
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/503511/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Creation of Hydrochlorothiazide Pharmaceutical Cocrystals Via Hot-Melt Extrusion for Enhanced Solubility and Permeability. AAPS PharmSciTech, 2022, 23, 56.	3.3	15
2	Development and Validation of HPLC Method for Efinaconazole: Application to Human Nail Permeation Studies. AAPS PharmSciTech, 2022, 23, 63.	3.3	5
3	Hot-melt extruded hydroxypropyl methylcellulose acetate succinate based amorphous solid dispersions: Impact of polymeric combinations on supersaturation kinetics and dissolution performance. International Journal of Pharmaceutics, 2022, 615, 121471.	5.2	15
4	Theophylline-nicotinamide pharmaceutical co-crystals generated using hot melt extrusion technology: Impact of polymeric carriers on processability. Journal of Drug Delivery Science and Technology, 2021, 61, 102128.	3.0	15
5	Quality-by-design in hot melt extrusion based amorphous solid dispersions: An industrial perspective on product development. European Journal of Pharmaceutical Sciences, 2021, 158, 105655.	4.0	40
6	Development of lysozyme loaded microneedles for dermal applications. International Journal of Pharmaceutics, 2021, 593, 120104.	5.2	23
7	Pharmaceutical Co-crystals, Salts, and Co-amorphous Systems: A novel opportunity of hot-melt extrusion. Journal of Drug Delivery Science and Technology, 2021, 61, 102209.	3.0	22
8	Oral drug delivery systems using core–shell structure additive manufacturing technologies: a proof-of-concept study. Journal of Pharmacy and Pharmacology, 2021, 73, 152-160.	2.4	3
9	Development and Characterization of Sustained-Released Donepezil Hydrochloride Solid Dispersions Using Hot Melt Extrusion Technology. Pharmaceutics, 2021, 13, 213.	4.5	15
10	Chemotherapeutic Agent-Induced Vulvodynia, an Experimental Model. AAPS PharmSciTech, 2021, 22, 95.	3.3	2
11	Optimization of sulfobutyl-ether-β-cyclodextrin levels in oral formulations to enhance progesterone bioavailability. International Journal of Pharmaceutics, 2021, 596, 120212.	5.2	19
12	Coupling hot melt extrusion and fused deposition modeling: Critical properties for successful performance. Advanced Drug Delivery Reviews, 2021, 172, 52-63.	13.7	74
13	3D printing in personalized drug delivery: An overview of hot-melt extrusion-based fused deposition modeling. International Journal of Pharmaceutics, 2021, 600, 120501.	5.2	87
14	Impact of hydrophilic binders on stability of lipid-based sustained release matrices of quetiapine fumarate by the continuous twin screw melt granulation technique. Advanced Powder Technology, 2021, 32, 2591-2604.	4.1	7
15	Multicomponent crystalline solid forms of aripiprazole produced via hot melt extrusion techniques: An exploratory study. Journal of Drug Delivery Science and Technology, 2021, 63, 102529.	3.0	9
16	Development and optimization of hot-melt extruded moxifloxacin hydrochloride inserts, for ocular applications, using the design of experiments. International Journal of Pharmaceutics, 2021, 603, 120676.	5.2	14
17	Influence of Plasdone™ S630 Ultra—an Improved Copovidone on the Processability and Oxidative Degradation of Quetiapine Fumarate Amorphous Solid Dispersions Prepared via Hot-Melt Extrusion Technique. AAPS PharmSciTech, 2021, 22, 196.	3.3	9
18	Effect of pH modifiers on the solubility, dissolution rate, and stability of telmisartan solid dispersions produced by hot-melt extrusion technology. Journal of Drug Delivery Science and Technology, 2021, 65, 102674.	3.0	13

#	Article	IF	CITATIONS
19	Continuous production of raloxifene hydrochloride loaded nanostructured lipid carriers using hot-melt extrusion technology. Journal of Drug Delivery Science and Technology, 2021, 65, 102673.	3.0	5
20	Novel Gastroretentive Floating Pulsatile Drug Delivery System Produced via Hot-Melt Extrusion and Fused Deposition Modeling 3D Printing. Pharmaceutics, 2020, 12, 52.	4.5	96
21	Systematic screening of pharmaceutical polymers for hot melt extrusion processing: a comprehensive review. International Journal of Pharmaceutics, 2020, 576, 118989.	5.2	83
22	Continuous Manufacturing of Ketoprofen Delayed Release Pellets Using Melt Extrusion Technology: Application of QbD Design Space, Inline Near Infrared, and Inline Pellet Size Analysis. Journal of Pharmaceutical Sciences, 2020, 109, 3598-3607.	3.3	13
23	Extended release pellets prepared by hot melt extrusion technique for abuse deterrent potential: Category-1 in-vitro evaluation. International Journal of Pharmaceutics, 2020, 587, 119624.	5.2	21
24	A Comparison Between Lab-Scale and Hot-Melt-Extruder-Based Anti-inflammatory Ointment Manufacturing. AAPS PharmSciTech, 2020, 21, 200.	3.3	12
25	Hot Melt Extrusion Processing Parameters Optimization. Processes, 2020, 8, 1516.	2.8	16
26	Fabrication of Taste-Masked Donut-Shaped Tablets Via Fused Filament Fabrication 3D Printing Paired with Hot-Melt Extrusion Techniques. AAPS PharmSciTech, 2020, 21, 243.	3.3	46
27	Polymer-Assisted Aripiprazole–Adipic Acid Cocrystals Produced by Hot Melt Extrusion Techniques. Crystal Growth and Design, 2020, 20, 4335-4345.	3.0	30
28	Hot melt extrusion paired fused deposition modeling 3D printing to develop hydroxypropyl cellulose based floating tablets of cinnarizine. Carbohydrate Polymers, 2020, 246, 116519.	10.2	69
29	Continuous twin screw granulation $\hat{a} \in$ An advanced alternative granulation technology for use in the pharmaceutical industry. International Journal of Pharmaceutics, 2020, 580, 119215.	5.2	42
30	Preparation and evaluation of cefuroxime axetil gastro-retentive floating drug delivery system via hot melt extrusion technology. International Journal of Pharmaceutics, 2019, 566, 520-531.	5.2	14
31	A quality by design approach to develop topical creams via hot-melt extrusion technology. European Journal of Pharmaceutical Sciences, 2019, 136, 104948.	4.0	17
32	Effects of Processing on a Sustained Release Formulation Prepared by Twin-Screw Dry Granulation. Journal of Pharmaceutical Sciences, 2019, 108, 2895-2904.	3.3	16
33	Development and evaluation of pharmaceutical 3D printability for hot melt extruded cellulose-based filaments. Journal of Drug Delivery Science and Technology, 2019, 52, 292-302.	3.0	62
34	Exploratory studies in heat-assisted continuous twin-screw dry granulation: A novel alternative technique to conventional dry granulation. International Journal of Pharmaceutics, 2019, 555, 380-393.	5.2	19
35	Effects of formulation composition on the characteristics of mucoadhesive films prepared by hot-melt extrusion technology. Journal of Pharmacy and Pharmacology, 2019, 71, 293-305.	2.4	22
36	Microbial Stability of Pharmaceutical and Cosmetic Products. AAPS PharmSciTech, 2018, 19, 60-78.	3.3	57

#	Article	IF	CITATIONS
37	Development of poloxamer gel formulations via hot-melt extrusion technology. International Journal of Pharmaceutics, 2018, 537, 122-131.	5.2	30
38	Excipient Stability: a Critical Aspect in Stability of Pharmaceuticals. AAPS PharmSciTech, 2018, 19, 11-11.	3.3	7
39	Solving the Delivery Problems of Triclabendazole Using Cyclodextrins. AAPS PharmSciTech, 2018, 19, 2311-2321.	3.3	16
40	Chronotherapeutic Drug Delivery of Ketoprofen and Ibuprofen for Improved Treatment of Early Morning Stiffness in Arthritis Using Hot-Melt Extrusion Technology. AAPS PharmSciTech, 2018, 19, 2700-2709.	3.3	36
41	Pharmaceutical Additive Manufacturing: a Novel Tool for Complex and Personalized Drug Delivery Systems. AAPS PharmSciTech, 2018, 19, 3388-3402.	3.3	72
42	Preparation of a crystalline salt of indomethacin and tromethamine by hot melt extrusion technology. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 131, 109-119.	4.3	31
43	Dual mechanism of microenvironmental pH modulation and foam melt extrusion to enhance performance of HPMCAS based amorphous solid dispersion. International Journal of Pharmaceutics, 2018, 550, 216-228.	5.2	18
44	Investigation of the combined effect of MgO and PEG on the release profile of mefenamic acid prepared via hot-melt extrusion techniques. Pharmaceutical Development and Technology, 2017, 22, 740-753.	2.4	11
45	Rat Palatability Study for Taste Assessment of Caffeine Citrate Formulation Prepared via Hot-Melt Extrusion Technology. AAPS PharmSciTech, 2017, 18, 341-348.	3.3	16
46	Dual-mechanism gastroretentive drug delivery system loaded with an amorphous solid dispersion prepared by hot-melt extrusion. European Journal of Pharmaceutical Sciences, 2017, 102, 71-84.	4.0	44
47	Bioadhesive Drug Delivery System for Enhancing the Permeability of a BCS Class III Drug via Hot-Melt Extrusion Technology. AAPS PharmSciTech, 2017, 18, 2639-2647.	3.3	18
48	Ocular Disposition of â^†8-Tetrahydrocannabinol from Various Topical Ophthalmic Formulations. AAPS PharmSciTech, 2017, 18, 1936-1945.	3.3	18
49	Development and evaluation of an oral fast disintegrating anti-allergic film using hot-melt extrusion technology. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 119, 81-90.	4.3	76
50	Coupling 3D printing with hot-melt extrusion to produce controlled-release tablets. International Journal of Pharmaceutics, 2017, 519, 186-197.	5.2	315
51	A Novel Approach for the Development of a Nanostructured Lipid Carrier Formulation by Hot-Melt Extrusion Technology. Journal of Pharmaceutical Sciences, 2017, 106, 1085-1091.	3.3	48
52	Hydroxypropyl methylcellulose-based controlled release dosage by melt extrusion and 3D printing: Structure and drug release correlation. Carbohydrate Polymers, 2017, 177, 49-57.	10.2	157
53	Preparation and evaluation of enteric coated tablets of hot-melt extruded lansoprazole. Drug Development and Industrial Pharmacy, 2017, 43, 789-796.	2.0	29
54	Development of a Δ ⁹ -Tetrahydrocannabinol Amino Acid-Dicarboxylate Prodrug With Improved Ocular Bioavailability. , 2017, 58, 2167.		45

#	Article	IF	CITATIONS
55	Hot melt extrusion as an approach to improve solubility, permeability and oral absorption of a psychoactive natural product, piperine. Journal of Pharmacy and Pharmacology, 2016, 68, 989-998.	2.4	48
56	The effects of polymer carrier, hot melt extrusion process and downstream processing parameters on the moisture sorption properties of amorphous solid dispersions. Journal of Pharmacy and Pharmacology, 2016, 68, 692-704.	2.4	39
57	Optimization of hot melt extrusion parameters for sphericity and hardness of polymeric face-cut pellets. Drug Development and Industrial Pharmacy, 2016, 42, 1833-1841.	2.0	20
58	Pharmaceutical Thermal Processing. AAPS PharmSciTech, 2016, 17, 1-2.	3.3	22
59	Development of an Ointment Formulation Using Hot-Melt Extrusion Technology. AAPS PharmSciTech, 2016, 17, 158-166.	3.3	45
60	A novel floating controlled release drug delivery system prepared by hot-melt extrusion. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 98, 108-121.	4.3	75
61	Development, optimization and <i>in vivo</i> characterization of domperidone-controlled release hot-melt-extruded films for buccal delivery. Drug Development and Industrial Pharmacy, 2016, 42, 473-484.	2.0	44
62	Contribution of hot-melt extrusion technology to advance drug delivery in the 21st century. Expert Opinion on Drug Delivery, 2016, 13, 451-464.	5.0	125
63	Solid-state characterization of Felodipine–Soluplus amorphous solid dispersions. Drug Development and Industrial Pharmacy, 2016, 42, 485-496.	2.0	35
64	Controlled release tablet formulation containing natural Δ ⁹ -tetrahydrocannabinol. Drug Development and Industrial Pharmacy, 2016, 42, 1158-1164.	2.0	3
65	Influence of pressurized carbon dioxide on ketoprofen-incorporated hot-melt extruded low molecular weight hydroxypropylcellulose. Drug Development and Industrial Pharmacy, 2016, 42, 123-130.	2.0	22
66	Conjugation of Hot-Melt Extrusion with High-Pressure Homogenization: a Novel Method of Continuously Preparing Nanocrystal Solid Dispersions. AAPS PharmSciTech, 2016, 17, 78-88.	3.3	48
67	Hot-Melt Extrusion: from Theory to Application in Pharmaceutical Formulation. AAPS PharmSciTech, 2016, 17, 20-42.	3.3	364
68	Preparation and Evaluation of Hot-Melt Extruded Patient-Centric Ketoprofen Mini-Tablets. Current Drug Delivery, 2016, 13, 730-741.	1.6	16
69	Influence of molecular weight of carriers and processing parameters on the extrudability, drug release, and stability of fenofibrate formulations processed by hot-melt extrusion. Journal of Drug Delivery Science and Technology, 2015, 29, 189-198.	3.0	17
70	Mefenamic acid taste-masked oral disintegrating tablets with enhanced solubility via molecular interaction produced by hot melt extrusion technology. Journal of Drug Delivery Science and Technology, 2015, 27, 18-27.	3.0	47
71	Formulation and development of pH-independent/dependent sustained release matrix tablets of ondansetron HCl by a continuous twin-screw melt granulation process. International Journal of Pharmaceutics, 2015, 496, 33-41.	5.2	44
72	Development of taste masked caffeine citrate formulations utilizing hot melt extrusion technology and in vitro–in vivo evaluations. International Journal of Pharmaceutics, 2015, 487, 167-176.	5.2	54

#	Article	IF	CITATIONS
73	Influence of degassing on hot-melt extrusion process. European Journal of Pharmaceutical Sciences, 2015, 80, 43-52.	4.0	35
74	Continuous manufacturing of solid lipid nanoparticles by hot melt extrusion. International Journal of Pharmaceutics, 2014, 471, 153-156.	5.2	39
75	Melt extrusion: process to product. Expert Opinion on Drug Delivery, 2012, 9, 105-125.	5.0	116
76	Upregulation of Endogenous Neurotrophin Levels in the Brain by Intranasal Administration of Carnosic Acid. Journal of Pharmaceutical Sciences, 2011, 100, 3139-3145.	3.3	24
77	Applications of hot-melt extrusion for drug delivery. Expert Opinion on Drug Delivery, 2008, 5, 1357-1376.	5.0	181
78	Pharmaceutical Applications of Hot-Melt Extrusion: Part II. Drug Development and Industrial Pharmacy, 2007, 33, 1043-1057.	2.0	319
79	Temperature Stability and Bioadhesive Properties of Δ9-Tetrahydrocannabinol Incorporated Hydroxypropylcellulose Polymer Matrix Systems. Drug Development and Industrial Pharmacy, 2006, 32, 21-32.	2.0	43
80	Characterization of cellulosic hot-melt extruded films containing lidocaine. European Journal of Pharmaceutics and Biopharmaceutics, 2005, 59, 189-196.	4.3	147
81	Influence of human nail etching for the assessment of topical onychomycosis therapies. International Journal of Pharmaceutics, 2004, 282, 95-106.	5.2	64
82	Matrix- and Reservoir-Based Transmucosal Delivery Systems. American Journal of Drug Delivery, 2004, 2, 173-192.	0.6	6
83	Production and Characterization of Hot-Melt Extruded Films Containing Clotrimazole. Drug Development and Industrial Pharmacy, 2003, 29, 757-765.	2.0	86
84	Nail morphology studies as assessments for onychomycosis treatment modalities. International Journal of Pharmaceutics, 2002, 245, 25-36.	5.2	45
85	Influence of Chlorpheniramine Maleate on Topical Hydroxypropylcellulose Films Produced by Hot-Melt Extrusion. Pharmaceutical Development and Technology, 2001, 6, 297-304.	2.4	34
86	Influence of Plasticizers and Drugs on the Physical-Mechanical Properties of Hydroxypropylcellulose Films Prepared by Hot Melt Extrusion. Drug Development and Industrial Pharmacy, 1999, 25, 625-633.	2.0	184