
Hossam E Emam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5035120/publications.pdf Version: 2024-02-01

HOSSAM F FMAM

#	Article	IF	CITATIONS
1	Carboxymethyl cellulose for green synthesis and stabilization of silver nanoparticles. Carbohydrate Polymers, 2010, 82, 933-941.	5.1	241
2	Anti-UV Radiation Textiles Designed by Embracing with Nano-MIL (Ti, In)–Metal Organic Framework. ACS Applied Materials & Interfaces, 2017, 9, 28034-28045.	4.0	157
3	Cu–BTC@cotton composite: design and removal of ethion insecticide from water. RSC Advances, 2016, 6, 42324-42333.	1.7	150
4	Self-cleaned photoluminescent viscose fabric incorporated lanthanide-organic framework (Ln-MOF). Dyes and Pigments, 2018, 159, 491-498.	2.0	148
5	Multi-functional textile design using in-situ Ag NPs incorporation into natural fabric matrix. Dyes and Pigments, 2015, 118, 9-17.	2.0	124
6	Sono-chemical synthesis of cellulose nanocrystals from wood sawdust using Acid hydrolysis. International Journal of Biological Macromolecules, 2018, 107, 1599-1606.	3.6	117
7	Macroporous Cu-MOF@cellulose acetate membrane serviceable in selective removal of dimethoate pesticide from wastewater. Journal of Environmental Chemical Engineering, 2021, 9, 105121.	3.3	117
8	Production of antibacterial colored viscose fibers using in situ prepared spherical Ag nanoparticles. Carbohydrate Polymers, 2014, 110, 148-155.	5.1	114
9	In-growth metal organic framework/synthetic hybrids as antimicrobial fabrics and its toxicity. Colloids and Surfaces B: Biointerfaces, 2018, 165, 219-228.	2.5	114
10	Polysaccharides templates for assembly of nanosilver. Carbohydrate Polymers, 2016, 135, 300-307.	5.1	112
11	Employable metal (Ag & Pd)@MIL-125-NH2@cellulose acetate film for visible-light driven photocatalysis for reduction of nitro-aromatics. Carbohydrate Polymers, 2020, 247, 116695.	5.1	109
12	Figuration of Zr-based MOF@cotton fabric composite for potential kidney application. Carbohydrate Polymers, 2018, 195, 460-467.	5.1	108
13	Observable removal of pharmaceutical residues by highly porous photoactive cellulose acetate@MIL-MOF film. Journal of Hazardous Materials, 2021, 414, 125509.	6.5	107
14	Protective Cotton Textiles via Amalgamation of Cross-Linked Zeolitic Imidazole Frameworks. Industrial & Engineering Chemistry Research, 2020, 59, 10931-10944.	1.8	106
15	Cotton fabrics with UV blocking properties through metal salts deposition. Applied Surface Science, 2015, 357, 1878-1889.	3.1	103
16	Efficient removal of organophosphorus pesticides from wastewater using polyethylenimine-modified fabrics. Polymer, 2018, 155, 225-234.	1.8	102
17	Doping of silver vanadate and silver tungstate nanoparticles for enhancement the photocatalytic activity of MIL-125-NH2 in dye degradation. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 383, 111986.	2.0	100
18	One-pot fabrication of AgNPs, AuNPs and Ag-Au nano-alloy using cellulosic solid support for catalytic reduction application. Carbohydrate Polymers, 2017, 166, 1-13.	5.1	97

#	Article	IF	CITATIONS
19	Cu-BTC metal-organic framework natural fabric composites for fuel purification. Fuel Processing Technology, 2017, 159, 306-312.	3.7	93
20	Functionalization of medical cotton by direct incorporation of silver nanoparticles. International Journal of Biological Macromolecules, 2015, 78, 249-256.	3.6	91
21	Treatments to impart antimicrobial activity to clothing and household cellulosic-textiles – why "Nano―silver?. Journal of Cleaner Production, 2013, 39, 17-23.	4.6	90
22	Recyclable photocatalyst composites based on Ag3VO4 and Ag2WO4 @MOF@cotton for effective discoloration of dye in visible light. Cellulose, 2020, 27, 7139-7155.	2.4	89
23	Design of ZIF(Co & Zn)@wool composite for efficient removal of pharmaceutical intermediate from wastewater. Journal of Colloid and Interface Science, 2019, 552, 494-505.	5.0	87
24	Adsorptive Performance of MOFs and MOF Containing Composites for Clean Energy and Safe Environment. Journal of Environmental Chemical Engineering, 2020, 8, 104386.	3.3	85
25	Copper(I)oxide surface modified cellulose fibers—Synthesis, characterization and antimicrobial properties. Surface and Coatings Technology, 2014, 254, 344-351.	2.2	82
26	Layer by layer assembly of nanosilver for high performance cotton fabrics. Fibers and Polymers, 2016, 17, 418-426.	1.1	82
27	In-situ deposition of Cu 2 O micro-needles for biologically active textiles and their release properties. Carbohydrate Polymers, 2017, 165, 255-265.	5.1	81
28	Non-invasive route for desulfurization of fuel using infrared-assisted MIL-53(Al)-NH2 containing fabric. Journal of Colloid and Interface Science, 2019, 556, 193-205.	5.0	79
29	Nanosilver leverage on reactive dyeing of cellulose fibers: Color shading, color fastness and biocidal potentials. Carbohydrate Polymers, 2018, 186, 310-320.	5.1	77
30	Applicable Strategy for Removing Liquid Fuel Nitrogenated Contaminants Using MIL-53-NH ₂ @Natural Fabric Composites. Industrial & Engineering Chemistry Research, 2018, 57, 15054-15065.	1.8	76
31	Self-assembled AuNPs for ingrain pigmentation of silk fabrics with antibacterial potency. International Journal of Biological Macromolecules, 2017, 105, 720-729.	3.6	75
32	Cationization of celluloisc fibers in respect of liquid fuel purification. Journal of Cleaner Production, 2018, 178, 457-467.	4.6	74
33	Large scaled strategy for natural/synthetic fabrics functionalization via immediate assembly of AgNPs. Dyes and Pigments, 2016, 133, 173-183.	2.0	73
34	pH responsive intelligent nano-engineer of nanostructures applicable for discoloration of reactive dyes. Journal of Colloid and Interface Science, 2020, 561, 147-161.	5.0	72
35	Generic strategies for functionalization of cellulosic textiles with metal salts. Cellulose, 2019, 26, 1431-1447.	2.4	71
36	Acacia gum versus pectin in fabrication of catalytically active palladium nanoparticles for dye discoloration. International Journal of Biological Macromolecules, 2020, 156, 829-840.	3.6	71

#	Article	IF	CITATIONS
37	Generation of biocompatible nanogold using H 2 O 2 –starch and their catalytic/antimicrobial activities. European Polymer Journal, 2017, 90, 354-367.	2.6	70
38	Instantly AgNPs deposition through facile solventless technique for poly-functional cotton fabrics. International Journal of Biological Macromolecules, 2016, 84, 308-318.	3.6	69
39	Refining of liquid fuel from N-Containing compounds via using designed Polysulfone@Metal organic framework composite film. Journal of Cleaner Production, 2019, 218, 347-356.	4.6	69
40	Synergistic catalysis of monometallic (Ag, Au, Pd) and bimetallic (Ag Au, Au Pd) versus trimetallic (Ag-Au-Pd) nanostructures effloresced via analogical techniques. Journal of Molecular Liquids, 2019, 287, 110975.	2.3	69
41	Arabic Gum as Bio-Synthesizer for Ag–Au Bimetallic Nanocomposite Using Seed-Mediated Growth Technique and Its Biological Efficacy. Journal of Polymers and the Environment, 2019, 27, 210-223.	2.4	68
42	Merely Ag nanoparticles using different cellulose fibers as removable reductant. Cellulose, 2014, 21, 4219-4230.	2.4	66
43	Comparative study between homo-metallic & hetero-metallic nanostructures based agar in catalytic degradation of dyes. International Journal of Biological Macromolecules, 2019, 138, 450-461.	3.6	65
44	AgO nanoparticles containing cotton fabric: Synthesis, characterization, color data and antibacterial action. International Journal of Biological Macromolecules, 2015, 75, 106-114.	3.6	64
45	Green technology for durable finishing of viscose fibers via self-formation of AuNPs. International Journal of Biological Macromolecules, 2017, 96, 697-705.	3.6	62
46	Carboxymethyl cellulose macromolecules as generator of anisotropic nanogold for catalytic performance. International Journal of Biological Macromolecules, 2018, 111, 999-1009.	3.6	62
47	Hydroxyethyl cellulose for spontaneous synthesis of antipathogenic nanostructures: (Ag & Au) nanoparticles versus Ag-Au nano-alloy. International Journal of Biological Macromolecules, 2019, 128, 214-229.	3.6	61
48	Green-assisted tool for nanogold synthesis based on alginate as a biological macromolecule. RSC Advances, 2016, 6, 73974-73985.	1.7	60
49	Heatless synthesis of well dispersible Au nanoparticles using pectin biopolymer. International Journal of Biological Macromolecules, 2016, 91, 208-219.	3.6	60
50	In-situ modification of natural fabrics by Cu-BTC MOF for effective release of insect repellent (N,N-diethyl-3-methylbenzamide). Journal of Porous Materials, 2017, 24, 1175-1185.	1.3	60
51	Antimicrobial cellulosic textiles based on organic compounds. 3 Biotech, 2019, 9, 29.	1.1	60
52	Temperature-controlled-release of essential oil via reusable mesoporous composite of microcrystalline cellulose and zeolitic imidazole frameworks. Journal of Industrial and Engineering Chemistry, 2021, 94, 134-144.	2.9	57
53	Room temperature synthesis of metallic nanosilver using acacia to impart durable biocidal effect on cotton fabrics. Fibers and Polymers, 2015, 16, 1676-1687.	1.1	56
54	Antitumor/antiviral carbon quantum dots based on carrageenan and pullulan. International Journal of Biological Macromolecules, 2021, 170, 688-700.	3.6	55

#	Article	IF	CITATIONS
55	Technical textiles modified with immobilized carbon dots synthesized with infrared assistance. Journal of Colloid and Interface Science, 2021, 604, 15-29.	5.0	55
56	Investigation into the Role of Surface Modification of Cellulose Nanocrystals with Succinic Anhydride in Dye Removal. Journal of Polymers and the Environment, 2019, 27, 2419-2427.	2.4	53
57	Design of a dual pH and temperature responsive hydrogel based on esterified cellulose nanocrystals for potential drug release. Carbohydrate Polymers, 2022, 278, 118925.	5.1	52
58	Seeded growth core-shell (Ag–Au–Pd) ternary nanostructure at room temperature for potential water treatment. Polymer Testing, 2020, 89, 106720.	2.3	50
59	Potential military cotton textiles composed of carbon quantum dots clustered from 4–(2,4–dichlorophenyl)–6–oxo–2–thioxohexahydropyrimidine–5–carbonitrile. Cellulose, 2021, 9991-10011.	28,4	50
60	Utilization of hydroxypropyl cellulose and poly(acrylic acid)-hydroxypropyl cellulose composite as thickeners for textile printing. Carbohydrate Polymers, 2008, 74, 938-941.	5.1	49
61	Purification of soybean oil from diazinon insecticide by iron-based metal organic framework: Effect of geometrical shape and simulation study. Journal of Molecular Structure, 2022, 1250, 131914.	1.8	46
62	Metal-dependent nano-catalysis in reduction of aromatic pollutants. Environmental Science and Pollution Research, 2020, 27, 6459-6475.	2.7	42
63	Environmentally exploitable biocide/fluorescent metal marker carbon quantum dots. RSC Advances, 2020, 10, 42916-42929.	1.7	38
64	Melt intercalation technique for synthesis of hetero-metallic@chitin bio-composite as recyclable catalyst for prothiofos hydrolysis. Carbohydrate Polymers, 2021, 266, 118163.	5.1	34
65	Copper inclusion in cellulose using sodium d-gluconate complexes. Carbohydrate Polymers, 2012, 90, 1345-1352.	5.1	31
66	Efficient elimination of chlorpyrifos via tailored macroporous membrane based on Al-MOF. Sustainable Materials and Technologies, 2021, 29, e00326.	1.7	31
67	Ion-interactions as driving force in polysaccharide assembly. Carbohydrate Polymers, 2013, 93, 316-323.	5.1	30
68	Durable fluorescent cotton textile by immobilization of unique tetrahydrothienoisoquinoline derivatives. Cellulose, 2021, 28, 5937.	2.4	29
69	Influence of silver nanoparticles on the fabrics functions prepared by <i>in-situ</i> technique. Journal of the Textile Institute, 2017, 108, 1828-1839.	1.0	28
70	Overview for multimetallic nanostructures with biomedical, environmental and industrial applications. Journal of Molecular Liquids, 2021, 321, 114669.	2.3	28
71	Emerging Use of Homogenic and Heterogenic Nano-colloids Synthesized via Size-Controllable Technique in Catalytic Potency. Journal of Polymers and the Environment, 2020, 28, 553-565.	2.4	27
72	Modulation of metal organic framework hybrid cotton for efficient sweeping of dyes and pesticides from wastewater. Sustainable Materials and Technologies, 2022, 31, e00366.	1.7	27

#	Article	IF	CITATIONS
73	Separation of anthocyanin from roselle extract by cationic nano-rode ZIF-8 constructed using removable template. Journal of Molecular Structure, 2022, 1267, 133607.	1.8	25
74	Preparation and characterization of water soluble poly(acrylic acid)–hydroxypropyl cellulose composite. Carbohydrate Polymers, 2008, 74, 783-786.	5.1	23
75	Controllable Release of Povidone-lodine from Networked Pectin@Carboxymethyl Pullulan Hydrogel. Polymers, 2021, 13, 3118.	2.0	22
76	Microwave assisted post-synthetic modification of IRMOF-3 and MIL-68-NH2 onto cotton for Fuel purification with computational explanation. Surfaces and Interfaces, 2022, 30, 101940.	1.5	22
77	Full ultraviolet shielding potency of highly durable cotton via self- implantation of palladium nanoclusters. Cellulose, 2022, 29, 4787-4804.	2.4	20
78	Recyclable palladium based nano-catalytic laborer encaged within bio-granules for dye degradation. Surfaces and Interfaces, 2021, 25, 101175.	1.5	19
79	Anticancer effects of biosynthesized Cu2O nanoparticles using marine yeast. Biocatalysis and Agricultural Biotechnology, 2022, 39, 102261.	1.5	19
80	Functionalization of Unbleached Flax Fibers by Direct Integration of Nano-silver through Internal and External Reduction. Fibers and Polymers, 2021, 22, 3014-3024.	1.1	17
81	Molecularly Imprinted Cellulose Sensor Strips for Selective Determination of Phenols in Aqueous Environment. Fibers and Polymers, 2020, 21, 2195-2203.	1.1	14
82	Modified Rice Straw as a Template in Syntheses of Nano TiO ₂ Loaded on Wool Fibers for Wastewater Treatment. Journal of Natural Fibers, 2017, 14, 297-309.	1.7	9
83	Accessibility of green synthesized nanopalladium in water treatment. Results in Engineering, 2022, 15, 100500.	2.2	8
84	Clustering of photoluminescent carbon quantum dots using biopolymers for biomedical applications. Biocatalysis and Agricultural Biotechnology, 2022, 42, 102382.	1.5	7
85	Polysaccharide-based metal nanoparticles. , 2022, , 375-413.		5