126	5.4	53
79	Structural and statistical characterization of joints and multi-scale faults in an alternating sandstone and shale turbidite sequence at the Santa Susana Field Laboratory: Implications for their effects on groundwater flow and contaminant transport. <i>Journal of Structural Geology</i> , 2016 , 85, 95-114	3	25
78	Temporal hydrochemical and microbial variations in microcosm experiments from sites contaminated with chloromethanes under biostimulation with lactic acid. <i>Bioremediation Journal</i> , 2016 , 20, 54-70	2.3	5
77	Analytical analysis of borehole experiments for the estimation of subsurface thermal properties. <i>Advances in Water Resources</i> , 2016 , 91, 88-103	4.7	6
76	Quantification of Degradation of Chlorinated Hydrocarbons in Saturated Low Permeability Sediments Using Compound-Specific Isotope Analysis. <i>Environmental Science & Environmental Science & Compound Sediments</i> , 50, 5622-30	10.3	35
75	Nitrate distribution and potential attenuation mechanisms of a municipal water supply bedrock aquifer. <i>Applied Geochemistry</i> , 2016 , 73, 157-168	3.5	14
74	Origin of VC-only plumes from naturally enhanced dechlorination in a peat-rich hydrogeologic setting. <i>Journal of Contaminant Hydrology</i> , 2016 , 192, 129-139	3.9	9
73	Depth-discrete specific storage in fractured sedimentary rock using steady-state and transient single-hole hydraulic tests. <i>Journal of Hydrology</i> , 2016 , 542, 756-771	6	8
72	Groundwater recharge assessment in an upland sandstone aquifer of southern California. <i>Journal of Hydrology</i> , 2016 , 541, 787-799	6	25

(2013-2015)

71	Groundwater flow characterization in a fractured bedrock aquifer using active DTS tests in sealed boreholes. <i>Journal of Hydrology</i> , 2015 , 528, 449-462	6	44
70	Combined use of straddle packer testing and FLUTe profiling for hydraulic testing in fractured rock boreholes. <i>Journal of Hydrology</i> , 2015 , 524, 439-454	6	29
69	Evaluating local-scale anisotropy and heterogeneity along a fractured sedimentary bedrock river using EM azimuthal resistivity and ground-penetrating radar. <i>Journal of Applied Geophysics</i> , 2015 , 116, 156-166	1.7	10
68	Effects of Glacial Sediment Type and Land Use on Nitrate Patterns in Groundwater. <i>Ground Water Monitoring and Remediation</i> , 2015 , 35, 68-81	1.4	21
67	Determination of hexavalent chromium concentrations in matrix porewater from a contaminated aquifer in fractured sedimentary bedrock. <i>Chemical Geology</i> , 2015 , 419, 142-148	4.2	5
66	Geophysical conceptualization of a fractured sedimentary bedrock riverbed using ground-penetrating radar and induced electrical conductivity. <i>Journal of Hydrology</i> , 2015 , 521, 433-446	6	13
65	Characterization and Source History Modeling Using Low-k Zone Profiles at Two Source Areas. <i>Ground Water Monitoring and Remediation</i> , 2015 , 35, 52-69	1.4	12
64	Application of an Adapted Version of MT3DMS for Modeling Back-Diffusion Remediation Timeframes 2015 , 25, 55-79		16
63	Simple Modeling Tool for Reconstructing Source History Using High Resolution Contaminant Profiles From Low-k Zones 2015 , 25, 31-51		4
62	Transport of through a Thick Vadose Zone. <i>Journal of Environmental Quality</i> , 2015 , 44, 1424-34	3.4	16
61	Hybrid Multilevel System for Monitoring Groundwater Flow and Agricultural Impacts in Fractured Sedimentary Bedrock. <i>Ground Water Monitoring and Remediation</i> , 2015 , 35, 55-67	1.4	11
60	Salt vulnerability assessment methodology for municipal supply wells. <i>Journal of Hydrology</i> , 2015 , 531, 523-533	6	10
59	Detailed measurement of the magnitude and orientation of thermal gradients in lined boreholes for characterizing groundwater flow in fractured rock. <i>Journal of Hydrology</i> , 2014 , 513, 101-114	6	16
58	New method for continuous transmissivity profiling in fractured rock. <i>Ground Water</i> , 2014 , 52, 352-67	2.4	41
57	Processes controlling the fate of chloroethenes emanating from DNAPL aged sources in river-aquifer contexts. <i>Journal of Contaminant Hydrology</i> , 2014 , 168, 25-40	3.9	7
56	Characteristics of high resolution hydraulic head profiles and vertical gradients in fractured sedimentary rocks. <i>Journal of Hydrology</i> , 2014 , 517, 493-507	6	32
55	Membrane interface probe protocol for contaminants in low-permeability zones. <i>Ground Water</i> , 2014 , 52, 550-65	2.4	17
54	Directional phytoscreening: contaminant gradients in trees for plume delineation. <i>Environmental Science & Environmental Science & Environmental Analysis</i> (2013), 47, 9069-76	10.3	15

53	Combined MODFLOW-FRACTRAN Application to Assess Chlorinated Solvent Transport and Remediation in Fractured Sedimentary Rock 2013 , 23, 7-35		12
52	A stochastic model for estimating groundwater and contaminant discharges from fractured rock passive flux meter measurements. <i>Water Resources Research</i> , 2013 , 49, 1277-1291	5.4	6
51	Enhanced detection of hydraulically active fractures by temperature profiling in lined heated bedrock boreholes. <i>Journal of Hydrology</i> , 2013 , 484, 1-15	6	43
50	Subsoil heterogeneities controlling porewater contaminant mass and microbial diversity at a site with a complex pollution history. <i>Journal of Contaminant Hydrology</i> , 2013 , 144, 1-19	3.9	14
49	Validation of non-Darcian flow effects in slug tests conducted in fractured rock boreholes. <i>Journal of Hydrology</i> , 2013 , 486, 505-518	6	37
48	Time-Elevation Head Sections: Improved Visualization of Data from Multilevels. <i>Ground Water Monitoring and Remediation</i> , 2013 , 33, 95-102	1.4	1
47	Testing high resolution numerical models for analysis of contaminant storage and release from low permeability zones. <i>Journal of Contaminant Hydrology</i> , 2012 , 136-137, 106-16	3.9	58
46	Allocating risk capital for a brownfields redevelopment project under hydrogeological and financial uncertainty. <i>Journal of Environmental Management</i> , 2012 , 100, 96-108	7.9	7
45	Hydraulic testing using a versatile straddle packer system for improved transmissivity estimation in fractured-rock boreholes. <i>Hydrogeology Journal</i> , 2012 , 20, 1529-1547	3.1	40
44	Dechlorinating microorganisms in a sedimentary rock matrix contaminated with a mixture of VOCs. <i>Environmental Science & Environmental Science & Envir</i>	10.3	28
43	Simulating an exclusion zone for vapour intrusion of TCE from groundwater into indoor air. <i>Journal of Contaminant Hydrology</i> , 2012 , 140-141, 124-38	3.9	10
42	Fingerprinting TCE in a bedrock aquifer using compound-specific isotope analysis. <i>Ground Water</i> , 2012 , 50, 754-64	2.4	17
41	Quantification of non-Darcian flow observed during packer testing in fractured sedimentary rock. <i>Water Resources Research</i> , 2011 , 47,	5.4	57
40	Manganese and trace-metal mobility under reducing conditions following in situ oxidation of TCE by KMnO4: a laboratory column experiment. <i>Journal of Contaminant Hydrology</i> , 2011 , 119, 13-24	3.9	13
39	Using constant head step tests to determine hydraulic apertures in fractured rock. <i>Journal of Contaminant Hydrology</i> , 2011 , 126, 85-99	3.9	54
38	Assessing the flow regime in a contaminated fractured and karstic dolostone aquifer supplying municipal water. <i>Journal of Hydrology</i> , 2011 , 400, 396-410	6	23
37	Improved resolution of ambient flow through fractured rock with temperature logs. <i>Ground Water</i> , 2010 , 48, 191-205	2.4	49
36	A downhole passive sampling system to avoid bias and error from groundwater sample handling. <i>Environmental Science & amp; Technology, 2010, 44, 4917-23</i>	10.3	23

(2006-2010)

35	Manganese valence in oxides formed from in situ chemical oxidation of TCE by KMnO4. <i>Environmental Science & Environmental Sci</i>	10.3	20
34	Characterization of a heterogeneous DNAPL source zone in the Borden aquifer using partitioning and interfacial tracers: residual morphologies and background sorption. <i>Journal of Contaminant Hydrology</i> , 2010 , 115, 79-89	3.9	21
33	Three-dimensional density-dependent flow and multicomponent reactive transport modeling of chlorinated solvent oxidation by potassium permanganate. <i>Journal of Contaminant Hydrology</i> , 2009 , 106, 195-211	3.9	48
32	Evaluating the fate of chlorinated ethenes in streambed sediments by combining stable isotope, geochemical and microbial methods. <i>Journal of Contaminant Hydrology</i> , 2009 , 107, 10-21	3.9	65
31	Simulating the fate and transport of TCE from groundwater to indoor air. <i>Journal of Contaminant Hydrology</i> , 2009 , 107, 140-61	3.9	37
30	Long-term ground penetrating radar monitoring of a small volume DNAPL release in a natural groundwater flow field. <i>Journal of Contaminant Hydrology</i> , 2008 , 97, 1-12	3.9	30
29	Plume persistence caused by back diffusion from thin clay layers in a sand aquifer following TCE source-zone hydraulic isolation. <i>Journal of Contaminant Hydrology</i> , 2008 , 102, 86-104	3.9	142
28	Detailed hydraulic head profiles as essential data for defining hydrogeologic units in layered fractured sedimentary rock. <i>Environmental Geology</i> , 2008 , 56, 27-44		42
27	Human enteric viruses in groundwater from a confined bedrock aquifer. <i>Environmental Science & Environmental &</i>	10.3	88
26	General analytical treatment of the flow field relevant to the interpretation of passive fluxmeter measurements. <i>Water Resources Research</i> , 2007 , 43,	5.4	11
25	A New Depth-Discrete Multilevel Monitoring Approach for Fractured Rock. <i>Ground Water Monitoring and Remediation</i> , 2007 , 27, 57-70	1.4	64
24	Electrical Monitoring of In Situ Chemical Oxidation by Permanganate. <i>Ground Water Monitoring and Remediation</i> , 2007 , 27, 77-84	1.4	13
23	Groundwater-surface water interaction and its role on TCE groundwater plume attenuation. <i>Journal of Contaminant Hydrology</i> , 2007 , 91, 203-32	3.9	58
22	The Active Line Source Temperature Logging Technique and its Application in Fractured Rock Hydrogeology. <i>Journal of Environmental and Engineering Geophysics</i> , 2007 , 12, 307-322	1	23
21	Metal mobility during in situ chemical oxidation of TCE by KMnO4. <i>Journal of Contaminant Hydrology</i> , 2006 , 88, 137-52	3.9	17
20	Microwave-assisted extraction of trichloroethylene from clay samples. <i>International Journal of Environmental Analytical Chemistry</i> , 2006 , 86, 1113-1125	1.8	7
19	GPR Monitoring of a DNAPL Release in a Natural Groundwater Flow Field 2006,		1
18	A Multilevel System for High-Resolution Monitoring in Rotasonic Boreholes. <i>Ground Water Monitoring and Remediation</i> , 2006 , 26, 57-73	1.4	18

17	Field-scale evaluation of the passive flux meter for simultaneous measurement of groundwater and contaminant fluxes. <i>Environmental Science & Environmental Science & Environm</i>	10.3	76
16	Plume persistence due to aquitard back diffusion following dense nonaqueous phase liquid source removal or isolation. <i>Water Resources Research</i> , 2005 , 41,	5.4	177
15	Vertical cross contamination of trichloroethylene in a borehole in fractured sandstone. <i>Ground Water</i> , 2005 , 43, 557-73	2.4	55
14	Mass and flux distributions from DNAPL zones in sandy aquifers. <i>Ground Water</i> , 2005 , 43, 70-86	2.4	86
13	Field study of TCE diffusion profiles below DNAPL to assess aquitard integrity. <i>Journal of Contaminant Hydrology</i> , 2004 , 74, 197-230	3.9	85
12	Effect of source variability and transport processes on carbon isotope ratios of TCE and PCE in two sandy aquifers. <i>Journal of Contaminant Hydrology</i> , 2004 , 74, 265-82	3.9	96
11	Characterization and pilot-scale studies for chemical oxidation remediation of fractured shale. <i>Remediation</i> , 2004 , 14, 19-37	1.8	28
10	Review and Analysis of Chlorinated Solvent Dense Nonaqueous Phase Liquid Distributions in Five Sandy Aquifers. <i>Vadose Zone Journal</i> , 2003 , 2, 116-137	2.7	65
9	Monitoring oxidation of chlorinated ethenes by permanganate in groundwater using stable isotopes: laboratory and field studies. <i>Environmental Science & Environmental Science</i>	10.3	62
8	A novel technique for rapid extraction of volatile organohalogen compounds from low permeability media. <i>Environmental Science & Environmental Science</i>	10.3	18
7	Review and Analysis of Chlorinated Solvent Dense Nonaqueous Phase Liquid Distributions in Five Sandy Aquifers. <i>Vadose Zone Journal</i> , 2003 , 2, 116-137	2.7	7
6	Review and Analysis of Chlorinated Solvent Dense Nonaqueous Phase Liquid Distributions in Five Sandy Aquifers. <i>Vadose Zone Journal</i> , 2003 , 2, 116	2.7	18
5	Geochemical reactions resulting from in situ oxidation of PCE-DNAPL by KMnO4 in a sandy aquifer. <i>Environmental Science & Environmental Science & Envi</i>	10.3	53
4	Trichloroethene DNAPL flow and mass distribution in naturally fractured clay: Evidence of aperture variability. <i>Water Resources Research</i> , 2000 , 36, 135-147	5.4	33
3	Diffusive Loss of Non-Aqueous Phase Organic Solvents from Idealized Fracture Networks in Geologic Media. <i>Ground Water</i> , 1997 , 35, 1077-1088	2.4	56
2	Optimum Hydraulic Conductivity to Limit Contaminant Flux Through Cutoff Walls. <i>Ground Water</i> , 1996 , 34, 719-726	2.4	27
1	Diffusive Disappearance of Immiscible-Phase Organic Liquids in Fractured Geologic Media. <i>Ground Water</i> , 1994 , 32, 805-820	2.4	160